packed_seq/
packed_seq.rs

1use core::cell::RefCell;
2use std::ops::{Deref, DerefMut};
3use traits::Seq;
4use wide::u16x8;
5
6use crate::{intrinsics::transpose, padded_it::ChunkIt};
7
8use super::*;
9
10type SimdBuf = [S; 8];
11
12struct RecycledBox(Option<Box<SimdBuf>>);
13
14thread_local! {
15    static RECYCLED_BOX_CACHE: RefCell<Vec<Box<SimdBuf>>> = {
16        RefCell::new(vec![Box::new(SimdBuf::default())])
17    };
18}
19
20impl RecycledBox {
21    #[inline(always)]
22    fn take() -> Self {
23        let mut buf = RECYCLED_BOX_CACHE.with_borrow_mut(|v| RecycledBox(v.pop()));
24        buf.init_if_needed();
25        buf
26    }
27
28    #[inline(always)]
29    fn init_if_needed(&mut self) {
30        if self.0.is_none() {
31            self.0 = Some(Box::new(SimdBuf::default()));
32        }
33    }
34
35    #[inline(always)]
36    fn get(&self) -> &SimdBuf {
37        unsafe { self.0.as_ref().unwrap_unchecked() }
38    }
39
40    #[inline(always)]
41    fn get_mut(&mut self) -> &mut SimdBuf {
42        unsafe { self.0.as_mut().unwrap_unchecked() }
43    }
44}
45
46impl Deref for RecycledBox {
47    type Target = SimdBuf;
48
49    #[inline(always)]
50    fn deref(&self) -> &Self::Target {
51        self.get()
52    }
53}
54impl DerefMut for RecycledBox {
55    #[inline(always)]
56    fn deref_mut(&mut self) -> &mut SimdBuf {
57        self.get_mut()
58    }
59}
60
61impl Drop for RecycledBox {
62    #[inline(always)]
63    fn drop(&mut self) {
64        let mut x = None;
65        core::mem::swap(&mut x, &mut self.0);
66        RECYCLED_BOX_CACHE.with_borrow_mut(|v| v.push(unsafe { x.unwrap_unchecked() }));
67    }
68}
69
70struct RecycledVec(Vec<S>);
71
72thread_local! {
73    static RECYCLED_VEC_CACHE: RefCell<Vec<Vec<S>>> = {
74        RefCell::new(vec![])
75    };
76}
77
78impl RecycledVec {
79    #[inline(always)]
80    fn take() -> Self {
81        RecycledVec(RECYCLED_VEC_CACHE.with_borrow_mut(|v| v.pop().unwrap_or_default()))
82    }
83}
84
85impl Deref for RecycledVec {
86    type Target = Vec<S>;
87    #[inline(always)]
88    fn deref(&self) -> &Self::Target {
89        &self.0
90    }
91}
92impl DerefMut for RecycledVec {
93    #[inline(always)]
94    fn deref_mut(&mut self) -> &mut Self::Target {
95        &mut self.0
96    }
97}
98impl Drop for RecycledVec {
99    #[inline(always)]
100    fn drop(&mut self) {
101        RECYCLED_VEC_CACHE.with_borrow_mut(|v| v.push(std::mem::take(&mut self.0)));
102    }
103}
104
105#[doc(hidden)]
106pub struct Bits<const B: usize>;
107#[doc(hidden)]
108pub trait SupportedBits {}
109impl SupportedBits for Bits<1> {}
110impl SupportedBits for Bits<2> {}
111impl SupportedBits for Bits<4> {}
112impl SupportedBits for Bits<8> {}
113
114/// Number of padding bytes at the end of `PackedSeqVecBase::seq`.
115pub(crate) const PADDING: usize = 48;
116
117/// A 2-bit packed non-owned slice of DNA bases.
118#[doc(hidden)]
119#[derive(Copy, Clone, Debug, MemSize, MemDbg)]
120pub struct PackedSeqBase<'s, const B: usize>
121where
122    Bits<B>: SupportedBits,
123{
124    /// Packed data.
125    seq: &'s [u8],
126    /// Offset in bp from the start of the `seq`.
127    offset: usize,
128    /// Length of the sequence in bp, starting at `offset` from the start of `seq`.
129    len: usize,
130}
131
132/// A 2-bit packed owned sequence of DNA bases.
133#[doc(hidden)]
134#[derive(Clone, Debug, MemSize, MemDbg)]
135#[cfg_attr(feature = "pyo3", pyo3::pyclass)]
136#[cfg_attr(feature = "epserde", derive(epserde::Epserde))]
137pub struct PackedSeqVecBase<const B: usize>
138where
139    Bits<B>: SupportedBits,
140{
141    /// NOTE: We maintain the invariant that this has at least 16 bytes padding
142    /// at the end after `len` finishes.
143    /// This ensures that `read_unaligned` in `as_64` works OK.
144    pub(crate) seq: Vec<u8>,
145
146    /// The length, in bp, of the underlying sequence. See `.len()`.
147    len: usize,
148}
149
150pub type PackedSeq<'s> = PackedSeqBase<'s, 2>;
151pub type PackedSeqVec = PackedSeqVecBase<2>;
152pub type BitSeq<'s> = PackedSeqBase<'s, 1>;
153pub type BitSeqVec = PackedSeqVecBase<1>;
154
155/// Convenience constants.
156/// B: bits per chat
157impl<'s, const B: usize> PackedSeqBase<'s, B>
158where
159    Bits<B>: SupportedBits,
160{
161    /// lowest B bits are 1.
162    const CHAR_MASK: u64 = (1 << B) - 1;
163    const SIMD_B: S = S::new([B as u32; 8]);
164    const SIMD_CHAR_MASK: S = S::new([(1 << B) - 1; 8]);
165    /// Chars per byte
166    const C8: usize = 8 / B;
167    /// Chars per u32
168    const C32: usize = 32 / B;
169    /// Chars per u256
170    const C256: usize = 256 / B;
171    /// Max length of a kmer that can be read as a single u64.
172    const K64: usize = (64 - 8) / B + 1;
173}
174
175/// Convenience constants.
176impl<const B: usize> PackedSeqVecBase<B>
177where
178    Bits<B>: SupportedBits,
179{
180    /// Chars per byte
181    const C8: usize = 8 / B;
182}
183
184impl<const B: usize> Default for PackedSeqVecBase<B>
185where
186    Bits<B>: SupportedBits,
187{
188    fn default() -> Self {
189        Self {
190            seq: vec![0; PADDING],
191            len: 0,
192        }
193    }
194}
195
196// ======================================================================
197// 2-BIT HELPER METHODS
198
199/// Pack an ASCII `ACTGactg` character into its 2-bit representation, and panic for anything else.
200#[inline(always)]
201pub fn pack_char(base: u8) -> u8 {
202    match base {
203        b'a' | b'A' => 0,
204        b'c' | b'C' => 1,
205        b'g' | b'G' => 3,
206        b't' | b'T' => 2,
207        _ => panic!(
208            "Unexpected character '{}' with ASCII value {base}. Expected one of ACTGactg.",
209            base as char
210        ),
211    }
212}
213
214/// Pack an ASCII `ACTGactg` character into its 2-bit representation, and silently convert other characters into 0..4 as well.
215#[inline(always)]
216pub fn pack_char_lossy(base: u8) -> u8 {
217    (base >> 1) & 3
218}
219/// Pack a slice of ASCII `ACTGactg` characters into its packed 2-bit kmer representation.
220/// Other characters are silently converted.
221#[inline(always)]
222pub fn pack_kmer_lossy(slice: &[u8]) -> u64 {
223    let mut kmer = 0;
224    for (i, &base) in slice.iter().enumerate() {
225        kmer |= (pack_char_lossy(base) as u64) << (2 * i);
226    }
227    kmer
228}
229/// Pack a slice of ASCII `ACTGactg` characters into its packed 2-bit kmer representation.
230#[inline(always)]
231pub fn pack_kmer_u128_lossy(slice: &[u8]) -> u128 {
232    let mut kmer = 0;
233    for (i, &base) in slice.iter().enumerate() {
234        kmer |= (pack_char_lossy(base) as u128) << (2 * i);
235    }
236    kmer
237}
238
239/// Unpack a 2-bit DNA base into the corresponding `ACTG` character.
240#[inline(always)]
241pub fn unpack_base(base: u8) -> u8 {
242    debug_assert!(base < 4, "Base {base} is not <4.");
243    b"ACTG"[base as usize]
244}
245
246/// Unpack a 2-bit encoded kmer into corresponding `ACTG` characters.
247/// Slice the returned array to the correct length.
248#[inline(always)]
249pub fn unpack_kmer(kmer: u64) -> [u8; 32] {
250    std::array::from_fn(|i| unpack_base(((kmer >> (2 * i)) & 3) as u8))
251}
252/// Unpack a 2-bit encoded kmer into corresponding `ACTG` character.
253#[inline(always)]
254pub fn unpack_kmer_into_vec(kmer: u64, k: usize, out: &mut Vec<u8>) {
255    out.clear();
256    out.extend((0..k).map(|i| unpack_base(((kmer >> (2 * i)) & 3) as u8)));
257}
258/// Unpack a 2-bit encoded kmer into corresponding `ACTG` character.
259#[inline(always)]
260pub fn unpack_kmer_to_vec(kmer: u64, k: usize) -> Vec<u8> {
261    let mut out = vec![];
262    unpack_kmer_into_vec(kmer, k, &mut out);
263    out
264}
265
266/// Unpack a 2-bit encoded kmer into corresponding `ACTG` characters.
267/// Slice the returned array to the correct length.
268#[inline(always)]
269pub fn unpack_kmer_u128(kmer: u128) -> [u8; 64] {
270    std::array::from_fn(|i| unpack_base(((kmer >> (2 * i)) & 3) as u8))
271}
272/// Unpack a 2-bit encoded kmer into corresponding `ACTG` character.
273#[inline(always)]
274pub fn unpack_kmer_u128_into_vec(kmer: u128, k: usize, out: &mut Vec<u8>) {
275    out.clear();
276    out.extend((0..k).map(|i| unpack_base(((kmer >> (2 * i)) & 3) as u8)));
277}
278/// Unpack a 2-bit encoded kmer into corresponding `ACTG` character.
279#[inline(always)]
280pub fn unpack_kmer_u128_to_vec(kmer: u128, k: usize) -> Vec<u8> {
281    let mut out = vec![];
282    unpack_kmer_u128_into_vec(kmer, k, &mut out);
283    out
284}
285
286/// Complement an ASCII character: `A<>T` and `C<>G`.
287#[inline(always)]
288pub const fn complement_char(base: u8) -> u8 {
289    match base {
290        b'A' => b'T',
291        b'C' => b'G',
292        b'G' => b'C',
293        b'T' => b'A',
294        _ => panic!("Unexpected character. Expected one of ACTGactg.",),
295    }
296}
297
298/// Complement a 2-bit base: `0<>2` and `1<>3`.
299#[inline(always)]
300pub const fn complement_base(base: u8) -> u8 {
301    base ^ 2
302}
303
304/// Complement 8 lanes of 2-bit bases: `0<>2` and `1<>3`.
305#[inline(always)]
306pub fn complement_base_simd(base: u32x8) -> u32x8 {
307    const TWO: u32x8 = u32x8::new([2; 8]);
308    base ^ TWO
309}
310
311/// Reverse complement the 2-bit pairs in the input.
312#[inline(always)]
313const fn revcomp_raw(word: u64) -> u64 {
314    #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
315    {
316        let mut res = word.reverse_bits(); // ARM can reverse bits in a single instruction
317        res = ((res >> 1) & 0x5555_5555_5555_5555) | ((res & 0x5555_5555_5555_5555) << 1);
318        res ^ 0xAAAA_AAAA_AAAA_AAAA
319    }
320
321    #[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
322    {
323        let mut res = word.swap_bytes();
324        res = ((res >> 4) & 0x0F0F_0F0F_0F0F_0F0F) | ((res & 0x0F0F_0F0F_0F0F_0F0F) << 4);
325        res = ((res >> 2) & 0x3333_3333_3333_3333) | ((res & 0x3333_3333_3333_3333) << 2);
326        res ^ 0xAAAA_AAAA_AAAA_AAAA
327    }
328}
329
330/// Compute the reverse complement of a short sequence packed in a `u64`.
331#[inline(always)]
332pub const fn revcomp_u64(word: u64, len: usize) -> u64 {
333    revcomp_raw(word) >> (usize::BITS as usize - 2 * len)
334}
335
336#[inline(always)]
337pub const fn revcomp_u128(word: u128, len: usize) -> u128 {
338    let low = word as u64;
339    let high = (word >> 64) as u64;
340    let rlow = revcomp_raw(low);
341    let rhigh = revcomp_raw(high);
342    let out = ((rlow as u128) << 64) | rhigh as u128;
343    out >> (u128::BITS as usize - 2 * len)
344}
345
346// ======================================================================
347// 1-BIT HELPER METHODS
348
349/// 1 when a char is ambiguous.
350#[inline(always)]
351pub fn char_is_ambiguous(base: u8) -> u8 {
352    // (!matches!(base, b'A' | b'C'  | b'G'  | b'T' | b'a' | b'c'  | b'g'  | b't')) as u8
353    let table = b"ACTG";
354    let upper_mask = !(b'a' - b'A');
355    (table[pack_char_lossy(base) as usize] != (base & upper_mask)) as u8
356}
357
358/// Reverse `len` bits packed in a `u64`.
359#[inline(always)]
360pub const fn rev_u64(word: u64, len: usize) -> u64 {
361    word.reverse_bits() >> (usize::BITS as usize - len)
362}
363
364/// Reverse `len` bits packed in a `u128`.
365#[inline(always)]
366pub const fn rev_u128(word: u128, len: usize) -> u128 {
367    word.reverse_bits() >> (u128::BITS as usize - len)
368}
369
370// ======================================================================
371
372impl<const B: usize> PackedSeqBase<'_, B>
373where
374    Bits<B>: SupportedBits,
375{
376    /// Shrink `seq` to only just cover the data.
377    #[inline(always)]
378    pub fn normalize(&self) -> Self {
379        let start_byte = self.offset / Self::C8;
380        let end_byte = (self.offset + self.len).div_ceil(Self::C8);
381        Self {
382            seq: &self.seq[start_byte..end_byte + PADDING],
383            offset: self.offset % Self::C8,
384            len: self.len,
385        }
386    }
387
388    /// Return a `Vec<u8>` of ASCII `ACTG` characters.
389    #[inline(always)]
390    pub fn unpack(&self) -> Vec<u8> {
391        self.iter_bp().map(unpack_base).collect()
392    }
393}
394
395/// Read up to 32 bytes starting at idx.
396#[inline(always)]
397pub(crate) unsafe fn read_slice_32_unchecked(seq: &[u8], idx: usize) -> u32x8 {
398    unsafe {
399        let src = seq.as_ptr().add(idx);
400        debug_assert!(idx + 32 <= seq.len());
401        std::mem::transmute::<_, *const u32x8>(src).read_unaligned()
402    }
403}
404
405/// Read up to 32 bytes starting at idx.
406#[inline(always)]
407pub(crate) fn read_slice_32(seq: &[u8], idx: usize) -> u32x8 {
408    unsafe {
409        let src = seq.as_ptr().add(idx);
410        if idx + 32 <= seq.len() {
411            std::mem::transmute::<_, *const u32x8>(src).read_unaligned()
412        } else {
413            let num_bytes = seq.len().saturating_sub(idx);
414            let mut result = [0u8; 32];
415            std::ptr::copy_nonoverlapping(src, result.as_mut_ptr(), num_bytes);
416            std::mem::transmute(result)
417        }
418    }
419}
420
421/// Read up to 16 bytes starting at idx.
422#[allow(unused)]
423#[inline(always)]
424pub(crate) fn read_slice_16(seq: &[u8], idx: usize) -> u16x8 {
425    unsafe {
426        let src = seq.as_ptr().add(idx);
427        if idx + 16 <= seq.len() {
428            std::mem::transmute::<_, *const u16x8>(src).read_unaligned()
429        } else {
430            let num_bytes = seq.len().saturating_sub(idx);
431            let mut result = [0u8; 16];
432            std::ptr::copy_nonoverlapping(src, result.as_mut_ptr(), num_bytes);
433            std::mem::transmute(result)
434        }
435    }
436}
437
438impl<'s, const B: usize> Seq<'s> for PackedSeqBase<'s, B>
439where
440    Bits<B>: SupportedBits,
441{
442    const BITS_PER_CHAR: usize = B;
443    const BASES_PER_BYTE: usize = Self::C8;
444    type SeqVec = PackedSeqVecBase<B>;
445
446    #[inline(always)]
447    fn len(&self) -> usize {
448        self.len
449    }
450
451    #[inline(always)]
452    fn is_empty(&self) -> bool {
453        self.len == 0
454    }
455
456    #[inline(always)]
457    fn get_ascii(&self, index: usize) -> u8 {
458        unpack_base(self.get(index))
459    }
460
461    /// Convert a short sequence (kmer) to a packed representation as `u64`.
462    /// Panics if `self` is longer than 32 characters.
463    #[inline(always)]
464    fn as_u64(&self) -> u64 {
465        assert!(self.len() <= 64 / B);
466
467        let mask = u64::MAX >> (64 - B * self.len());
468
469        // The unaligned read is OK, because we ensure that the underlying `PackedSeqVecBase::seq` always
470        // has at least 16 bytes (the size of a u128) of padding at the end.
471        if self.len() <= Self::K64 {
472            let x = unsafe { (self.seq.as_ptr() as *const u64).read_unaligned() };
473            (x >> (B * self.offset)) & mask
474        } else {
475            let x = unsafe { (self.seq.as_ptr() as *const u128).read_unaligned() };
476            (x >> (B * self.offset)) as u64 & mask
477        }
478    }
479
480    /// Convert a short sequence (kmer) to a packed representation of its reverse complement as `usize`.
481    /// Panics if `self` is longer than 32 characters.
482    #[inline(always)]
483    fn revcomp_as_u64(&self) -> u64 {
484        match B {
485            1 => rev_u64(self.as_u64(), self.len()),
486            2 => revcomp_u64(self.as_u64(), self.len()),
487            _ => panic!("Rev(comp) is only supported for 1-bit and 2-bit alphabets."),
488        }
489    }
490
491    /// Convert a short sequence (kmer) to a packed representation as `u128`.
492    /// Panics if `self` is longer than 64 characters.
493    #[inline(always)]
494    fn as_u128(&self) -> u128 {
495        assert!(
496            self.len() <= (128 - 8) / B + 1,
497            "Sequences >61 long cannot be read with a single unaligned u128 read."
498        );
499
500        let mask = u128::MAX >> (128 - B * self.len());
501
502        // The unaligned read is OK, because we ensure that the underlying `PackedSeqVecBase::seq` always
503        // has at least 16 bytes (the size of a u128) of padding at the end.
504        let x = unsafe { (self.seq.as_ptr() as *const u128).read_unaligned() };
505        (x >> (B * self.offset)) & mask
506    }
507
508    /// Convert a short sequence (kmer) to a packed representation of its reverse complement as `usize`.
509    /// Panics if `self` is longer than 64 characters.
510    #[inline(always)]
511    fn revcomp_as_u128(&self) -> u128 {
512        match B {
513            1 => rev_u128(self.as_u128(), self.len()),
514            2 => revcomp_u128(self.as_u128(), self.len()),
515            _ => panic!("Rev(comp) is only supported for 1-bit and 2-bit alphabets."),
516        }
517    }
518
519    #[inline(always)]
520    fn to_vec(&self) -> PackedSeqVecBase<B> {
521        assert_eq!(self.offset, 0);
522        PackedSeqVecBase {
523            seq: self
524                .seq
525                .iter()
526                .copied()
527                .chain(std::iter::repeat_n(0u8, PADDING))
528                .collect(),
529            len: self.len,
530        }
531    }
532
533    fn to_revcomp(&self) -> PackedSeqVecBase<B> {
534        match B {
535            1 | 2 => {}
536            _ => panic!("Can only reverse (&complement) 1-bit and 2-bit packed sequences.",),
537        }
538
539        let mut seq = self.seq[..(self.offset + self.len).div_ceil(Self::C8)]
540            .iter()
541            // 1. reverse the bytes
542            .rev()
543            .copied()
544            .map(|mut res| {
545                match B {
546                    2 => {
547                        // 2. swap the bases in the byte
548                        // This is auto-vectorized.
549                        res = ((res >> 4) & 0x0F) | ((res & 0x0F) << 4);
550                        res = ((res >> 2) & 0x33) | ((res & 0x33) << 2);
551                        // Complement the bases.
552                        res ^ 0xAA
553                    }
554                    1 => res.reverse_bits(),
555                    _ => unreachable!(),
556                }
557            })
558            .chain(std::iter::repeat_n(0u8, PADDING))
559            .collect::<Vec<u8>>();
560
561        // 3. Shift away the offset.
562        let new_offset = (Self::C8 - (self.offset + self.len) % Self::C8) % Self::C8;
563
564        if new_offset > 0 {
565            // Shift everything left by `2*new_offset` bits.
566            let shift = B * new_offset;
567            *seq.last_mut().unwrap() >>= shift;
568            // This loop is also auto-vectorized.
569            for i in 0..seq.len() - 1 {
570                seq[i] = (seq[i] >> shift) | (seq[i + 1] << (8 - shift));
571            }
572        }
573
574        PackedSeqVecBase { seq, len: self.len }
575    }
576
577    #[inline(always)]
578    fn slice(&self, range: Range<usize>) -> Self {
579        debug_assert!(
580            range.end <= self.len,
581            "Slice index out of bounds: {} > {}",
582            range.end,
583            self.len
584        );
585        PackedSeqBase {
586            seq: self.seq,
587            offset: self.offset + range.start,
588            len: range.end - range.start,
589        }
590        .normalize()
591    }
592
593    #[inline(always)]
594    fn iter_bp(self) -> impl ExactSizeIterator<Item = u8> {
595        assert!(self.len <= self.seq.len() * Self::C8);
596
597        let this = self.normalize();
598
599        // read u64 at a time?
600        let mut byte = 0;
601        (0..this.len + this.offset)
602            .map(
603                #[inline(always)]
604                move |i| {
605                    if i % Self::C8 == 0 {
606                        byte = this.seq[i / Self::C8];
607                    }
608                    // Shift byte instead of i?
609                    (byte >> (B * (i % Self::C8))) & Self::CHAR_MASK as u8
610                },
611            )
612            .advance(this.offset)
613    }
614
615    #[inline(always)]
616    fn par_iter_bp(self, context: usize) -> PaddedIt<impl ChunkIt<S>> {
617        self.par_iter_bp_with_buf(context, RecycledBox::take())
618    }
619
620    #[inline(always)]
621    fn par_iter_bp_delayed(self, context: usize, delay: Delay) -> PaddedIt<impl ChunkIt<(S, S)>> {
622        self.par_iter_bp_delayed_with_factor(context, delay, 1)
623    }
624
625    /// NOTE: When `self` starts does not start at a byte boundary, the
626    /// 'delayed' character is not guaranteed to be `0`.
627    #[inline(always)]
628    fn par_iter_bp_delayed_2(
629        self,
630        context: usize,
631        delay1: Delay,
632        delay2: Delay,
633    ) -> PaddedIt<impl ChunkIt<(S, S, S)>> {
634        self.par_iter_bp_delayed_2_with_factor_and_buf(
635            context,
636            delay1,
637            delay2,
638            1,
639            RecycledVec::take(),
640        )
641    }
642
643    /// Compares 29 characters at a time.
644    fn cmp_lcp(&self, other: &Self) -> (std::cmp::Ordering, usize) {
645        let mut lcp = 0;
646        let min_len = self.len.min(other.len);
647        for i in (0..min_len).step_by(Self::K64) {
648            let len = (min_len - i).min(Self::K64);
649            let this = self.slice(i..i + len);
650            let other = other.slice(i..i + len);
651            let this_word = this.as_u64();
652            let other_word = other.as_u64();
653            if this_word != other_word {
654                // Unfortunately, bases are packed in little endian order, so the default order is reversed.
655                let eq = this_word ^ other_word;
656                let t = eq.trailing_zeros() as usize / B * B;
657                lcp += t / B;
658                let mask = (Self::CHAR_MASK) << t;
659                return ((this_word & mask).cmp(&(other_word & mask)), lcp);
660            }
661            lcp += len;
662        }
663        (self.len.cmp(&other.len), lcp)
664    }
665
666    #[inline(always)]
667    fn get(&self, index: usize) -> u8 {
668        let offset = self.offset + index;
669        let idx = offset / Self::C8;
670        let offset = offset % Self::C8;
671        (self.seq[idx] >> (B * offset)) & Self::CHAR_MASK as u8
672    }
673}
674
675impl<'s, const B: usize> PackedSeqBase<'s, B>
676where
677    Bits<B>: SupportedBits,
678{
679    #[inline(always)]
680    pub fn par_iter_bp_with_buf<BUF: DerefMut<Target = [S; 8]>>(
681        self,
682        context: usize,
683        mut buf: BUF,
684    ) -> PaddedIt<impl ChunkIt<S> + use<'s, B, BUF>> {
685        #[cfg(target_endian = "big")]
686        panic!("Big endian architectures are not supported.");
687
688        let this = self.normalize();
689        let o = this.offset;
690        assert!(o < Self::C8);
691
692        let num_kmers = if this.len == 0 {
693            0
694        } else {
695            (this.len + o).saturating_sub(context - 1)
696        };
697        // without +o, since we don't need them in the stride.
698        let num_kmers_stride = this.len.saturating_sub(context - 1);
699        let n = num_kmers_stride.div_ceil(L).next_multiple_of(Self::C8);
700        let bytes_per_chunk = n / Self::C8;
701        let padding = Self::C8 * L * bytes_per_chunk - num_kmers_stride;
702
703        let offsets: [usize; 8] = from_fn(|l| l * bytes_per_chunk);
704        let mut cur = S::ZERO;
705
706        let par_len = if num_kmers == 0 {
707            0
708        } else {
709            n + context + o - 1
710        };
711
712        let last_i = par_len.saturating_sub(1) / Self::C32 * Self::C32;
713        // Safety check for the `read_slice_32_unchecked`:
714        assert!(offsets[7] + (last_i / Self::C8) + 32 <= this.seq.len());
715
716        let it = (0..par_len)
717            .map(
718                #[inline(always)]
719                move |i| {
720                    if i % Self::C32 == 0 {
721                        if i % Self::C256 == 0 {
722                            // Read a u256 for each lane containing the next 128 characters.
723                            let data: [u32x8; 8] = from_fn(
724                                #[inline(always)]
725                                |lane| unsafe {
726                                    read_slice_32_unchecked(
727                                        this.seq,
728                                        offsets[lane] + (i / Self::C8),
729                                    )
730                                },
731                            );
732                            *buf = transpose(data);
733                        }
734                        cur = buf[(i % Self::C256) / Self::C32];
735                    }
736                    // Extract the last 2 bits of each character.
737                    let chars = cur & Self::SIMD_CHAR_MASK;
738                    // Shift remaining characters to the right.
739                    cur = cur >> Self::SIMD_B;
740                    chars
741                },
742            )
743            .advance(o);
744
745        PaddedIt { it, padding }
746    }
747
748    #[inline(always)]
749    pub fn par_iter_bp_delayed_with_factor(
750        self,
751        context: usize,
752        delay: Delay,
753        factor: usize,
754    ) -> PaddedIt<impl ChunkIt<(S, S)> + use<'s, B>> {
755        self.par_iter_bp_delayed_with_factor_and_buf(context, delay, factor, RecycledVec::take())
756    }
757
758    #[inline(always)]
759    pub fn par_iter_bp_delayed_with_buf<BUF: DerefMut<Target = Vec<S>>>(
760        self,
761        context: usize,
762        delay: Delay,
763        buf: BUF,
764    ) -> PaddedIt<impl ChunkIt<(S, S)> + use<'s, B, BUF>> {
765        self.par_iter_bp_delayed_with_factor_and_buf(context, delay, 1, buf)
766    }
767
768    #[inline(always)]
769    pub fn par_iter_bp_delayed_with_factor_and_buf<BUF: DerefMut<Target = Vec<S>>>(
770        self,
771        context: usize,
772        Delay(delay): Delay,
773        factor: usize,
774        mut buf: BUF,
775    ) -> PaddedIt<impl ChunkIt<(S, S)> + use<'s, B, BUF>> {
776        #[cfg(target_endian = "big")]
777        panic!("Big endian architectures are not supported.");
778
779        assert!(
780            delay < usize::MAX / 2,
781            "Delay={} should be >=0.",
782            delay as isize
783        );
784
785        let this = self.normalize();
786        let o = this.offset;
787        assert!(o < Self::C8);
788
789        let num_kmers = if this.len == 0 {
790            0
791        } else {
792            (this.len + o).saturating_sub(context - 1)
793        };
794        // without +o, since we don't need them in the stride.
795        let num_kmers_stride = this.len.saturating_sub(context - 1);
796        let n = num_kmers_stride
797            .div_ceil(L)
798            .next_multiple_of(factor * Self::C8);
799        let bytes_per_chunk = n / Self::C8;
800        let padding = Self::C8 * L * bytes_per_chunk - num_kmers_stride;
801
802        let offsets: [usize; 8] = from_fn(|l| l * bytes_per_chunk);
803        let mut upcoming = S::ZERO;
804        let mut upcoming_d = S::ZERO;
805
806        // Even buf_len is nice to only have the write==buf_len check once.
807        // We also make it the next power of 2, for faster modulo operations.
808        // delay/16: number of bp in a u32.
809        // +8: some 'random' padding
810        let buf_len = (delay / Self::C32 + 8).next_power_of_two();
811        let buf_mask = buf_len - 1;
812        if buf.capacity() < buf_len {
813            // This has better codegen than `vec.clear(); vec.resize()`, since the inner `do_reserve_and_handle` of resize is not inlined.
814            *buf = vec![S::ZERO; buf_len];
815        } else {
816            // NOTE: Buf needs to be filled with zeros to guarantee returning 0 values for out-of-bounds characters.
817            buf.clear();
818            buf.resize(buf_len, S::ZERO);
819        }
820
821        let mut write_idx = 0;
822        // We compensate for the first delay/16 triggers of the check below that
823        // happen before the delay is actually reached.
824        let mut read_idx = (buf_len - delay / Self::C32) % buf_len;
825
826        let par_len = if num_kmers == 0 {
827            0
828        } else {
829            n + context + o - 1
830        };
831
832        let last_i = par_len.saturating_sub(1) / Self::C32 * Self::C32;
833        // Safety check for the `read_slice_32_unchecked`:
834        assert!(offsets[7] + (last_i / Self::C8) + 32 <= this.seq.len());
835
836        let it = (0..par_len)
837            .map(
838                #[inline(always)]
839                move |i| {
840                    if i % Self::C32 == 0 {
841                        if i % Self::C256 == 0 {
842                            // Read a u256 for each lane containing the next 128 characters.
843                            let data: [u32x8; 8] = from_fn(
844                                #[inline(always)]
845                                |lane| unsafe {
846                                    read_slice_32_unchecked(
847                                        this.seq,
848                                        offsets[lane] + (i / Self::C8),
849                                    )
850                                },
851                            );
852                            unsafe {
853                                *TryInto::<&mut [u32x8; 8]>::try_into(
854                                    buf.get_unchecked_mut(write_idx..write_idx + 8),
855                                )
856                                .unwrap_unchecked() = transpose(data);
857                            }
858                            if i == 0 {
859                                // Mask out chars before the offset.
860                                let elem = !((1u32 << (B * o)) - 1);
861                                let mask = S::splat(elem);
862                                unsafe { assert_unchecked(write_idx < buf.len()) };
863                                buf[write_idx] &= mask;
864                            }
865                        }
866                        unsafe { assert_unchecked(write_idx < buf.len()) };
867                        upcoming = buf[write_idx];
868                        write_idx += 1;
869                        write_idx &= buf_mask;
870                    }
871                    if i % Self::C32 == delay % Self::C32 {
872                        unsafe { assert_unchecked(read_idx < buf.len()) };
873                        upcoming_d = buf[read_idx];
874                        read_idx += 1;
875                        read_idx &= buf_mask;
876                    }
877                    // Extract the last 2 bits of each character.
878                    let chars = upcoming & Self::SIMD_CHAR_MASK;
879                    let chars_d = upcoming_d & Self::SIMD_CHAR_MASK;
880                    // Shift remaining characters to the right.
881                    upcoming = upcoming >> Self::SIMD_B;
882                    upcoming_d = upcoming_d >> Self::SIMD_B;
883                    (chars, chars_d)
884                },
885            )
886            .advance(o);
887
888        PaddedIt { it, padding }
889    }
890
891    #[inline(always)]
892    pub fn par_iter_bp_delayed_2_with_factor(
893        self,
894        context: usize,
895        delay1: Delay,
896        delay2: Delay,
897        factor: usize,
898    ) -> PaddedIt<impl ChunkIt<(S, S, S)> + use<'s, B>> {
899        self.par_iter_bp_delayed_2_with_factor_and_buf(
900            context,
901            delay1,
902            delay2,
903            factor,
904            RecycledVec::take(),
905        )
906    }
907
908    #[inline(always)]
909    pub fn par_iter_bp_delayed_2_with_buf<BUF: DerefMut<Target = Vec<S>>>(
910        self,
911        context: usize,
912        delay1: Delay,
913        delay2: Delay,
914        buf: BUF,
915    ) -> PaddedIt<impl ChunkIt<(S, S, S)> + use<'s, B, BUF>> {
916        self.par_iter_bp_delayed_2_with_factor_and_buf(context, delay1, delay2, 1, buf)
917    }
918
919    /// When iterating over 2-bit and 1-bit encoded data in parallel,
920    /// one must ensure that they have the same stride.
921    /// On the larger type, set `factor` as the ratio to the smaller one,
922    /// so that the stride in bytes is a multiple of `factor`,
923    /// so that the smaller type also has a byte-aligned stride.
924    #[inline(always)]
925    pub fn par_iter_bp_delayed_2_with_factor_and_buf<BUF: DerefMut<Target = Vec<S>>>(
926        self,
927        context: usize,
928        Delay(delay1): Delay,
929        Delay(delay2): Delay,
930        factor: usize,
931        mut buf: BUF,
932    ) -> PaddedIt<impl ChunkIt<(S, S, S)> + use<'s, B, BUF>> {
933        #[cfg(target_endian = "big")]
934        panic!("Big endian architectures are not supported.");
935
936        let this = self.normalize();
937        let o = this.offset;
938        assert!(o < Self::C8);
939        assert!(delay1 <= delay2, "Delay1 must be at most delay2.");
940
941        let num_kmers = if this.len == 0 {
942            0
943        } else {
944            (this.len + o).saturating_sub(context - 1)
945        };
946        // without +o, since we don't need them in the stride.
947        let num_kmers_stride = this.len.saturating_sub(context - 1);
948        let n = num_kmers_stride
949            .div_ceil(L)
950            .next_multiple_of(factor * Self::C8);
951        let bytes_per_chunk = n / Self::C8;
952        let padding = Self::C8 * L * bytes_per_chunk - num_kmers_stride;
953
954        let offsets: [usize; 8] = from_fn(|l| l * bytes_per_chunk);
955        let mut upcoming = S::ZERO;
956        let mut upcoming_d1 = S::ZERO;
957        let mut upcoming_d2 = S::ZERO;
958
959        // Even buf_len is nice to only have the write==buf_len check once.
960        let buf_len = (delay2 / Self::C32 + 8).next_power_of_two();
961        let buf_mask = buf_len - 1;
962        if buf.capacity() < buf_len {
963            // This has better codegen than `vec.clear(); vec.resize()`, since the inner `do_reserve_and_handle` of resize is not inlined.
964            *buf = vec![S::ZERO; buf_len];
965        } else {
966            // NOTE: Buf needs to be filled with zeros to guarantee returning 0 values for out-of-bounds characters.
967            buf.clear();
968            buf.resize(buf_len, S::ZERO);
969        }
970
971        let mut write_idx = 0;
972        // We compensate for the first delay/16 triggers of the check below that
973        // happen before the delay is actually reached.
974        let mut read_idx1 = (buf_len - delay1 / Self::C32) % buf_len;
975        let mut read_idx2 = (buf_len - delay2 / Self::C32) % buf_len;
976
977        let par_len = if num_kmers == 0 {
978            0
979        } else {
980            n + context + o - 1
981        };
982
983        let last_i = par_len.saturating_sub(1) / Self::C32 * Self::C32;
984        // Safety check for the `read_slice_32_unchecked`:
985        assert!(offsets[7] + (last_i / Self::C8) + 32 <= this.seq.len());
986
987        let it = (0..par_len)
988            .map(
989                #[inline(always)]
990                move |i| {
991                    if i % Self::C32 == 0 {
992                        if i % Self::C256 == 0 {
993                            // Read a u256 for each lane containing the next 128 characters.
994                            let data: [u32x8; 8] = from_fn(
995                                #[inline(always)]
996                                |lane| unsafe {
997                                    read_slice_32_unchecked(
998                                        this.seq,
999                                        offsets[lane] + (i / Self::C8),
1000                                    )
1001                                },
1002                            );
1003                            unsafe {
1004                                *TryInto::<&mut [u32x8; 8]>::try_into(
1005                                    buf.get_unchecked_mut(write_idx..write_idx + 8),
1006                                )
1007                                .unwrap_unchecked() = transpose(data);
1008                            }
1009                            // FIXME DROP THIS?
1010                            if i == 0 {
1011                                // Mask out chars before the offset.
1012                                let elem = !((1u32 << (B * o)) - 1);
1013                                let mask = S::splat(elem);
1014                                buf[write_idx] &= mask;
1015                            }
1016                        }
1017                        upcoming = buf[write_idx];
1018                        write_idx += 1;
1019                        write_idx &= buf_mask;
1020                    }
1021                    if i % Self::C32 == delay1 % Self::C32 {
1022                        unsafe { assert_unchecked(read_idx1 < buf.len()) };
1023                        upcoming_d1 = buf[read_idx1];
1024                        read_idx1 += 1;
1025                        read_idx1 &= buf_mask;
1026                    }
1027                    if i % Self::C32 == delay2 % Self::C32 {
1028                        unsafe { assert_unchecked(read_idx2 < buf.len()) };
1029                        upcoming_d2 = buf[read_idx2];
1030                        read_idx2 += 1;
1031                        read_idx2 &= buf_mask;
1032                    }
1033                    // Extract the last 2 bits of each character.
1034                    let chars = upcoming & Self::SIMD_CHAR_MASK;
1035                    let chars_d1 = upcoming_d1 & Self::SIMD_CHAR_MASK;
1036                    let chars_d2 = upcoming_d2 & Self::SIMD_CHAR_MASK;
1037                    // Shift remaining characters to the right.
1038                    upcoming = upcoming >> Self::SIMD_B;
1039                    upcoming_d1 = upcoming_d1 >> Self::SIMD_B;
1040                    upcoming_d2 = upcoming_d2 >> Self::SIMD_B;
1041                    (chars, chars_d1, chars_d2)
1042                },
1043            )
1044            .advance(o);
1045
1046        PaddedIt { it, padding }
1047    }
1048}
1049
1050impl<const B: usize> PartialEq for PackedSeqBase<'_, B>
1051where
1052    Bits<B>: SupportedBits,
1053{
1054    /// Compares 29 characters at a time.
1055    fn eq(&self, other: &Self) -> bool {
1056        if self.len != other.len {
1057            return false;
1058        }
1059        for i in (0..self.len).step_by(Self::K64) {
1060            let len = (self.len - i).min(Self::K64);
1061            let this = self.slice(i..i + len);
1062            let that = other.slice(i..i + len);
1063            if this.as_u64() != that.as_u64() {
1064                return false;
1065            }
1066        }
1067        true
1068    }
1069}
1070
1071impl<const B: usize> Eq for PackedSeqBase<'_, B> where Bits<B>: SupportedBits {}
1072
1073impl<const B: usize> PartialOrd for PackedSeqBase<'_, B>
1074where
1075    Bits<B>: SupportedBits,
1076{
1077    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
1078        Some(self.cmp(other))
1079    }
1080}
1081
1082impl<const B: usize> Ord for PackedSeqBase<'_, B>
1083where
1084    Bits<B>: SupportedBits,
1085{
1086    /// Compares 29 characters at a time.
1087    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
1088        let min_len = self.len.min(other.len);
1089        for i in (0..min_len).step_by(Self::K64) {
1090            let len = (min_len - i).min(Self::K64);
1091            let this = self.slice(i..i + len);
1092            let other = other.slice(i..i + len);
1093            let this_word = this.as_u64();
1094            let other_word = other.as_u64();
1095            if this_word != other_word {
1096                // Unfortunately, bases are packed in little endian order, so the default order is reversed.
1097                let eq = this_word ^ other_word;
1098                let t = eq.trailing_zeros() as usize / B * B;
1099                let mask = (Self::CHAR_MASK) << t;
1100                return (this_word & mask).cmp(&(other_word & mask));
1101            }
1102        }
1103        self.len.cmp(&other.len)
1104    }
1105}
1106
1107impl<const B: usize> SeqVec for PackedSeqVecBase<B>
1108where
1109    Bits<B>: SupportedBits,
1110{
1111    type Seq<'s> = PackedSeqBase<'s, B>;
1112
1113    #[inline(always)]
1114    fn into_raw(mut self) -> Vec<u8> {
1115        self.seq.resize(self.len.div_ceil(Self::C8), 0);
1116        self.seq
1117    }
1118
1119    #[inline(always)]
1120    fn as_slice(&self) -> Self::Seq<'_> {
1121        PackedSeqBase {
1122            seq: &self.seq[..self.len.div_ceil(Self::C8) + PADDING],
1123            offset: 0,
1124            len: self.len,
1125        }
1126    }
1127
1128    #[inline(always)]
1129    fn len(&self) -> usize {
1130        self.len
1131    }
1132
1133    #[inline(always)]
1134    fn is_empty(&self) -> bool {
1135        self.len == 0
1136    }
1137
1138    #[inline(always)]
1139    fn clear(&mut self) {
1140        self.seq.clear();
1141        self.len = 0;
1142    }
1143
1144    fn push_seq<'a>(&mut self, seq: PackedSeqBase<'_, B>) -> Range<usize> {
1145        let start = self.len.next_multiple_of(Self::C8) + seq.offset;
1146        let end = start + seq.len();
1147
1148        // Shrink away the padding.
1149        self.seq.resize(self.len.div_ceil(Self::C8), 0);
1150        // Extend.
1151        self.seq.extend(seq.seq);
1152        self.len = end;
1153        start..end
1154    }
1155
1156    /// For `PackedSeqVec` (2-bit encoding): map ASCII `ACGT` (and `acgt`) to DNA `0132` in that order.
1157    /// Other characters are silently mapped into `0..4`.
1158    ///
1159    /// Uses the BMI2 `pext` instruction when available, based on the
1160    /// `n_to_bits_pext` method described at
1161    /// <https://github.com/Daniel-Liu-c0deb0t/cute-nucleotides>.
1162    ///
1163    /// For `BitSeqVec` (1-bit encoding): map `ACGTacgt` to `0`, and everything else to `1`.
1164    fn push_ascii(&mut self, seq: &[u8]) -> Range<usize> {
1165        match B {
1166            1 | 2 => {}
1167            _ => panic!(
1168                "Can only use ASCII input for 2-bit DNA packing, or 1-bit ambiguous indicators."
1169            ),
1170        }
1171
1172        self.seq
1173            .resize((self.len + seq.len()).div_ceil(Self::C8) + PADDING, 0);
1174        let start_aligned = self.len.next_multiple_of(Self::C8);
1175        let start = self.len;
1176        let len = seq.len();
1177        let mut idx = self.len / Self::C8;
1178
1179        let parse_base = |base| match B {
1180            1 => char_is_ambiguous(base),
1181            2 => pack_char_lossy(base),
1182            _ => unreachable!(),
1183        };
1184
1185        let unaligned = core::cmp::min(start_aligned - start, len);
1186        if unaligned > 0 {
1187            let mut packed_byte = self.seq[idx];
1188            for &base in &seq[..unaligned] {
1189                packed_byte |= parse_base(base) << ((self.len % Self::C8) * B);
1190                self.len += 1;
1191            }
1192            self.seq[idx] = packed_byte;
1193            idx += 1;
1194        }
1195
1196        #[allow(unused)]
1197        let mut last = unaligned;
1198
1199        if B == 2 {
1200            #[cfg(all(target_arch = "x86_64", target_feature = "bmi2"))]
1201            {
1202                last = unaligned + (len - unaligned) / 8 * 8;
1203
1204                for i in (unaligned..last).step_by(8) {
1205                    let chunk =
1206                        unsafe { seq.get_unchecked(i..i + 8).try_into().unwrap_unchecked() };
1207                    let ascii = u64::from_le_bytes(chunk);
1208                    let packed_bytes =
1209                        unsafe { std::arch::x86_64::_pext_u64(ascii, 0x0606060606060606) } as u16;
1210                    unsafe {
1211                        self.seq
1212                            .get_unchecked_mut(idx..(idx + 2))
1213                            .copy_from_slice(&packed_bytes.to_le_bytes())
1214                    };
1215                    idx += 2;
1216                    self.len += 8;
1217                }
1218            }
1219
1220            #[cfg(target_feature = "neon")]
1221            {
1222                use core::arch::aarch64::{
1223                    vandq_u8, vdup_n_u8, vld1q_u8, vpadd_u8, vshlq_u8, vst1_u8,
1224                };
1225                use core::mem::transmute;
1226
1227                last = unaligned + (len - unaligned) / 16 * 16;
1228
1229                for i in (unaligned..last).step_by(16) {
1230                    unsafe {
1231                        let ascii = vld1q_u8(seq.as_ptr().add(i));
1232                        let masked_bits = vandq_u8(ascii, transmute([6i8; 16]));
1233                        let (bits_0, bits_1) = transmute(vshlq_u8(
1234                            masked_bits,
1235                            transmute([-1i8, 1, 3, 5, -1, 1, 3, 5, -1, 1, 3, 5, -1, 1, 3, 5]),
1236                        ));
1237                        let half_packed = vpadd_u8(bits_0, bits_1);
1238                        let packed = vpadd_u8(half_packed, vdup_n_u8(0));
1239                        vst1_u8(self.seq.as_mut_ptr().add(idx), packed);
1240                        idx += Self::C8;
1241                        self.len += 16;
1242                    }
1243                }
1244            }
1245        }
1246
1247        if B == 1 {
1248            #[cfg(all(target_arch = "x86_64", target_feature = "avx2"))]
1249            {
1250                last = len;
1251                self.len += len - unaligned;
1252
1253                let mut last_i = unaligned;
1254
1255                for i in (unaligned..last).step_by(32) {
1256                    use std::mem::transmute as t;
1257
1258                    use wide::CmpEq;
1259                    // Wide doesn't have u8x32, so this is messy here...
1260                    type S = wide::i8x32;
1261                    let chars: S = unsafe { t(read_slice_32(seq, i)) };
1262                    let upper_mask = !(b'a' - b'A');
1263                    // make everything upper case
1264                    let chars = chars & S::splat(upper_mask as i8);
1265                    let lossy_encoded = chars & S::splat(6);
1266                    let table = unsafe { S::from(t::<_, S>(*b"AxCxTxGxxxxxxxxxAxCxTxGxxxxxxxxx")) };
1267                    let lookup: S = unsafe {
1268                        t(std::arch::x86_64::_mm256_shuffle_epi8(
1269                            t(table),
1270                            t(lossy_encoded),
1271                        ))
1272                    };
1273                    let packed_bytes = !(chars.cmp_eq(lookup).move_mask() as u32);
1274
1275                    last_i = i;
1276                    unsafe {
1277                        self.seq
1278                            .get_unchecked_mut(idx..(idx + 4))
1279                            .copy_from_slice(&packed_bytes.to_le_bytes())
1280                    };
1281                    idx += 4;
1282                }
1283
1284                // Fix up trailing bytes.
1285                if unaligned < last {
1286                    idx -= 4;
1287                    let mut val = unsafe {
1288                        u32::from_le_bytes(
1289                            self.seq
1290                                .get_unchecked(idx..(idx + 4))
1291                                .try_into()
1292                                .unwrap_unchecked(),
1293                        )
1294                    };
1295                    // keep only the `last - last_i` low bits.
1296                    let keep = last - last_i;
1297                    val <<= 32 - keep;
1298                    val >>= 32 - keep;
1299                    unsafe {
1300                        self.seq
1301                            .get_unchecked_mut(idx..(idx + 4))
1302                            .copy_from_slice(&val.to_le_bytes())
1303                    };
1304                    idx += keep.div_ceil(8);
1305                }
1306            }
1307
1308            #[cfg(target_feature = "neon")]
1309            {
1310                use core::arch::aarch64::*;
1311                use core::mem::transmute;
1312
1313                last = unaligned + (len - unaligned) / 64 * 64;
1314
1315                for i in (unaligned..last).step_by(64) {
1316                    unsafe {
1317                        let ptr = seq.as_ptr().add(i);
1318                        let chars = vld4q_u8(ptr);
1319
1320                        let upper_mask = vdupq_n_u8(!(b'a' - b'A'));
1321                        let chars = neon::map_8x16x4(chars, |v| vandq_u8(v, upper_mask));
1322
1323                        let two_bits_mask = vdupq_n_u8(6);
1324                        let lossy_encoded = neon::map_8x16x4(chars, |v| vandq_u8(v, two_bits_mask));
1325
1326                        let table = transmute(*b"AxCxTxGxxxxxxxxx");
1327                        let lookup = neon::map_8x16x4(lossy_encoded, |v| vqtbl1q_u8(table, v));
1328
1329                        let mask = neon::map_two_8x16x4(chars, lookup, |v1, v2| vceqq_u8(v1, v2));
1330                        let packed_bytes = !neon::movemask_64(mask);
1331
1332                        self.seq[idx..(idx + 8)].copy_from_slice(&packed_bytes.to_le_bytes());
1333                        idx += 8;
1334                        self.len += 64;
1335                    }
1336                }
1337            }
1338        }
1339
1340        let mut packed_byte = 0;
1341        for &base in &seq[last..] {
1342            packed_byte |= parse_base(base) << ((self.len % Self::C8) * B);
1343            self.len += 1;
1344            if self.len % Self::C8 == 0 {
1345                self.seq[idx] = packed_byte;
1346                idx += 1;
1347                packed_byte = 0;
1348            }
1349        }
1350        if self.len % Self::C8 != 0 && last < len {
1351            self.seq[idx] = packed_byte;
1352            idx += 1;
1353        }
1354        assert_eq!(idx + PADDING, self.seq.len());
1355        start..start + len
1356    }
1357
1358    #[cfg(feature = "rand")]
1359    fn random(n: usize) -> Self {
1360        use rand::{RngCore, SeedableRng};
1361
1362        let byte_len = n.div_ceil(Self::C8);
1363        let mut seq = vec![0; byte_len + PADDING];
1364        rand::rngs::SmallRng::from_os_rng().fill_bytes(&mut seq[..byte_len]);
1365        // Ensure that the last byte is padded with zeros.
1366        if n % Self::C8 != 0 {
1367            seq[byte_len - 1] &= (1 << (B * (n % Self::C8))) - 1;
1368        }
1369
1370        Self { seq, len: n }
1371    }
1372}
1373
1374impl PackedSeqVecBase<1> {
1375    pub fn with_len(n: usize) -> Self {
1376        Self {
1377            seq: vec![0; n.div_ceil(Self::C8) + PADDING],
1378            len: n,
1379        }
1380    }
1381
1382    pub fn random(len: usize, n_frac: f32) -> Self {
1383        let byte_len = len.div_ceil(Self::C8);
1384        let mut seq = vec![0; byte_len + PADDING];
1385
1386        assert!(
1387            (0.0..=0.3).contains(&n_frac),
1388            "n_frac={} should be in [0, 0.3]",
1389            n_frac
1390        );
1391
1392        for _ in 0..(len as f32 * n_frac) as usize {
1393            let idx = rand::random::<u64>() as usize % len;
1394            let byte = idx / Self::C8;
1395            let offset = idx % Self::C8;
1396            seq[byte] |= 1 << offset;
1397        }
1398
1399        Self { seq, len }
1400    }
1401}
1402
1403impl<'s> PackedSeqBase<'s, 1> {
1404    /// An iterator indicating for each kmer whether it contains ambiguous bases.
1405    ///
1406    /// Returns n-(k-1) elements.
1407    #[inline(always)]
1408    pub fn iter_kmer_ambiguity(self, k: usize) -> impl ExactSizeIterator<Item = bool> + use<'s> {
1409        let this = self.normalize();
1410        assert!(k > 0);
1411        assert!(k <= Self::K64);
1412        (this.offset..this.offset + this.len.saturating_sub(k - 1))
1413            .map(move |i| self.read_kmer(k, i) != 0)
1414    }
1415
1416    /// A parallel iterator indicating for each kmer whether it contains ambiguous bases.
1417    ///
1418    /// First element is the 'kmer' consisting only of the first character of each chunk.
1419    ///
1420    /// `k`: length of windows to check
1421    /// `context`: number of overlapping iterations +1. To determine stride of each lane.
1422    /// `skip`: Set to `context-1` to skip the iterations added by the context.
1423    #[inline(always)]
1424    pub fn par_iter_kmer_ambiguity(
1425        self,
1426        k: usize,
1427        context: usize,
1428        skip: usize,
1429    ) -> PaddedIt<impl ChunkIt<S> + use<'s>> {
1430        #[cfg(target_endian = "big")]
1431        panic!("Big endian architectures are not supported.");
1432
1433        assert!(k > 0, "par_iter_kmers requires k>0, but k={k}");
1434        assert!(k <= 96, "par_iter_kmers requires k<=96, but k={k}");
1435
1436        let this = self.normalize();
1437        let o = this.offset;
1438        assert!(o < Self::C8);
1439
1440        let delay = k - 1;
1441
1442        let it = self.par_iter_bp_delayed(context, Delay(delay));
1443
1444        let mut cnt = u32x8::ZERO;
1445
1446        it.map(
1447            #[inline(always)]
1448            move |(a, r)| {
1449                cnt += a;
1450                let out = cnt.cmp_gt(S::ZERO);
1451                cnt -= r;
1452                out
1453            },
1454        )
1455        .advance(skip)
1456    }
1457
1458    #[inline(always)]
1459    pub fn par_iter_kmer_ambiguity_with_buf(
1460        self,
1461        k: usize,
1462        context: usize,
1463        skip: usize,
1464        buf: &'s mut Vec<S>,
1465    ) -> PaddedIt<impl ChunkIt<S> + use<'s>> {
1466        #[cfg(target_endian = "big")]
1467        panic!("Big endian architectures are not supported.");
1468
1469        assert!(k > 0, "par_iter_kmers requires k>0, but k={k}");
1470        assert!(k <= 96, "par_iter_kmers requires k<=96, but k={k}");
1471
1472        let this = self.normalize();
1473        let o = this.offset;
1474        assert!(o < Self::C8);
1475
1476        let delay = k - 1;
1477
1478        let it = self.par_iter_bp_delayed_with_buf(context, Delay(delay), buf);
1479
1480        let mut cnt = u32x8::ZERO;
1481
1482        it.map(
1483            #[inline(always)]
1484            move |(a, r)| {
1485                cnt += a;
1486                let out = cnt.cmp_gt(S::ZERO);
1487                cnt -= r;
1488                out
1489            },
1490        )
1491        .advance(skip)
1492    }
1493}
1494
1495#[cfg(target_feature = "neon")]
1496mod neon {
1497    use core::arch::aarch64::*;
1498
1499    #[inline(always)]
1500    pub fn movemask_64(v: uint8x16x4_t) -> u64 {
1501        // https://stackoverflow.com/questions/74722950/convert-vector-compare-mask-into-bit-mask-in-aarch64-simd-or-arm-neon/74748402#74748402
1502        unsafe {
1503            let acc = vsriq_n_u8(vsriq_n_u8(v.3, v.2, 1), vsriq_n_u8(v.1, v.0, 1), 2);
1504            vget_lane_u64(
1505                vreinterpret_u64_u8(vshrn_n_u16(
1506                    vreinterpretq_u16_u8(vsriq_n_u8(acc, acc, 4)),
1507                    4,
1508                )),
1509                0,
1510            )
1511        }
1512    }
1513
1514    #[inline(always)]
1515    pub fn map_8x16x4<F>(v: uint8x16x4_t, mut f: F) -> uint8x16x4_t
1516    where
1517        F: FnMut(uint8x16_t) -> uint8x16_t,
1518    {
1519        uint8x16x4_t(f(v.0), f(v.1), f(v.2), f(v.3))
1520    }
1521
1522    #[inline(always)]
1523    pub fn map_two_8x16x4<F>(v1: uint8x16x4_t, v2: uint8x16x4_t, mut f: F) -> uint8x16x4_t
1524    where
1525        F: FnMut(uint8x16_t, uint8x16_t) -> uint8x16_t,
1526    {
1527        uint8x16x4_t(f(v1.0, v2.0), f(v1.1, v2.1), f(v1.2, v2.2), f(v1.3, v2.3))
1528    }
1529}