p3_field/
field.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
use alloc::vec;
use core::fmt::{Debug, Display};
use core::hash::Hash;
use core::iter::{Product, Sum};
use core::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign};
use core::slice;

use num_bigint::BigUint;
use serde::de::DeserializeOwned;
use serde::Serialize;

use crate::exponentiation::exp_u64_by_squaring;
use crate::packed::PackedField;
use crate::Packable;

/// A generalization of `Field` which permits things like
/// - an actual field element
/// - a symbolic expression which would evaluate to a field element
/// - a vector of field elements
pub trait AbstractField:
    Sized
    + Default
    + Clone
    + Add<Output = Self>
    + AddAssign
    + Sub<Output = Self>
    + SubAssign
    + Neg<Output = Self>
    + Mul<Output = Self>
    + MulAssign
    + Sum
    + Product
    + Debug
{
    type F: Field;

    fn zero() -> Self;
    fn one() -> Self;
    fn two() -> Self;
    fn neg_one() -> Self;

    fn from_f(f: Self::F) -> Self;
    fn from_bool(b: bool) -> Self;
    fn from_canonical_u8(n: u8) -> Self;
    fn from_canonical_u16(n: u16) -> Self;
    fn from_canonical_u32(n: u32) -> Self;
    fn from_canonical_u64(n: u64) -> Self;
    fn from_canonical_usize(n: usize) -> Self;

    fn from_wrapped_u32(n: u32) -> Self;
    fn from_wrapped_u64(n: u64) -> Self;

    /// A generator of this field's entire multiplicative group.
    fn generator() -> Self;

    #[must_use]
    fn double(&self) -> Self {
        self.clone() + self.clone()
    }

    #[must_use]
    fn square(&self) -> Self {
        self.clone() * self.clone()
    }

    #[must_use]
    fn cube(&self) -> Self {
        self.square() * self.clone()
    }

    /// Exponentiation by a `u64` power.
    ///
    /// The default implementation calls `exp_u64_generic`, which by default performs exponentiation
    /// by squaring. Rather than override this method, it is generally recommended to have the
    /// concrete field type override `exp_u64_generic`, so that any optimizations will apply to all
    /// abstract fields.
    #[must_use]
    #[inline]
    fn exp_u64(&self, power: u64) -> Self {
        Self::F::exp_u64_generic(self.clone(), power)
    }

    #[must_use]
    #[inline(always)]
    fn exp_const_u64<const POWER: u64>(&self) -> Self {
        match POWER {
            0 => Self::one(),
            1 => self.clone(),
            2 => self.square(),
            3 => self.cube(),
            4 => self.square().square(),
            5 => self.square().square() * self.clone(),
            6 => self.square().cube(),
            7 => {
                let x2 = self.square();
                let x3 = x2.clone() * self.clone();
                let x4 = x2.square();
                x3 * x4
            }
            _ => self.exp_u64(POWER),
        }
    }

    #[must_use]
    fn exp_power_of_2(&self, power_log: usize) -> Self {
        let mut res = self.clone();
        for _ in 0..power_log {
            res = res.square();
        }
        res
    }

    #[must_use]
    fn powers(&self) -> Powers<Self> {
        self.shifted_powers(Self::one())
    }

    fn shifted_powers(&self, start: Self) -> Powers<Self> {
        Powers {
            base: self.clone(),
            current: start,
        }
    }

    fn powers_packed<P: PackedField<Scalar = Self>>(&self) -> PackedPowers<Self, P> {
        self.shifted_powers_packed(Self::one())
    }

    fn shifted_powers_packed<P: PackedField<Scalar = Self>>(
        &self,
        start: Self,
    ) -> PackedPowers<Self, P> {
        let mut current = P::from_f(start);
        let slice = current.as_slice_mut();
        for i in 1..P::WIDTH {
            slice[i] = slice[i - 1].clone() * self.clone();
        }

        PackedPowers {
            multiplier: P::from_f(self.clone()).exp_u64(P::WIDTH as u64),
            current,
        }
    }

    fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self {
        u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum()
    }

    fn try_div<Rhs>(self, rhs: Rhs) -> Option<<Self as Mul<Rhs>>::Output>
    where
        Rhs: Field,
        Self: Mul<Rhs>,
    {
        rhs.try_inverse().map(|inv| self * inv)
    }
}

/// An element of a finite field.
pub trait Field:
    AbstractField<F = Self>
    + Packable
    + 'static
    + Copy
    + Div<Self, Output = Self>
    + Eq
    + Hash
    + Send
    + Sync
    + Display
    + Serialize
    + DeserializeOwned
{
    type Packing: PackedField<Scalar = Self>;

    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }

    fn is_one(&self) -> bool {
        *self == Self::one()
    }

    /// self * 2^exp
    #[must_use]
    #[inline]
    fn mul_2exp_u64(&self, exp: u64) -> Self {
        *self * Self::two().exp_u64(exp)
    }

    /// self / 2^exp
    #[must_use]
    #[inline]
    fn div_2exp_u64(&self, exp: u64) -> Self {
        *self / Self::two().exp_u64(exp)
    }

    /// Exponentiation by a `u64` power. This is similar to `exp_u64`, but more general in that it
    /// can be used with `AbstractField`s, not just this concrete field.
    ///
    /// The default implementation uses naive square and multiply. Implementations may want to
    /// override this and handle certain powers with more optimal addition chains.
    #[must_use]
    #[inline]
    fn exp_u64_generic<AF: AbstractField<F = Self>>(val: AF, power: u64) -> AF {
        exp_u64_by_squaring(val, power)
    }

    /// The multiplicative inverse of this field element, if it exists.
    ///
    /// NOTE: The inverse of `0` is undefined and will return `None`.
    #[must_use]
    fn try_inverse(&self) -> Option<Self>;

    #[must_use]
    fn inverse(&self) -> Self {
        self.try_inverse().expect("Tried to invert zero")
    }

    /// Computes input/2.
    /// Should be overwritten by most field implementations to use bitshifts.
    /// Will error if the field characteristic is 2.
    #[must_use]
    fn halve(&self) -> Self {
        let half = Self::two()
            .try_inverse()
            .expect("Cannot divide by 2 in fields with characteristic 2");
        *self * half
    }

    fn order() -> BigUint;

    #[inline]
    fn bits() -> usize {
        Self::order().bits() as usize
    }
}

pub trait PrimeField: Field + Ord {
    fn as_canonical_biguint(&self) -> BigUint;
}

/// A prime field of order less than `2^64`.
pub trait PrimeField64: PrimeField {
    const ORDER_U64: u64;

    /// Return the representative of `value` that is less than `ORDER_U64`.
    fn as_canonical_u64(&self) -> u64;
}

/// A prime field of order less than `2^32`.
pub trait PrimeField32: PrimeField64 {
    const ORDER_U32: u32;

    /// Return the representative of `value` that is less than `ORDER_U32`.
    fn as_canonical_u32(&self) -> u32;
}

pub trait AbstractExtensionField<Base: AbstractField>:
    AbstractField
    + From<Base>
    + Add<Base, Output = Self>
    + AddAssign<Base>
    + Sub<Base, Output = Self>
    + SubAssign<Base>
    + Mul<Base, Output = Self>
    + MulAssign<Base>
{
    const D: usize;

    fn from_base(b: Base) -> Self;

    /// Suppose this field extension is represented by the quotient
    /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible
    /// polynomial of degree `D`. This function takes a slice `bs` of
    /// length at most D, and constructs the field element
    /// \sum_i bs[i] * X^i.
    ///
    /// NB: The value produced by this function fundamentally depends
    /// on the choice of irreducible polynomial f. Care must be taken
    /// to ensure portability if these values might ever be passed to
    /// (or rederived within) another compilation environment where a
    /// different f might have been used.
    fn from_base_slice(bs: &[Base]) -> Self;

    /// Similar to `core:array::from_fn`, with the same caveats as
    /// `from_base_slice`.
    fn from_base_fn<F: FnMut(usize) -> Base>(f: F) -> Self;

    /// Suppose this field extension is represented by the quotient
    /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible
    /// polynomial of degree `D`. This function takes a field element
    /// \sum_i bs[i] * X^i and returns the coefficients as a slice
    /// `bs` of length at most D containing, from lowest degree to
    /// highest.
    ///
    /// NB: The value produced by this function fundamentally depends
    /// on the choice of irreducible polynomial f. Care must be taken
    /// to ensure portability if these values might ever be passed to
    /// (or rederived within) another compilation environment where a
    /// different f might have been used.
    fn as_base_slice(&self) -> &[Base];

    /// Suppose this field extension is represented by the quotient
    /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible
    /// polynomial of degree `D`. This function returns the field
    /// element `X^exponent` if `exponent < D` and panics otherwise.
    /// (The fact that f is not known at the point that this function
    /// is defined prevents implementing exponentiation of higher
    /// powers since the reduction cannot be performed.)
    ///
    /// NB: The value produced by this function fundamentally depends
    /// on the choice of irreducible polynomial f. Care must be taken
    /// to ensure portability if these values might ever be passed to
    /// (or rederived within) another compilation environment where a
    /// different f might have been used.
    fn monomial(exponent: usize) -> Self {
        assert!(exponent < Self::D, "requested monomial of too high degree");
        let mut vec = vec![Base::zero(); Self::D];
        vec[exponent] = Base::one();
        Self::from_base_slice(&vec)
    }
}

pub trait ExtensionField<Base: Field>: Field + AbstractExtensionField<Base> {
    type ExtensionPacking: AbstractExtensionField<Base::Packing, F = Self>
        + 'static
        + Copy
        + Send
        + Sync;

    fn is_in_basefield(&self) -> bool {
        self.as_base_slice()[1..].iter().all(Field::is_zero)
    }
    fn as_base(&self) -> Option<Base> {
        if self.is_in_basefield() {
            Some(self.as_base_slice()[0])
        } else {
            None
        }
    }
}

impl<F: Field> ExtensionField<F> for F {
    type ExtensionPacking = F::Packing;
}

impl<AF: AbstractField> AbstractExtensionField<AF> for AF {
    const D: usize = 1;

    fn from_base(b: AF) -> Self {
        b
    }

    fn from_base_slice(bs: &[AF]) -> Self {
        assert_eq!(bs.len(), 1);
        bs[0].clone()
    }

    fn from_base_fn<F: FnMut(usize) -> AF>(mut f: F) -> Self {
        f(0)
    }

    fn as_base_slice(&self) -> &[AF] {
        slice::from_ref(self)
    }
}

/// A field which supplies information like the two-adicity of its multiplicative group, and methods
/// for obtaining two-adic generators.
pub trait TwoAdicField: Field {
    /// The number of factors of two in this field's multiplicative group.
    const TWO_ADICITY: usize;

    /// Returns a generator of the multiplicative group of order `2^bits`.
    /// Assumes `bits < TWO_ADICITY`, otherwise the result is undefined.
    #[must_use]
    fn two_adic_generator(bits: usize) -> Self;
}

/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`.
#[derive(Clone, Debug)]
pub struct Powers<F> {
    pub base: F,
    pub current: F,
}

impl<AF: AbstractField> Iterator for Powers<AF> {
    type Item = AF;

    fn next(&mut self) -> Option<AF> {
        let result = self.current.clone();
        self.current *= self.base.clone();
        Some(result)
    }
}

/// like `Powers`, but packed into `PackedField` elements
#[derive(Clone, Debug)]
pub struct PackedPowers<F, P: PackedField<Scalar = F>> {
    // base ** P::WIDTH
    pub multiplier: P,
    pub current: P,
}

impl<AF: AbstractField, P: PackedField<Scalar = AF>> Iterator for PackedPowers<AF, P> {
    type Item = P;

    fn next(&mut self) -> Option<P> {
        let result = self.current;
        self.current *= self.multiplier;
        Some(result)
    }
}