p3_commit/
domain.rs

1use alloc::vec::Vec;
2
3use itertools::Itertools;
4use p3_field::coset::TwoAdicMultiplicativeCoset;
5use p3_field::{ExtensionField, Field, TwoAdicField, batch_multiplicative_inverse};
6use p3_matrix::Matrix;
7use p3_matrix::dense::RowMajorMatrix;
8use p3_util::{log2_ceil_usize, log2_strict_usize};
9
10/// Given a `PolynomialSpace`, `S`, and a subset `R`, a Lagrange selector `P_R` is
11/// a polynomial which is not equal to `0` for every element in `R` but is equal
12/// to `0` for every element of `S` not in `R`.
13///
14/// This struct contains evaluations of several Lagrange selectors for a fixed
15/// `PolynomialSpace` over some collection of points disjoint from that
16/// `PolynomialSpace`.
17///
18/// The Lagrange selector is normalized if it is equal to `1` for every element in `R`.
19/// The LagrangeSelectors given here are not normalized.
20#[derive(Debug)]
21pub struct LagrangeSelectors<T> {
22    /// A Lagrange selector corresponding to the first point in the space.
23    pub is_first_row: T,
24    /// A Lagrange selector corresponding to the last point in the space.
25    pub is_last_row: T,
26    /// A Lagrange selector corresponding the subset of all but the last point.
27    pub is_transition: T,
28    /// The inverse of the vanishing polynomial which is a Lagrange selector corresponding to the empty set
29    pub inv_vanishing: T,
30}
31
32/// Fixing a field, `F`, `PolynomialSpace<Val = F>` denotes an indexed subset of `F^n`
33/// with some additional algebraic structure.
34///
35/// We do not expect `PolynomialSpace` to store this subset, instead it usually contains
36/// some associated data which allows it to generate the subset or pieces of it.
37///
38/// Each `PolynomialSpace` should be part of a family of similar spaces for some
39/// collection of sizes (usually powers of two). Any space other than at the smallest size
40/// should be decomposable into a disjoint collection of smaller spaces. Additionally, the
41/// set of all `PolynomialSpace` of a given size should form a disjoint partition of some
42/// subset of `F^n` which supports a group structure.
43///
44/// The canonical example of a `PolynomialSpace` is a coset `gH` of
45/// a two-adic subgroup `H` of the multiplicative group `F*`. This satisfies the properties
46/// above as cosets partition the group and decompose as `gH = g(H^2) u gh(H^2)` for `h` any
47/// generator of `H`.
48///
49/// The other example in this code base is twin cosets which are sets of the form `gH u g^{-1}H`.
50/// The decomposition above extends easily to this case as `h` is a generator if and only if `h^{-1}`
51/// is and so `gH u g^{-1}H = (g(H^2) u g^{-1}(H^2)) u (gh(H^2) u (gh)^{-1}(H^2))`.
52pub trait PolynomialSpace: Copy {
53    /// The base field `F`.
54    type Val: Field;
55
56    /// The number of elements of the space.
57    fn size(&self) -> usize;
58
59    /// The first point in the space.
60    fn first_point(&self) -> Self::Val;
61
62    /// An algebraic function which takes the i'th element of the space and returns
63    /// the (i+1)'th evaluated on the given point.
64    ///
65    /// When `PolynomialSpace` corresponds to a coset, `gH` this
66    /// function is multiplication by `h` for a chosen generator `h` of `H`.
67    ///
68    /// This function may not exist for other classes of `PolynomialSpace` in which
69    /// case this will return `None`.
70    fn next_point<Ext: ExtensionField<Self::Val>>(&self, x: Ext) -> Option<Ext>;
71
72    /// Return another `PolynomialSpace` with size at least `min_size` disjoint from this space.
73    ///
74    /// When working with spaces of power of two size, this will return a space of size `2^ceil(log_2(min_size))`.
75    /// This will fail if `min_size` is too large. In particular, `log_2(min_size)` should be
76    /// smaller than the `2`-adicity of the field.
77    ///
78    /// This fixes a canonical choice for prover/verifier determinism and LDE caching.
79    fn create_disjoint_domain(&self, min_size: usize) -> Self;
80
81    /// Split the `PolynomialSpace` into `num_chunks` smaller `PolynomialSpaces` of equal size.
82    ///
83    /// `num_chunks` must divide `self.size()` (which usually forces it to be a power of 2.) or
84    /// this function will panic.
85    fn split_domains(&self, num_chunks: usize) -> Vec<Self>;
86
87    /// Split a set of polynomial evaluations over this `PolynomialSpace` into a vector
88    /// of polynomial evaluations over each `PolynomialSpace` generated from `split_domains`.
89    ///
90    /// `evals.height()` must equal `self.size()` and `num_chunks` must divide `self.size()`.
91    /// `evals` are assumed to be in standard (not bit-reversed) order.
92    fn split_evals(
93        &self,
94        num_chunks: usize,
95        evals: RowMajorMatrix<Self::Val>,
96    ) -> Vec<RowMajorMatrix<Self::Val>>;
97
98    /// Compute the vanishing polynomial of the space, evaluated at the given point.
99    ///
100    /// This is a polynomial which evaluates to `0` on every point of the
101    /// space `self` and has degree equal to `self.size()`. In other words it is
102    /// a choice of element of the defining ideal of the given set with this extra
103    /// degree property.
104    ///
105    /// In the univariate case, it is equal, up to a linear factor, to the product over
106    /// all elements `x`, of `(X - x)`. In particular this implies it will not evaluate
107    /// to `0` at any point not in `self`.
108    fn vanishing_poly_at_point<Ext: ExtensionField<Self::Val>>(&self, point: Ext) -> Ext;
109
110    /// Compute several Lagrange selectors at a given point.
111    /// - The Lagrange selector of the first point.
112    /// - The Lagrange selector of the last point.
113    /// - The Lagrange selector of everything but the last point.
114    /// - The inverse of the vanishing polynomial.
115    ///
116    /// Note that these may not be normalized.
117    fn selectors_at_point<Ext: ExtensionField<Self::Val>>(
118        &self,
119        point: Ext,
120    ) -> LagrangeSelectors<Ext>;
121
122    /// Compute several Lagrange selectors at all points of the given disjoint `PolynomialSpace`.
123    /// - The Lagrange selector of the first point.
124    /// - The Lagrange selector of the last point.
125    /// - The Lagrange selector of everything but the last point.
126    /// - The inverse of the vanishing polynomial.
127    ///
128    /// Note that these may not be normalized.
129    fn selectors_on_coset(&self, coset: Self) -> LagrangeSelectors<Vec<Self::Val>>;
130}
131
132impl<Val: TwoAdicField> PolynomialSpace for TwoAdicMultiplicativeCoset<Val> {
133    type Val = Val;
134
135    fn size(&self) -> usize {
136        self.size()
137    }
138
139    fn first_point(&self) -> Self::Val {
140        self.shift()
141    }
142
143    /// Getting the next point corresponds to multiplication by the generator.
144    fn next_point<Ext: ExtensionField<Val>>(&self, x: Ext) -> Option<Ext> {
145        Some(x * self.subgroup_generator())
146    }
147
148    /// Given the coset `gH`, return the disjoint coset `gfK` where `f`
149    /// is a fixed generator of `F^*` and `K` is the unique two-adic subgroup
150    /// of with size `2^(ceil(log_2(min_size)))`.
151    ///
152    /// # Panics
153    ///
154    /// This will panic if `min_size` > `1 << Val::TWO_ADICITY`.
155    fn create_disjoint_domain(&self, min_size: usize) -> Self {
156        // We provide a short proof that these cosets are always disjoint:
157        //
158        // Assume without loss of generality that `|H| <= min_size <= |K|`.
159        // Then we know that `gH` is entirely contained in `gK`. As cosets are
160        // either equal or disjoint, this means that `gH` is disjoint from `g'K`
161        // for every `g'` not contained in `gK`. As `f` is a generator of `F^*`
162        // it does not lie in `K` and so `gf` cannot lie in `gK`.
163        //
164        // Thus `gH` and `gfK` are disjoint.
165
166        // This panics if (and only if) `min_size` > `1 << Val::TWO_ADICITY`.
167        Self::new(self.shift() * Val::GENERATOR, log2_ceil_usize(min_size)).unwrap()
168    }
169
170    /// Given the coset `gH` and generator `h` of `H`, let `K = H^{num_chunks}`
171    /// be the unique group of order `|H|/num_chunks`.
172    ///
173    /// Then we decompose `gH` into `gK, ghK, gh^2K, ..., gh^{num_chunks}K`.
174    fn split_domains(&self, num_chunks: usize) -> Vec<Self> {
175        let log_chunks = log2_strict_usize(num_chunks);
176        debug_assert!(log_chunks <= self.log_size());
177        (0..num_chunks)
178            .map(|i| {
179                Self::new(
180                    self.shift() * self.subgroup_generator().exp_u64(i as u64),
181                    self.log_size() - log_chunks,
182                )
183                .unwrap() // This won't panic as `self.log_size() - log_chunks < self.log_size() < Val::TWO_ADICITY`
184            })
185            .collect()
186    }
187
188    fn split_evals(
189        &self,
190        num_chunks: usize,
191        evals: RowMajorMatrix<Self::Val>,
192    ) -> Vec<RowMajorMatrix<Self::Val>> {
193        debug_assert_eq!(evals.height(), self.size());
194        debug_assert!(log2_strict_usize(num_chunks) <= self.log_size());
195        let height = evals.height();
196        let width = evals.width();
197        let rows_per_chunk = height / num_chunks;
198
199        // Preallocate zeroed buffers per chunk; often faster for field elements.
200        let mut values: Vec<Vec<Self::Val>> = (0..num_chunks)
201            .map(|_| Self::Val::zero_vec(rows_per_chunk * width))
202            .collect();
203
204        // Distribute rows without using modulo: iterate blocks of size num_chunks.
205        for i in 0..rows_per_chunk {
206            let base_row = i * num_chunks;
207            let dst_start = i * width;
208            let dst_end = dst_start + width;
209            for (chunk, dst_vec) in values.iter_mut().enumerate().take(num_chunks) {
210                let r = base_row + chunk;
211                // Safety: r < height == rows_per_chunk * num_chunks
212                let row = unsafe { evals.row_slice_unchecked(r) };
213                dst_vec[dst_start..dst_end].copy_from_slice(&row);
214            }
215        }
216
217        values
218            .into_iter()
219            .map(|v| RowMajorMatrix::new(v, width))
220            .collect()
221    }
222
223    /// Compute the vanishing polynomial at the given point:
224    ///
225    /// `Z_{gH}(X) = g^{-|H|}\prod_{h \in H} (X - gh) = (g^{-1}X)^|H| - 1`
226    fn vanishing_poly_at_point<Ext: ExtensionField<Val>>(&self, point: Ext) -> Ext {
227        (point * self.shift_inverse()).exp_power_of_2(self.log_size()) - Ext::ONE
228    }
229
230    /// Compute several Lagrange selectors at the given point:
231    ///
232    /// Defining the vanishing polynomial by `Z_{gH}(X) = g^{-|H|}\prod_{h \in H} (X - gh) = (g^{-1}X)^|H| - 1` return:
233    /// - `Z_{gH}(X)/(g^{-1}X - 1)`: The Lagrange selector of the point `g`.
234    /// - `Z_{gH}(X)/(g^{-1}X - h^{-1})`: The Lagrange selector of the point `gh^{-1}` where `h` is the generator of `H`.
235    /// - `(g^{-1}X - h^{-1})`: The Lagrange selector of the subset consisting of everything but the point `gh^{-1}`.
236    /// - `1/Z_{gH}(X)`: The inverse of the vanishing polynomial.
237    fn selectors_at_point<Ext: ExtensionField<Val>>(&self, point: Ext) -> LagrangeSelectors<Ext> {
238        let unshifted_point = point * self.shift_inverse();
239        let z_h = unshifted_point.exp_power_of_2(self.log_size()) - Ext::ONE;
240        LagrangeSelectors {
241            is_first_row: z_h / (unshifted_point - Ext::ONE),
242            is_last_row: z_h / (unshifted_point - self.subgroup_generator().inverse()),
243            is_transition: unshifted_point - self.subgroup_generator().inverse(),
244            inv_vanishing: z_h.inverse(),
245        }
246    }
247
248    /// Compute the Lagrange selectors of our space at every point in the coset.
249    ///
250    /// This will error if our space is not the group `H` and if the given
251    /// coset is not disjoint from `H`.
252    fn selectors_on_coset(&self, coset: Self) -> LagrangeSelectors<Vec<Val>> {
253        assert_eq!(self.shift(), Val::ONE);
254        assert_ne!(coset.shift(), Val::ONE);
255        assert!(coset.log_size() >= self.log_size());
256        let rate_bits = coset.log_size() - self.log_size();
257
258        let s_pow_n = coset.shift().exp_power_of_2(self.log_size());
259        // evals of Z_H(X) = X^n - 1
260        let evals = Val::two_adic_generator(rate_bits)
261            .powers()
262            .take(1 << rate_bits)
263            .map(|x| s_pow_n * x - Val::ONE)
264            .collect_vec();
265
266        let xs = coset.iter().collect();
267
268        let single_point_selector = |i: u64| {
269            let coset_i = self.subgroup_generator().exp_u64(i);
270            let denoms = xs.iter().map(|&x| x - coset_i).collect_vec();
271            let invs = batch_multiplicative_inverse(&denoms);
272            evals
273                .iter()
274                .cycle()
275                .zip(invs)
276                .map(|(&z_h, inv)| z_h * inv)
277                .collect_vec()
278        };
279
280        let subgroup_last = self.subgroup_generator().inverse();
281
282        LagrangeSelectors {
283            is_first_row: single_point_selector(0),
284            is_last_row: single_point_selector(self.size() as u64 - 1),
285            is_transition: xs.into_iter().map(|x| x - subgroup_last).collect(),
286            inv_vanishing: batch_multiplicative_inverse(&evals)
287                .into_iter()
288                .cycle()
289                .take(coset.size())
290                .collect(),
291        }
292    }
293}