oxirs_vec/
pytorch.rs

1//! PyTorch integration for embedding generation and neural network models
2
3use crate::real_time_embedding_pipeline::traits::{
4    ContentItem, EmbeddingGenerator, GeneratorStatistics, ProcessingResult, ProcessingStatus,
5};
6use crate::Vector;
7use anyhow::{anyhow, Result};
8use scirs2_core::random::Random;
9use serde::{Deserialize, Serialize};
10use std::collections::HashMap;
11use std::path::PathBuf;
12use std::time::{Duration, Instant};
13
14/// PyTorch model configuration
15#[derive(Debug, Clone, Serialize, Deserialize)]
16pub struct PyTorchConfig {
17    pub model_path: PathBuf,
18    pub device: PyTorchDevice,
19    pub batch_size: usize,
20    pub num_workers: usize,
21    pub pin_memory: bool,
22    pub mixed_precision: bool,
23    pub compile_mode: CompileMode,
24    pub optimization_level: usize,
25}
26
27/// PyTorch device configuration
28#[derive(Debug, Clone, Serialize, Deserialize)]
29pub enum PyTorchDevice {
30    Cpu,
31    Cuda { device_id: usize },
32    Mps,  // Apple Metal Performance Shaders
33    Auto, // Automatically select best available device
34}
35
36/// PyTorch model compilation modes
37#[derive(Debug, Clone, Serialize, Deserialize)]
38pub enum CompileMode {
39    None,
40    Default,
41    Reduce,
42    Max,
43    Custom(String),
44}
45
46impl Default for PyTorchConfig {
47    fn default() -> Self {
48        Self {
49            model_path: PathBuf::from("./models/pytorch_model.pt"),
50            device: PyTorchDevice::Auto,
51            batch_size: 32,
52            num_workers: 4,
53            pin_memory: true,
54            mixed_precision: false,
55            compile_mode: CompileMode::Default,
56            optimization_level: 1,
57        }
58    }
59}
60
61/// PyTorch model wrapper for embedding generation
62#[derive(Debug)]
63pub struct PyTorchEmbedder {
64    config: PyTorchConfig,
65    model_loaded: bool,
66    model_metadata: Option<PyTorchModelMetadata>,
67    tokenizer: Option<PyTorchTokenizer>,
68}
69
70/// PyTorch model metadata
71#[derive(Debug, Clone)]
72pub struct PyTorchModelMetadata {
73    pub model_name: String,
74    pub model_version: String,
75    pub input_shape: Vec<i64>,
76    pub output_shape: Vec<i64>,
77    pub embedding_dimension: usize,
78    pub vocab_size: Option<usize>,
79    pub max_sequence_length: usize,
80    pub architecture_type: ArchitectureType,
81}
82
83/// Neural network architecture types
84#[derive(Debug, Clone)]
85pub enum ArchitectureType {
86    Transformer,
87    Cnn,
88    Rnn,
89    Lstm,
90    Gru,
91    Bert,
92    Roberta,
93    Gpt,
94    T5,
95    Custom(String),
96}
97
98/// PyTorch tokenizer for text preprocessing
99#[derive(Debug, Clone)]
100pub struct PyTorchTokenizer {
101    pub vocab: HashMap<String, i32>,
102    pub special_tokens: HashMap<String, i32>,
103    pub max_length: usize,
104    pub padding_token: String,
105    pub unknown_token: String,
106    pub cls_token: Option<String>,
107    pub sep_token: Option<String>,
108}
109
110impl Default for PyTorchTokenizer {
111    fn default() -> Self {
112        let mut special_tokens = HashMap::new();
113        special_tokens.insert("[PAD]".to_string(), 0);
114        special_tokens.insert("[UNK]".to_string(), 1);
115        special_tokens.insert("[CLS]".to_string(), 2);
116        special_tokens.insert("[SEP]".to_string(), 3);
117
118        Self {
119            vocab: HashMap::new(),
120            special_tokens,
121            max_length: 512,
122            padding_token: "[PAD]".to_string(),
123            unknown_token: "[UNK]".to_string(),
124            cls_token: Some("[CLS]".to_string()),
125            sep_token: Some("[SEP]".to_string()),
126        }
127    }
128}
129
130impl PyTorchEmbedder {
131    /// Create a new PyTorch embedder
132    pub fn new(config: PyTorchConfig) -> Result<Self> {
133        Ok(Self {
134            config,
135            model_loaded: false,
136            model_metadata: None,
137            tokenizer: Some(PyTorchTokenizer::default()),
138        })
139    }
140
141    /// Load PyTorch model from file
142    pub fn load_model(&mut self) -> Result<()> {
143        if !self.config.model_path.exists() {
144            return Err(anyhow!(
145                "Model file not found: {:?}",
146                self.config.model_path
147            ));
148        }
149
150        // Mock model loading - in real implementation would use tch or candle-core
151        let metadata = PyTorchModelMetadata {
152            model_name: "pytorch_embedder".to_string(),
153            model_version: "1.0.0".to_string(),
154            input_shape: vec![-1, 512],  // batch_size, sequence_length
155            output_shape: vec![-1, 768], // batch_size, embedding_dim
156            embedding_dimension: 768,
157            vocab_size: Some(30000),
158            max_sequence_length: 512,
159            architecture_type: ArchitectureType::Transformer,
160        };
161
162        self.model_metadata = Some(metadata);
163        self.model_loaded = true;
164        Ok(())
165    }
166
167    /// Generate embeddings for text
168    pub fn embed_text(&self, text: &str) -> Result<Vector> {
169        if !self.model_loaded {
170            return Err(anyhow!("Model not loaded. Call load_model() first."));
171        }
172
173        let tokens = self.tokenize_text(text)?;
174        let embedding = self.forward_pass(&tokens)?;
175        Ok(Vector::new(embedding))
176    }
177
178    /// Generate embeddings for multiple texts
179    pub fn embed_batch(&self, texts: &[String]) -> Result<Vec<Vector>> {
180        if !self.model_loaded {
181            return Err(anyhow!("Model not loaded"));
182        }
183
184        let mut results = Vec::new();
185
186        // Process in batches according to config
187        for chunk in texts.chunks(self.config.batch_size) {
188            let mut batch_tokens = Vec::new();
189            for text in chunk {
190                batch_tokens.push(self.tokenize_text(text)?);
191            }
192
193            let batch_embeddings = self.forward_pass_batch(&batch_tokens)?;
194            for embedding in batch_embeddings {
195                results.push(Vector::new(embedding));
196            }
197        }
198
199        Ok(results)
200    }
201
202    /// Tokenize text using the configured tokenizer
203    fn tokenize_text(&self, text: &str) -> Result<Vec<i32>> {
204        let tokenizer = self
205            .tokenizer
206            .as_ref()
207            .ok_or_else(|| anyhow!("Tokenizer not available"))?;
208
209        let mut tokens = Vec::new();
210
211        // Add CLS token if available
212        if let Some(cls_token) = &tokenizer.cls_token {
213            if let Some(&token_id) = tokenizer.special_tokens.get(cls_token) {
214                tokens.push(token_id);
215            }
216        }
217
218        // Simple whitespace tokenization (in practice would use proper tokenizer)
219        let words: Vec<&str> = text.split_whitespace().collect();
220        for word in words {
221            let token_id = tokenizer
222                .vocab
223                .get(word)
224                .or_else(|| tokenizer.special_tokens.get(&tokenizer.unknown_token))
225                .copied()
226                .unwrap_or(1); // Default to UNK token ID
227            tokens.push(token_id);
228        }
229
230        // Add SEP token if available
231        if let Some(sep_token) = &tokenizer.sep_token {
232            if let Some(&token_id) = tokenizer.special_tokens.get(sep_token) {
233                tokens.push(token_id);
234            }
235        }
236
237        // Truncate or pad to max length
238        if tokens.len() > tokenizer.max_length {
239            tokens.truncate(tokenizer.max_length);
240        } else {
241            let pad_token_id = tokenizer
242                .special_tokens
243                .get(&tokenizer.padding_token)
244                .copied()
245                .unwrap_or(0);
246            tokens.resize(tokenizer.max_length, pad_token_id);
247        }
248
249        Ok(tokens)
250    }
251
252    /// Forward pass through the model (mock implementation)
253    fn forward_pass(&self, tokens: &[i32]) -> Result<Vec<f32>> {
254        let metadata = self
255            .model_metadata
256            .as_ref()
257            .ok_or_else(|| anyhow!("Model metadata not available"))?;
258
259        // Mock forward pass - generate deterministic embeddings based on tokens
260        let mut rng = Random::seed(tokens.iter().map(|&t| t as u64).sum::<u64>());
261
262        let mut embedding = vec![0.0f32; metadata.embedding_dimension];
263        for value in &mut embedding {
264            *value = rng.gen_range(-1.0..1.0);
265        }
266
267        // Apply layer normalization (simplified)
268        let mean = embedding.iter().sum::<f32>() / embedding.len() as f32;
269        let variance =
270            embedding.iter().map(|x| (x - mean).powi(2)).sum::<f32>() / embedding.len() as f32;
271        let std_dev = variance.sqrt();
272
273        if std_dev > 0.0 {
274            for x in &mut embedding {
275                *x = (*x - mean) / std_dev;
276            }
277        }
278
279        Ok(embedding)
280    }
281
282    /// Batch forward pass
283    fn forward_pass_batch(&self, batch_tokens: &[Vec<i32>]) -> Result<Vec<Vec<f32>>> {
284        let mut results = Vec::new();
285        for tokens in batch_tokens {
286            results.push(self.forward_pass(tokens)?);
287        }
288        Ok(results)
289    }
290
291    /// Get model metadata
292    pub fn get_metadata(&self) -> Option<&PyTorchModelMetadata> {
293        self.model_metadata.as_ref()
294    }
295
296    /// Get embedding dimensions
297    pub fn get_dimensions(&self) -> Option<usize> {
298        self.model_metadata.as_ref().map(|m| m.embedding_dimension)
299    }
300
301    /// Update tokenizer
302    pub fn set_tokenizer(&mut self, tokenizer: PyTorchTokenizer) {
303        self.tokenizer = Some(tokenizer);
304    }
305
306    /// Check if model supports mixed precision
307    pub fn supports_mixed_precision(&self) -> bool {
308        self.config.mixed_precision
309    }
310
311    /// Get current device
312    pub fn get_device(&self) -> &PyTorchDevice {
313        &self.config.device
314    }
315}
316
317/// PyTorch model manager for handling multiple models
318#[derive(Debug)]
319pub struct PyTorchModelManager {
320    models: HashMap<String, PyTorchEmbedder>,
321    default_model: String,
322    device_manager: DeviceManager,
323}
324
325/// Device manager for PyTorch models
326#[derive(Debug)]
327pub struct DeviceManager {
328    available_devices: Vec<PyTorchDevice>,
329    current_device: PyTorchDevice,
330    memory_usage: HashMap<String, usize>,
331}
332
333impl DeviceManager {
334    /// Create a new device manager
335    pub fn new() -> Self {
336        let available_devices = Self::detect_available_devices();
337        let current_device = available_devices
338            .first()
339            .cloned()
340            .unwrap_or(PyTorchDevice::Cpu);
341
342        Self {
343            available_devices,
344            current_device,
345            memory_usage: HashMap::new(),
346        }
347    }
348
349    /// Detect available PyTorch devices
350    fn detect_available_devices() -> Vec<PyTorchDevice> {
351        let mut devices = vec![PyTorchDevice::Cpu];
352
353        // Mock device detection
354        devices.push(PyTorchDevice::Cuda { device_id: 0 });
355        devices.push(PyTorchDevice::Mps);
356
357        devices
358    }
359
360    /// Get optimal device for model
361    pub fn get_optimal_device(&self) -> &PyTorchDevice {
362        &self.current_device
363    }
364
365    /// Update memory usage for a device
366    pub fn update_memory_usage(&mut self, device: String, usage: usize) {
367        self.memory_usage.insert(device, usage);
368    }
369
370    /// Get memory usage for all devices
371    pub fn get_memory_usage(&self) -> &HashMap<String, usize> {
372        &self.memory_usage
373    }
374}
375
376impl Default for DeviceManager {
377    fn default() -> Self {
378        Self::new()
379    }
380}
381
382impl PyTorchModelManager {
383    /// Create a new PyTorch model manager
384    pub fn new(default_model: String) -> Self {
385        Self {
386            models: HashMap::new(),
387            default_model,
388            device_manager: DeviceManager::new(),
389        }
390    }
391
392    /// Register a model with the manager
393    pub fn register_model(&mut self, name: String, mut embedder: PyTorchEmbedder) -> Result<()> {
394        embedder.load_model()?;
395        self.models.insert(name, embedder);
396        Ok(())
397    }
398
399    /// Get available model names
400    pub fn list_models(&self) -> Vec<String> {
401        self.models.keys().cloned().collect()
402    }
403
404    /// Generate embeddings using a specific model
405    pub fn embed_with_model(&self, model_name: &str, texts: &[String]) -> Result<Vec<Vector>> {
406        let model = self
407            .models
408            .get(model_name)
409            .ok_or_else(|| anyhow!("Model not found: {}", model_name))?;
410
411        model.embed_batch(texts)
412    }
413
414    /// Generate embeddings using the default model
415    pub fn embed(&self, texts: &[String]) -> Result<Vec<Vector>> {
416        self.embed_with_model(&self.default_model, texts)
417    }
418
419    /// Get device manager
420    pub fn get_device_manager(&self) -> &DeviceManager {
421        &self.device_manager
422    }
423
424    /// Update device manager
425    pub fn update_device_manager(&mut self, device_manager: DeviceManager) {
426        self.device_manager = device_manager;
427    }
428}
429
430impl EmbeddingGenerator for PyTorchEmbedder {
431    fn generate_embedding(&self, content: &ContentItem) -> Result<Vector> {
432        self.embed_text(&content.content)
433    }
434
435    fn generate_batch_embeddings(&self, content: &[ContentItem]) -> Result<Vec<ProcessingResult>> {
436        let mut results = Vec::new();
437
438        for item in content {
439            let start_time = Instant::now();
440            let vector_result = self.generate_embedding(item);
441            let duration = start_time.elapsed();
442
443            let result = match vector_result {
444                Ok(vector) => ProcessingResult {
445                    item: item.clone(),
446                    vector: Some(vector),
447                    status: ProcessingStatus::Completed,
448                    duration,
449                    error: None,
450                    metadata: HashMap::new(),
451                },
452                Err(e) => ProcessingResult {
453                    item: item.clone(),
454                    vector: None,
455                    status: ProcessingStatus::Failed {
456                        reason: e.to_string(),
457                    },
458                    duration,
459                    error: Some(e.to_string()),
460                    metadata: HashMap::new(),
461                },
462            };
463
464            results.push(result);
465        }
466
467        Ok(results)
468    }
469
470    fn embedding_dimensions(&self) -> usize {
471        self.get_dimensions().unwrap_or(768)
472    }
473
474    fn get_config(&self) -> serde_json::Value {
475        serde_json::to_value(&self.config).unwrap_or_default()
476    }
477
478    fn is_ready(&self) -> bool {
479        self.model_loaded
480    }
481
482    fn get_statistics(&self) -> GeneratorStatistics {
483        GeneratorStatistics {
484            total_embeddings: 0,
485            total_processing_time: Duration::from_millis(0),
486            average_processing_time: Duration::from_millis(0),
487            error_count: 0,
488            last_error: None,
489        }
490    }
491}
492
493#[cfg(test)]
494#[allow(clippy::useless_vec)]
495mod tests {
496    use super::*;
497
498    #[test]
499    fn test_pytorch_config_creation() {
500        let config = PyTorchConfig::default();
501        assert_eq!(config.batch_size, 32);
502        assert_eq!(config.num_workers, 4);
503        assert!(config.pin_memory);
504    }
505
506    #[test]
507    fn test_pytorch_embedder_creation() {
508        let config = PyTorchConfig::default();
509        let embedder = PyTorchEmbedder::new(config);
510        assert!(embedder.is_ok());
511        assert!(!embedder.unwrap().model_loaded);
512    }
513
514    #[test]
515    fn test_tokenizer_creation() {
516        let tokenizer = PyTorchTokenizer::default();
517        assert_eq!(tokenizer.max_length, 512);
518        assert_eq!(tokenizer.padding_token, "[PAD]");
519        assert!(tokenizer.special_tokens.contains_key("[CLS]"));
520    }
521
522    #[test]
523    fn test_model_metadata() {
524        let metadata = PyTorchModelMetadata {
525            model_name: "test".to_string(),
526            model_version: "1.0".to_string(),
527            input_shape: vec![-1, 512],
528            output_shape: vec![-1, 768],
529            embedding_dimension: 768,
530            vocab_size: Some(30000),
531            max_sequence_length: 512,
532            architecture_type: ArchitectureType::Transformer,
533        };
534
535        assert_eq!(metadata.embedding_dimension, 768);
536        assert_eq!(metadata.vocab_size, Some(30000));
537    }
538
539    #[test]
540    fn test_device_manager_creation() {
541        let device_manager = DeviceManager::new();
542        assert!(!device_manager.available_devices.is_empty());
543        assert!(matches!(device_manager.current_device, PyTorchDevice::Cpu));
544    }
545
546    #[test]
547    fn test_model_manager_creation() {
548        let manager = PyTorchModelManager::new("default".to_string());
549        assert_eq!(manager.default_model, "default");
550        assert!(manager.list_models().is_empty());
551    }
552
553    #[test]
554    fn test_architecture_types() {
555        let arch_types = vec![
556            ArchitectureType::Transformer,
557            ArchitectureType::Bert,
558            ArchitectureType::Gpt,
559            ArchitectureType::Custom("MyModel".to_string()),
560        ];
561        assert_eq!(arch_types.len(), 4);
562    }
563
564    #[test]
565    fn test_device_types() {
566        let devices = vec![
567            PyTorchDevice::Cpu,
568            PyTorchDevice::Cuda { device_id: 0 },
569            PyTorchDevice::Mps,
570            PyTorchDevice::Auto,
571        ];
572        assert_eq!(devices.len(), 4);
573    }
574
575    #[test]
576    fn test_compile_modes() {
577        let modes = vec![
578            CompileMode::None,
579            CompileMode::Default,
580            CompileMode::Max,
581            CompileMode::Custom("custom".to_string()),
582        ];
583        assert_eq!(modes.len(), 4);
584    }
585
586    #[test]
587    fn test_tokenizer_special_tokens() {
588        let tokenizer = PyTorchTokenizer::default();
589        assert!(tokenizer.special_tokens.contains_key("[PAD]"));
590        assert!(tokenizer.special_tokens.contains_key("[UNK]"));
591        assert!(tokenizer.special_tokens.contains_key("[CLS]"));
592        assert!(tokenizer.special_tokens.contains_key("[SEP]"));
593    }
594}