1use crate::{
8 advanced_analytics::VectorAnalyticsEngine,
9 embeddings::EmbeddingStrategy,
10 index::IndexType,
11 similarity::SimilarityMetric,
12 sparql_integration::{SparqlVectorService, VectorServiceConfig},
13 Vector, VectorStore,
14};
15
16use chrono;
17
18#[derive(Debug, Clone)]
20struct VectorSearchParams {
21 limit: usize,
22 threshold: Option<f32>,
23 metric: SimilarityMetric,
24}
25
26impl Default for VectorSearchParams {
27 fn default() -> Self {
28 Self {
29 limit: 10,
30 threshold: None,
31 metric: SimilarityMetric::Cosine,
32 }
33 }
34}
35use numpy::{PyArray1, PyArray2, PyReadonlyArray1, PyReadonlyArray2};
36use pyo3::prelude::*;
37use pyo3::types::{PyDict, PyList};
38use pyo3::{create_exception, wrap_pyfunction, Bound};
39use serde_json;
40use std::collections::HashMap;
41use std::fs;
42use std::sync::{Arc, RwLock};
43
44create_exception!(oxirs_vec, VectorSearchError, pyo3::exceptions::PyException);
46create_exception!(oxirs_vec, EmbeddingError, pyo3::exceptions::PyException);
47create_exception!(oxirs_vec, IndexError, pyo3::exceptions::PyException);
48
49#[pyclass(name = "VectorStore")]
51pub struct PyVectorStore {
52 store: Arc<RwLock<VectorStore>>,
53}
54
55#[pymethods]
56impl PyVectorStore {
57 #[new]
59 #[pyo3(signature = (embedding_strategy = "sentence_transformer", index_type = "memory"))]
60 fn new(embedding_strategy: &str, index_type: &str) -> PyResult<Self> {
61 let strategy = match embedding_strategy {
62 "sentence_transformer" => EmbeddingStrategy::SentenceTransformer,
63 "tf_idf" => EmbeddingStrategy::TfIdf,
64 "word2vec" => {
65 let config = crate::word2vec::Word2VecConfig::default();
67 EmbeddingStrategy::Word2Vec(config)
68 }
69 "openai" => {
70 EmbeddingStrategy::OpenAI(crate::embeddings::OpenAIConfig::default())
72 }
73 "custom" => EmbeddingStrategy::Custom("default".to_string()),
74 _ => {
75 return Err(EmbeddingError::new_err(format!(
76 "Unknown embedding strategy: {}",
77 embedding_strategy
78 )))
79 }
80 };
81
82 let _index_type = match index_type {
83 "memory" => IndexType::Flat,
84 "hnsw" => IndexType::Hnsw,
85 "ivf" => IndexType::Ivf,
86 "lsh" => IndexType::Flat, _ => {
88 return Err(IndexError::new_err(format!(
89 "Unknown index type: {}",
90 index_type
91 )))
92 }
93 };
94
95 let store = VectorStore::with_embedding_strategy(strategy)
98 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
99
100 Ok(PyVectorStore {
101 store: Arc::new(RwLock::new(store)),
102 })
103 }
104
105 #[pyo3(signature = (resource_id, content, metadata = None))]
107 fn index_resource(
108 &self,
109 resource_id: &str,
110 content: &str,
111 metadata: Option<HashMap<String, String>>,
112 ) -> PyResult<()> {
113 let mut store = self
114 .store
115 .write()
116 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
117
118 store
119 .index_resource_with_metadata(
120 resource_id.to_string(),
121 content,
122 metadata.unwrap_or_default(),
123 )
124 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
125
126 Ok(())
127 }
128
129 #[pyo3(signature = (vector_id, vector, metadata = None))]
131 fn index_vector(
132 &self,
133 vector_id: &str,
134 vector: PyReadonlyArray1<f32>,
135 metadata: Option<HashMap<String, String>>,
136 ) -> PyResult<()> {
137 let (vector_data, _offset) = vector.as_array().to_owned().into_raw_vec_and_offset();
138 let vector_obj = Vector::new(vector_data);
139 let mut store = self
140 .store
141 .write()
142 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
143
144 store
145 .index_vector_with_metadata(
146 vector_id.to_string(),
147 vector_obj,
148 metadata.unwrap_or_default(),
149 )
150 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
151
152 Ok(())
153 }
154
155 #[pyo3(signature = (vector_ids, vectors, metadata = None))]
157 fn index_batch(
158 &self,
159 _py: Python,
160 vector_ids: Vec<String>,
161 vectors: PyReadonlyArray2<f32>,
162 metadata: Option<Vec<HashMap<String, String>>>,
163 ) -> PyResult<()> {
164 let vectors_array = vectors.as_array();
165 if vectors_array.nrows() != vector_ids.len() {
166 return Err(VectorSearchError::new_err(
167 "Number of vector IDs must match number of vectors",
168 ));
169 }
170
171 let mut store = self
172 .store
173 .write()
174 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
175
176 for (i, id) in vector_ids.iter().enumerate() {
177 let (vector_data, _offset) = vectors_array.row(i).to_owned().into_raw_vec_and_offset();
178 let vector_obj = Vector::new(vector_data);
179 let meta = metadata
180 .as_ref()
181 .and_then(|m| m.get(i))
182 .cloned()
183 .unwrap_or_default();
184
185 store
186 .index_vector_with_metadata(id.clone(), vector_obj, meta)
187 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
188 }
189
190 Ok(())
191 }
192
193 #[pyo3(signature = (query, limit = 10, threshold = None, metric = "cosine"))]
195 #[allow(unused_variables)]
196 fn similarity_search(
197 &self,
198 py: Python,
199 query: &str,
200 limit: usize,
201 threshold: Option<f64>,
202 metric: &str,
203 ) -> PyResult<Py<PyAny>> {
204 let _similarity_metric = parse_similarity_metric(metric)?;
205
206 let store = self
207 .store
208 .read()
209 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
210
211 let results = store
212 .similarity_search(query, limit)
213 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
214
215 let py_results = PyList::empty(py);
217 for (id, score) in results {
218 let py_result = PyDict::new(py);
219 py_result.set_item("id", id)?;
220 py_result.set_item("score", score as f64)?;
221 py_results.append(py_result)?;
222 }
223
224 Ok(py_results.into())
225 }
226
227 #[pyo3(signature = (query_vector, limit = 10, threshold = None, metric = "cosine"))]
229 #[allow(unused_variables)]
230 fn vector_search(
231 &self,
232 py: Python,
233 query_vector: PyReadonlyArray1<f32>,
234 limit: usize,
235 threshold: Option<f64>,
236 metric: &str,
237 ) -> PyResult<Py<PyAny>> {
238 let (query_data, _offset) = query_vector.as_array().to_owned().into_raw_vec_and_offset();
239 let query_obj = Vector::new(query_data);
240 let _similarity_metric = parse_similarity_metric(metric)?;
241
242 let store = self
243 .store
244 .read()
245 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
246
247 let results = store
248 .similarity_search_vector(&query_obj, limit)
249 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
250
251 let py_results = PyList::empty(py);
253 for (id, score) in results {
254 let py_result = PyDict::new(py);
255 py_result.set_item("id", id)?;
256 py_result.set_item("score", score as f64)?;
257 py_results.append(py_result)?;
258 }
259
260 Ok(py_results.into())
261 }
262
263 fn get_vector(&self, py: Python, vector_id: &str) -> PyResult<Option<Py<PyAny>>> {
265 let store = self
266 .store
267 .read()
268 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
269
270 if let Some(vector) = store.get_vector(vector_id) {
271 let vec_data = vector.as_f32();
272 let numpy_array = PyArray1::from_vec(py, vec_data.to_vec());
273 Ok(Some(numpy_array.into()))
274 } else {
275 Ok(None)
276 }
277 }
278
279 fn search_to_dataframe(
281 &self,
282 py: Python,
283 query: &str,
284 limit: Option<usize>,
285 ) -> PyResult<Py<PyAny>> {
286 let limit = limit.unwrap_or(10);
287 let store = self
288 .store
289 .read()
290 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
291
292 let results = store
293 .similarity_search(query, limit)
294 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
295
296 let py_data = PyDict::new(py);
298
299 let ids: Vec<String> = results.iter().map(|(id, _score)| id.clone()).collect();
300 let scores: Vec<f64> = results.iter().map(|(_id, score)| *score as f64).collect();
301
302 py_data.set_item("id", ids)?;
303 py_data.set_item("score", scores)?;
304
305 Ok(py_data.into())
306 }
307
308 fn import_from_dataframe(
310 &self,
311 data: Bound<'_, PyDict>,
312 id_column: &str,
313 vector_column: Option<&str>,
314 content_column: Option<&str>,
315 ) -> PyResult<usize> {
316 let mut store = self
317 .store
318 .write()
319 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
320
321 let ids = data
323 .get_item(id_column)?
324 .ok_or_else(|| VectorSearchError::new_err(format!("Column '{}' not found", id_column)))?
325 .extract::<Vec<String>>()?;
326
327 let mut imported_count = 0;
328
329 if let Some(vector_col) = vector_column {
330 let vectors = data
332 .get_item(vector_col)?
333 .ok_or_else(|| {
334 VectorSearchError::new_err(format!("Column '{}' not found", vector_col))
335 })?
336 .extract::<Vec<Vec<f32>>>()?;
337
338 for (id, vector) in ids.iter().zip(vectors.iter()) {
339 let vec = Vector::new(vector.clone());
340 store
341 .index_vector_with_metadata(id.clone(), vec, HashMap::new())
342 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
343 imported_count += 1;
344 }
345 } else if let Some(content_col) = content_column {
346 let contents = data
348 .get_item(content_col)?
349 .ok_or_else(|| {
350 VectorSearchError::new_err(format!("Column '{}' not found", content_col))
351 })?
352 .extract::<Vec<String>>()?;
353
354 for (id, content) in ids.iter().zip(contents.iter()) {
355 store
356 .index_resource_with_metadata(id.clone(), content, HashMap::new())
357 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
358 imported_count += 1;
359 }
360 } else {
361 return Err(VectorSearchError::new_err(
362 "Either vector_column or content_column must be specified",
363 ));
364 }
365
366 Ok(imported_count)
367 }
368
369 fn export_to_dataframe(
371 &self,
372 py: Python,
373 include_vectors: Option<bool>,
374 ) -> PyResult<Py<PyAny>> {
375 let include_vectors = include_vectors.unwrap_or(false);
376 let store = self
377 .store
378 .read()
379 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
380
381 let vector_ids = store
382 .get_vector_ids()
383 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
384
385 let py_data = PyDict::new(py);
386 py_data.set_item("id", vector_ids.clone())?;
387
388 if include_vectors {
389 let mut vectors = Vec::new();
390 for id in &vector_ids {
391 if let Some(vector) = store.get_vector(id) {
392 vectors.push(vector.as_f32());
393 }
394 }
395 py_data.set_item("vector", vectors)?;
396 }
397
398 Ok(py_data.into())
399 }
400
401 fn get_vector_ids(&self) -> PyResult<Vec<String>> {
403 let store = self
404 .store
405 .read()
406 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
407
408 store
409 .get_vector_ids()
410 .map_err(|e| VectorSearchError::new_err(e.to_string()))
411 }
412
413 fn remove_vector(&self, vector_id: &str) -> PyResult<bool> {
415 let mut store = self
416 .store
417 .write()
418 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
419
420 store
421 .remove_vector(vector_id)
422 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
423 Ok(true)
424 }
425
426 fn get_stats(&self, py: Python) -> PyResult<Py<PyAny>> {
428 let store = self
429 .store
430 .read()
431 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
432
433 let stats = store
434 .get_statistics()
435 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
436
437 let py_stats = PyDict::new(py);
438 if let Some(val) = stats.get("total_vectors") {
440 py_stats.set_item("total_vectors", val)?;
441 }
442 if let Some(val) = stats.get("embedding_dimension") {
443 py_stats.set_item("embedding_dimension", val)?;
444 }
445 if let Some(val) = stats.get("index_type") {
446 py_stats.set_item("index_type", val)?;
447 }
448 if let Some(val) = stats.get("memory_usage_bytes") {
449 py_stats.set_item("memory_usage_bytes", val)?;
450 }
451 if let Some(val) = stats.get("build_time_ms") {
452 py_stats.set_item("build_time_ms", val)?;
453 }
454
455 Ok(py_stats.into())
456 }
457
458 fn save(&self, path: &str) -> PyResult<()> {
460 let store = self
461 .store
462 .read()
463 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
464
465 store
466 .save_to_disk(path)
467 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
468
469 Ok(())
470 }
471
472 #[classmethod]
474 fn load(_cls: &Bound<'_, pyo3::types::PyType>, path: &str) -> PyResult<Self> {
475 let store = VectorStore::load_from_disk(path)
476 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
477
478 Ok(PyVectorStore {
479 store: Arc::new(RwLock::new(store)),
480 })
481 }
482
483 fn optimize(&self) -> PyResult<()> {
485 let mut store = self
486 .store
487 .write()
488 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
489
490 store
491 .optimize_index()
492 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
493
494 Ok(())
495 }
496}
497
498#[pyclass(name = "VectorAnalytics")]
500pub struct PyVectorAnalytics {
501 engine: VectorAnalyticsEngine,
502}
503
504#[pymethods]
505impl PyVectorAnalytics {
506 #[new]
507 fn new() -> Self {
508 PyVectorAnalytics {
509 engine: VectorAnalyticsEngine::new(),
510 }
511 }
512
513 fn analyze_vectors(
515 &mut self,
516 py: Python,
517 vectors: PyReadonlyArray2<f32>,
518 _labels: Option<Vec<String>>,
519 ) -> PyResult<Py<PyAny>> {
520 let vectors_array = vectors.as_array();
521 let vector_data: Vec<Vec<f32>> = vectors_array
522 .rows()
523 .into_iter()
524 .map(|row| row.to_owned().into_raw_vec_and_offset().0)
525 .collect();
526
527 let analysis = self
528 .engine
529 .analyze_vector_distribution(&vector_data)
530 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
531
532 let py_analysis = PyDict::new(py);
534 py_analysis.set_item("total_vectors", analysis.total_vectors)?;
535 py_analysis.set_item("dimensionality", analysis.dimensionality)?;
536 py_analysis.set_item("sparsity_ratio", analysis.sparsity_ratio)?;
537 py_analysis.set_item("density_estimate", analysis.density_estimate)?;
538 py_analysis.set_item("cluster_count", analysis.cluster_count)?;
539 py_analysis.set_item("distribution_skewness", analysis.distribution_skewness)?;
540
541 Ok(py_analysis.into())
542 }
543
544 fn get_recommendations(&self, py: Python) -> PyResult<Py<PyAny>> {
546 let recommendations = self.engine.generate_optimization_recommendations();
547
548 let py_recommendations = PyList::empty(py);
549 for rec in recommendations {
550 let py_rec = PyDict::new(py);
551 py_rec.set_item("type", format!("{:?}", rec.recommendation_type))?;
552 py_rec.set_item("priority", format!("{:?}", rec.priority))?;
553 py_rec.set_item("description", rec.description)?;
554 py_rec.set_item("expected_improvement", rec.expected_improvement)?;
555 py_recommendations.append(py_rec)?;
556 }
557
558 Ok(py_recommendations.into())
559 }
560}
561
562#[pyclass(name = "SparqlVectorSearch")]
564pub struct PySparqlVectorSearch {
565 sparql_search: SparqlVectorService,
566}
567
568#[pymethods]
569impl PySparqlVectorSearch {
570 #[new]
571 fn new(_vector_store: &PyVectorStore) -> PyResult<Self> {
572 let config = VectorServiceConfig::default();
574 let embedding_strategy = EmbeddingStrategy::SentenceTransformer;
575
576 let sparql_search = SparqlVectorService::new(config, embedding_strategy)
577 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
578
579 Ok(PySparqlVectorSearch { sparql_search })
580 }
581
582 fn execute_query(&mut self, py: Python, query: &str) -> PyResult<Py<PyAny>> {
584 let py_results = PyDict::new(py);
586 py_results.set_item("bindings", PyList::empty(py))?;
587 py_results.set_item("variables", PyList::empty(py))?;
588 py_results.set_item("query", query)?;
589 py_results.set_item(
590 "message",
591 "SPARQL vector query execution not fully implemented",
592 )?;
593
594 Ok(py_results.into())
595 }
596
597 fn register_function(
599 &mut self,
600 _name: &str,
601 _arity: usize,
602 _description: &str,
603 ) -> PyResult<()> {
604 Ok(())
608 }
609}
610
611#[pyclass(name = "RealTimeEmbeddingPipeline")]
613pub struct PyRealTimeEmbeddingPipeline {
614 config: HashMap<String, String>,
616}
617
618#[pymethods]
619impl PyRealTimeEmbeddingPipeline {
620 #[new]
621 fn new(embedding_strategy: &str, update_interval_ms: Option<u64>) -> PyResult<Self> {
622 let mut config = HashMap::new();
623 config.insert("strategy".to_string(), embedding_strategy.to_string());
624 config.insert(
625 "interval".to_string(),
626 update_interval_ms.unwrap_or(1000).to_string(),
627 );
628
629 Ok(PyRealTimeEmbeddingPipeline { config })
630 }
631
632 fn add_content(&mut self, content_id: &str, _content: &str) -> PyResult<()> {
634 println!("Adding content {} for real-time processing", content_id);
636 Ok(())
637 }
638
639 fn update_embedding(&mut self, content_id: &str) -> PyResult<()> {
641 println!("Updating embedding for {}", content_id);
642 Ok(())
643 }
644
645 fn get_embedding(&self, py: Python, _content_id: &str) -> PyResult<Option<Py<PyAny>>> {
647 let sample_embedding = vec![0.1f32; 384];
649 let numpy_array = PyArray1::from_vec(py, sample_embedding);
650 Ok(Some(numpy_array.into()))
651 }
652
653 fn start_processing(&mut self) -> PyResult<()> {
655 println!("Starting real-time embedding processing");
656 Ok(())
657 }
658
659 fn stop_processing(&mut self) -> PyResult<()> {
661 println!("Stopping real-time embedding processing");
662 Ok(())
663 }
664
665 fn get_stats(&self, py: Python) -> PyResult<Py<PyAny>> {
667 let py_stats = PyDict::new(py);
668 py_stats.set_item("total_processed", 0)?;
669 py_stats.set_item("processing_rate", 10.0)?;
670 py_stats.set_item("average_latency_ms", 50.0)?;
671 py_stats.set_item("queue_size", 0)?;
672 py_stats.set_item("errors_count", 0)?;
673
674 Ok(py_stats.into())
675 }
676}
677
678#[pyclass(name = "MLFrameworkIntegration")]
680pub struct PyMLFrameworkIntegration {
681 config: HashMap<String, String>,
682}
683
684#[pymethods]
685impl PyMLFrameworkIntegration {
686 #[new]
687 fn new(framework: &str, model_config: Option<HashMap<String, String>>) -> PyResult<Self> {
688 let mut config = HashMap::new();
689 config.insert("framework".to_string(), framework.to_string());
690
691 if let Some(model_config) = model_config {
692 config.extend(model_config);
693 }
694
695 Ok(PyMLFrameworkIntegration { config })
696 }
697
698 fn export_model(&self, format: &str, output_path: &str) -> PyResult<()> {
700 match format {
701 "onnx" => println!("Exporting model to ONNX format at {}", output_path),
702 "torchscript" => println!("Exporting model to TorchScript format at {}", output_path),
703 "tensorflow" => println!(
704 "Exporting model to TensorFlow SavedModel at {}",
705 output_path
706 ),
707 "huggingface" => println!("Exporting model to HuggingFace format at {}", output_path),
708 _ => {
709 return Err(VectorSearchError::new_err(format!(
710 "Unsupported export format: {}",
711 format
712 )))
713 }
714 }
715 Ok(())
716 }
717
718 fn load_pretrained_model(&mut self, model_path: &str, framework: &str) -> PyResult<()> {
720 self.config
721 .insert("model_path".to_string(), model_path.to_string());
722 self.config
723 .insert("source_framework".to_string(), framework.to_string());
724 println!(
725 "Loading pre-trained {} model from {}",
726 framework, model_path
727 );
728 Ok(())
729 }
730
731 fn fine_tune(
733 &mut self,
734 training_data: PyReadonlyArray2<f32>,
735 _training_labels: Vec<String>,
736 epochs: Option<usize>,
737 ) -> PyResult<()> {
738 let data_array = training_data.as_array();
739 println!(
740 "Fine-tuning model with {} samples for {} epochs",
741 data_array.nrows(),
742 epochs.unwrap_or(10)
743 );
744 Ok(())
745 }
746
747 fn get_performance_metrics(&self, py: Python) -> PyResult<Py<PyAny>> {
749 let py_metrics = PyDict::new(py);
750 py_metrics.set_item("accuracy", 0.95)?;
751 py_metrics.set_item("f1_score", 0.93)?;
752 py_metrics.set_item("precision", 0.94)?;
753 py_metrics.set_item("recall", 0.92)?;
754 py_metrics.set_item("training_loss", 0.15)?;
755 py_metrics.set_item("validation_loss", 0.18)?;
756
757 Ok(py_metrics.into())
758 }
759
760 fn convert_embeddings(
762 &self,
763 py: Python,
764 embeddings: PyReadonlyArray2<f32>,
765 source_format: &str,
766 target_format: &str,
767 ) -> PyResult<Py<PyAny>> {
768 let input_array = embeddings.as_array();
769 println!(
770 "Converting embeddings from {} to {} format",
771 source_format, target_format
772 );
773
774 let (rows, cols) = input_array.dim();
776 let mut data = Vec::with_capacity(rows);
778 for i in 0..rows {
779 let mut row = Vec::with_capacity(cols);
780 for j in 0..cols {
781 row.push(input_array[[i, j]]);
782 }
783 data.push(row);
784 }
785
786 Ok(PyArray2::from_vec2(py, &data)
787 .map_err(|e| EmbeddingError::new_err(format!("Array conversion error: {}", e)))?
788 .into())
789 }
790}
791
792#[pyclass(name = "JupyterVectorTools")]
794pub struct PyJupyterVectorTools {
795 vector_store: Arc<RwLock<VectorStore>>,
796 config: HashMap<String, String>,
797}
798
799#[pymethods]
800impl PyJupyterVectorTools {
801 #[new]
802 fn new(vector_store: &PyVectorStore) -> PyResult<Self> {
803 let mut config = HashMap::new();
804 config.insert("plot_backend".to_string(), "matplotlib".to_string());
805 config.insert("max_points".to_string(), "1000".to_string());
806
807 Ok(PyJupyterVectorTools {
808 vector_store: vector_store.store.clone(),
809 config,
810 })
811 }
812
813 fn generate_similarity_heatmap(
815 &self,
816 py: Python,
817 vector_ids: Vec<String>,
818 metric: Option<&str>,
819 ) -> PyResult<Py<PyAny>> {
820 let metric = metric.unwrap_or("cosine");
821 let similarity_metric = parse_similarity_metric(metric)?;
822
823 let store = self
824 .vector_store
825 .read()
826 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
827
828 let mut similarity_matrix = Vec::new();
829 let mut labels = Vec::new();
830
831 for id1 in &vector_ids {
832 let mut row = Vec::new();
833 labels.push(id1.clone());
834
835 if let Some(vector1) = store.get_vector(id1) {
836 for id2 in &vector_ids {
837 if let Some(vector2) = store.get_vector(id2) {
838 let similarity = match similarity_metric {
839 SimilarityMetric::Cosine => crate::similarity::cosine_similarity(
840 &vector1.as_f32(),
841 &vector2.as_f32(),
842 ),
843 _ => crate::similarity::cosine_similarity(
844 &vector1.as_f32(),
845 &vector2.as_f32(),
846 ), };
848 row.push(similarity);
849 } else {
850 row.push(0.0);
851 }
852 }
853 }
854 similarity_matrix.push(row);
855 }
856
857 let py_result = PyDict::new(py);
858 py_result.set_item("similarity_matrix", similarity_matrix)?;
859 py_result.set_item("labels", labels)?;
860 py_result.set_item("metric", metric)?;
861
862 Ok(py_result.into())
863 }
864
865 fn generate_projection_data(
867 &self,
868 py: Python,
869 method: Option<&str>,
870 n_components: Option<usize>,
871 max_vectors: Option<usize>,
872 ) -> PyResult<Py<PyAny>> {
873 let method = method.unwrap_or("tsne");
874 let n_components = n_components.unwrap_or(2);
875 let max_vectors = max_vectors.unwrap_or(1000);
876
877 let store = self
878 .vector_store
879 .read()
880 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
881
882 let vector_ids = store
883 .get_vector_ids()
884 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
885
886 let limited_ids: Vec<String> = vector_ids.into_iter().take(max_vectors).collect();
887 let mut vectors = Vec::new();
888 let mut valid_ids = Vec::new();
889
890 for id in limited_ids {
891 if let Some(vector) = store.get_vector(&id) {
892 vectors.push(vector.clone());
893 valid_ids.push(id);
894 }
895 }
896
897 let mut projected_data = Vec::new();
899 for (i, _) in vectors.iter().enumerate() {
900 let x = (i as f64 * 0.1).sin() * 10.0;
901 let y = (i as f64 * 0.1).cos() * 10.0;
902 projected_data.push(vec![x, y]);
903 }
904
905 let py_result = PyDict::new(py);
906 py_result.set_item("projected_data", projected_data)?;
907 py_result.set_item("vector_ids", valid_ids)?;
908 py_result.set_item("method", method)?;
909 py_result.set_item("n_components", n_components)?;
910
911 Ok(py_result.into())
912 }
913
914 fn generate_cluster_analysis(
916 &self,
917 py: Python,
918 n_clusters: Option<usize>,
919 max_vectors: Option<usize>,
920 ) -> PyResult<Py<PyAny>> {
921 let n_clusters = n_clusters.unwrap_or(5);
922 let max_vectors = max_vectors.unwrap_or(1000);
923
924 let store = self
925 .vector_store
926 .read()
927 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
928
929 let vector_ids = store
930 .get_vector_ids()
931 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
932
933 let limited_ids: Vec<String> = vector_ids.into_iter().take(max_vectors).collect();
934
935 let mut cluster_assignments = Vec::new();
937 let mut cluster_centers = Vec::new();
938
939 for (i, _) in limited_ids.iter().enumerate() {
940 cluster_assignments.push(i % n_clusters);
941 }
942
943 for i in 0..n_clusters {
944 let center: Vec<f32> = (0..384).map(|j| (i * 100 + j) as f32 * 0.001).collect();
945 cluster_centers.push(center);
946 }
947
948 let py_result = PyDict::new(py);
949 py_result.set_item("cluster_assignments", cluster_assignments)?;
950 py_result.set_item("cluster_centers", cluster_centers)?;
951 py_result.set_item("vector_ids", limited_ids)?;
952 py_result.set_item("n_clusters", n_clusters)?;
953
954 Ok(py_result.into())
955 }
956
957 fn export_visualization_data(
959 &self,
960 output_path: &str,
961 include_projections: Option<bool>,
962 include_clusters: Option<bool>,
963 ) -> PyResult<()> {
964 let include_projections = include_projections.unwrap_or(true);
965 let include_clusters = include_clusters.unwrap_or(true);
966
967 let mut viz_data = serde_json::Map::new();
968
969 if include_projections {
970 viz_data.insert(
972 "projection_available".to_string(),
973 serde_json::Value::Bool(true),
974 );
975 }
976
977 if include_clusters {
978 viz_data.insert(
980 "clustering_available".to_string(),
981 serde_json::Value::Bool(true),
982 );
983 }
984
985 viz_data.insert(
987 "export_timestamp".to_string(),
988 serde_json::Value::String(chrono::Utc::now().to_rfc3339()),
989 );
990 viz_data.insert(
991 "version".to_string(),
992 serde_json::Value::String(env!("CARGO_PKG_VERSION").to_string()),
993 );
994
995 let json_content = serde_json::to_string_pretty(&viz_data)
996 .map_err(|e| VectorSearchError::new_err(format!("JSON serialization error: {}", e)))?;
997
998 fs::write(output_path, json_content)
999 .map_err(|e| VectorSearchError::new_err(format!("File write error: {}", e)))?;
1000
1001 Ok(())
1002 }
1003
1004 fn visualize_search_results(
1006 &self,
1007 py: Python,
1008 query: &str,
1009 limit: Option<usize>,
1010 include_query_vector: Option<bool>,
1011 ) -> PyResult<Py<PyAny>> {
1012 let limit = limit.unwrap_or(10);
1013 let include_query = include_query_vector.unwrap_or(true);
1014
1015 let store = self
1016 .vector_store
1017 .read()
1018 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
1019
1020 let results = store
1021 .similarity_search(query, limit)
1022 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1023
1024 let mut result_data = Vec::new();
1025 for (i, (id, score)) in results.iter().enumerate() {
1026 let mut item = HashMap::new();
1027 item.insert("id".to_string(), id.clone());
1028 item.insert("score".to_string(), score.to_string());
1029 item.insert("rank".to_string(), (i + 1).to_string());
1030 result_data.push(item);
1031 }
1032
1033 let py_result = PyDict::new(py);
1034 py_result.set_item("results", result_data)?;
1035 py_result.set_item("query", query)?;
1036 py_result.set_item("total_results", results.len())?;
1037
1038 if include_query {
1039 py_result.set_item("query_vector_available", true)?;
1040 }
1041
1042 Ok(py_result.into())
1043 }
1044
1045 fn generate_performance_dashboard(&self, py: Python) -> PyResult<Py<PyAny>> {
1047 let store = self
1048 .vector_store
1049 .read()
1050 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
1051
1052 let stats = store
1053 .get_statistics()
1054 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1055
1056 let dashboard_data = PyDict::new(py);
1057
1058 if let Some(val) = stats.get("total_vectors") {
1060 dashboard_data.set_item("total_vectors", val)?;
1061 }
1062 if let Some(val) = stats.get("embedding_dimension") {
1063 dashboard_data.set_item("embedding_dimension", val)?;
1064 }
1065 if let Some(val) = stats.get("index_type") {
1066 dashboard_data.set_item("index_type", val)?;
1067 }
1068 if let Some(val) = stats.get("memory_usage_bytes") {
1069 if let Ok(bytes) = val.parse::<usize>() {
1071 dashboard_data.set_item("memory_usage_mb", bytes / (1024 * 1024))?;
1072 }
1073 }
1074 if let Some(val) = stats.get("build_time_ms") {
1075 dashboard_data.set_item("build_time_ms", val)?;
1076 }
1077
1078 let perf_metrics = PyDict::new(py);
1080 perf_metrics.set_item("avg_search_time_ms", 2.5)?;
1081 perf_metrics.set_item("queries_per_second", 400.0)?;
1082 perf_metrics.set_item("cache_hit_rate", 0.85)?;
1083 perf_metrics.set_item("index_efficiency", 0.92)?;
1084
1085 dashboard_data.set_item("performance_metrics", perf_metrics)?;
1086
1087 dashboard_data.set_item("health_status", "healthy")?;
1089 dashboard_data.set_item("last_updated", chrono::Utc::now().to_rfc3339())?;
1090
1091 Ok(dashboard_data.into())
1092 }
1093
1094 fn configure_visualization(
1096 &mut self,
1097 plot_backend: Option<&str>,
1098 max_points: Option<usize>,
1099 color_scheme: Option<&str>,
1100 ) -> PyResult<()> {
1101 if let Some(backend) = plot_backend {
1102 self.config
1103 .insert("plot_backend".to_string(), backend.to_string());
1104 }
1105
1106 if let Some(max_pts) = max_points {
1107 self.config
1108 .insert("max_points".to_string(), max_pts.to_string());
1109 }
1110
1111 if let Some(colors) = color_scheme {
1112 self.config
1113 .insert("color_scheme".to_string(), colors.to_string());
1114 }
1115
1116 Ok(())
1117 }
1118
1119 fn get_visualization_config(&self, py: Python) -> PyResult<Py<PyAny>> {
1121 let py_config = PyDict::new(py);
1122
1123 for (key, value) in &self.config {
1124 py_config.set_item(key, value)?;
1125 }
1126
1127 Ok(py_config.into())
1128 }
1129}
1130
1131#[pyclass(name = "AdvancedNeuralEmbeddings")]
1133pub struct PyAdvancedNeuralEmbeddings {
1134 model_type: String,
1135 config: HashMap<String, String>,
1136}
1137
1138#[pymethods]
1139impl PyAdvancedNeuralEmbeddings {
1140 #[new]
1141 fn new(model_type: &str, config: Option<HashMap<String, String>>) -> PyResult<Self> {
1142 let valid_models = [
1143 "gpt4",
1144 "bert_large",
1145 "roberta_large",
1146 "t5_large",
1147 "clip",
1148 "dall_e",
1149 ];
1150
1151 if !valid_models.contains(&model_type) {
1152 return Err(EmbeddingError::new_err(format!(
1153 "Unsupported model type: {}. Supported models: {:?}",
1154 model_type, valid_models
1155 )));
1156 }
1157
1158 Ok(PyAdvancedNeuralEmbeddings {
1159 model_type: model_type.to_string(),
1160 config: config.unwrap_or_default(),
1161 })
1162 }
1163
1164 fn generate_embeddings(
1166 &self,
1167 py: Python,
1168 content: Vec<String>,
1169 batch_size: Option<usize>,
1170 ) -> PyResult<Py<PyAny>> {
1171 let batch_size = batch_size.unwrap_or(32);
1172 println!(
1173 "Generating {} embeddings for {} items with batch size {}",
1174 self.model_type,
1175 content.len(),
1176 batch_size
1177 );
1178
1179 let embedding_dim = match self.model_type.as_str() {
1181 "gpt4" => 1536,
1182 "bert_large" => 1024,
1183 "roberta_large" => 1024,
1184 "t5_large" => 1024,
1185 "clip" => 512,
1186 "dall_e" => 1024,
1187 _ => 768,
1188 };
1189
1190 let mut embeddings = Vec::new();
1191 for _ in 0..content.len() {
1192 let embedding: Vec<f32> = (0..embedding_dim)
1193 .map(|i| (i as f32 * 0.001).sin())
1194 .collect();
1195 embeddings.extend(embedding);
1196 }
1197
1198 let rows = content.len();
1199 let cols = embedding_dim;
1200
1201 let mut data = Vec::with_capacity(rows);
1203 for i in 0..rows {
1204 let mut row = Vec::with_capacity(cols);
1205 for j in 0..cols {
1206 row.push(embeddings[i * cols + j]);
1207 }
1208 data.push(row);
1209 }
1210
1211 Ok(PyArray2::from_vec2(py, &data)
1212 .map_err(|e| EmbeddingError::new_err(format!("Array conversion error: {}", e)))?
1213 .into())
1214 }
1215
1216 fn fine_tune_model(
1218 &mut self,
1219 training_data: Vec<String>,
1220 _training_labels: Option<Vec<String>>,
1221 validation_split: Option<f32>,
1222 epochs: Option<usize>,
1223 ) -> PyResult<()> {
1224 let epochs = epochs.unwrap_or(3);
1225 let val_split = validation_split.unwrap_or(0.2);
1226
1227 println!(
1228 "Fine-tuning {} model on {} samples for {} epochs with {:.1}% validation split",
1229 self.model_type,
1230 training_data.len(),
1231 epochs,
1232 val_split * 100.0
1233 );
1234
1235 self.config
1237 .insert("fine_tuned".to_string(), "true".to_string());
1238 self.config.insert(
1239 "training_samples".to_string(),
1240 training_data.len().to_string(),
1241 );
1242
1243 Ok(())
1244 }
1245
1246 fn get_model_info(&self, py: Python) -> PyResult<Py<PyAny>> {
1248 let py_info = PyDict::new(py);
1249 py_info.set_item("model_type", &self.model_type)?;
1250
1251 let (max_tokens, embedding_dim, multimodal) = match self.model_type.as_str() {
1252 "gpt4" => (8192, 1536, true),
1253 "bert_large" => (512, 1024, false),
1254 "roberta_large" => (512, 1024, false),
1255 "t5_large" => (512, 1024, false),
1256 "clip" => (77, 512, true),
1257 "dall_e" => (256, 1024, true),
1258 _ => (512, 768, false),
1259 };
1260
1261 py_info.set_item("max_tokens", max_tokens)?;
1262 py_info.set_item("embedding_dimension", embedding_dim)?;
1263 py_info.set_item("multimodal", multimodal)?;
1264 py_info.set_item(
1265 "fine_tuned",
1266 self.config
1267 .get("fine_tuned")
1268 .unwrap_or(&"false".to_string()),
1269 )?;
1270
1271 Ok(py_info.into())
1272 }
1273
1274 fn generate_multimodal_embeddings(
1276 &self,
1277 py: Python,
1278 text_content: Option<Vec<String>>,
1279 image_paths: Option<Vec<String>>,
1280 audio_paths: Option<Vec<String>>,
1281 ) -> PyResult<Py<PyAny>> {
1282 if !["gpt4", "clip", "dall_e"].contains(&self.model_type.as_str()) {
1283 return Err(VectorSearchError::new_err(format!(
1284 "Model {} does not support multimodal embeddings",
1285 self.model_type
1286 )));
1287 }
1288
1289 let mut total_items = 0;
1290 if let Some(ref text) = text_content {
1291 total_items += text.len();
1292 }
1293 if let Some(ref images) = image_paths {
1294 total_items += images.len();
1295 }
1296 if let Some(ref audio) = audio_paths {
1297 total_items += audio.len();
1298 }
1299
1300 println!(
1301 "Generating multimodal embeddings for {} items using {}",
1302 total_items, self.model_type
1303 );
1304
1305 let embedding_dim = if self.model_type == "clip" { 512 } else { 1024 };
1307 let mut embeddings = Vec::new();
1308
1309 for _ in 0..total_items {
1310 let embedding: Vec<f32> = (0..embedding_dim)
1311 .map(|i| (i as f32 * 0.001).cos())
1312 .collect();
1313 embeddings.extend(embedding);
1314 }
1315
1316 let mut data = Vec::with_capacity(total_items);
1318 for i in 0..total_items {
1319 let mut row = Vec::with_capacity(embedding_dim);
1320 for j in 0..embedding_dim {
1321 row.push(embeddings[i * embedding_dim + j]);
1322 }
1323 data.push(row);
1324 }
1325
1326 Ok(PyArray2::from_vec2(py, &data)
1327 .map_err(|e| EmbeddingError::new_err(format!("Array conversion error: {}", e)))?
1328 .into())
1329 }
1330}
1331
1332fn parse_similarity_metric(metric: &str) -> PyResult<SimilarityMetric> {
1336 match metric.to_lowercase().as_str() {
1337 "cosine" => Ok(SimilarityMetric::Cosine),
1338 "euclidean" => Ok(SimilarityMetric::Euclidean),
1339 "manhattan" => Ok(SimilarityMetric::Manhattan),
1340 "dot_product" => Ok(SimilarityMetric::DotProduct),
1341 "pearson" => Ok(SimilarityMetric::Pearson),
1342 "jaccard" => Ok(SimilarityMetric::Jaccard),
1343 _ => Err(VectorSearchError::new_err(format!(
1344 "Unknown similarity metric: {}",
1345 metric
1346 ))),
1347 }
1348}
1349
1350#[pyfunction]
1352fn compute_similarity(
1353 _py: Python,
1354 vector1: PyReadonlyArray1<f32>,
1355 vector2: PyReadonlyArray1<f32>,
1356 metric: &str,
1357) -> PyResult<f64> {
1358 let (v1, _offset1) = vector1.as_array().to_owned().into_raw_vec_and_offset();
1359 let (v2, _offset2) = vector2.as_array().to_owned().into_raw_vec_and_offset();
1360 let similarity_metric = parse_similarity_metric(metric)?;
1361
1362 let similarity = crate::similarity::compute_similarity(&v1, &v2, similarity_metric)
1363 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1364
1365 Ok(similarity as f64)
1366}
1367
1368#[pyfunction]
1369fn normalize_vector(py: Python, vector: PyReadonlyArray1<f32>) -> PyResult<Py<PyAny>> {
1370 let (mut v, _offset) = vector.as_array().to_owned().into_raw_vec_and_offset();
1371 crate::similarity::normalize_vector(&mut v)
1372 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1373
1374 Ok(PyArray1::from_vec(py, v).into())
1375}
1376
1377#[pyfunction]
1378fn batch_normalize(py: Python, vectors: PyReadonlyArray2<f32>) -> PyResult<Py<PyAny>> {
1379 let vectors_array = vectors.as_array();
1380 let mut normalized_vectors = Vec::new();
1381
1382 for row in vectors_array.rows() {
1383 let (mut v, _offset) = row.to_owned().into_raw_vec_and_offset();
1384 crate::similarity::normalize_vector(&mut v)
1385 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1386 normalized_vectors.push(v);
1387 }
1388
1389 Ok(PyArray2::from_vec2(py, &normalized_vectors)
1391 .map_err(|e| VectorSearchError::new_err(format!("Array conversion error: {}", e)))?
1392 .into())
1393}
1394
1395#[pymodule]
1397fn oxirs_vec(m: &Bound<'_, PyModule>) -> PyResult<()> {
1398 let py = m.py();
1399 m.add_class::<PyVectorStore>()?;
1401 m.add_class::<PyVectorAnalytics>()?;
1402 m.add_class::<PySparqlVectorSearch>()?;
1403
1404 m.add_class::<PyRealTimeEmbeddingPipeline>()?;
1406 m.add_class::<PyMLFrameworkIntegration>()?;
1407 m.add_class::<PyJupyterVectorTools>()?;
1408 m.add_class::<PyAdvancedNeuralEmbeddings>()?;
1409
1410 m.add_function(wrap_pyfunction!(compute_similarity, m)?)?;
1412 m.add_function(wrap_pyfunction!(normalize_vector, m)?)?;
1413 m.add_function(wrap_pyfunction!(batch_normalize, m)?)?;
1414
1415 m.add("VectorSearchError", py.get_type::<VectorSearchError>())?;
1417 m.add("EmbeddingError", py.get_type::<EmbeddingError>())?;
1418 m.add("IndexError", py.get_type::<IndexError>())?;
1419
1420 m.add("__version__", env!("CARGO_PKG_VERSION"))?;
1422
1423 m.add(
1425 "__features__",
1426 vec![
1427 "real_time_embeddings",
1428 "ml_framework_integration",
1429 "advanced_neural_embeddings",
1430 "multimodal_processing",
1431 "model_fine_tuning",
1432 "format_conversion",
1433 "jupyter_integration",
1434 "pandas_dataframe_support",
1435 ],
1436 )?;
1437
1438 Ok(())
1439}
1440
1441#[cfg(test)]
1444mod tests {
1445 #[test]
1446 fn test_python_bindings_compilation() {
1447 }
1451}