1use crate::VectorIndex;
15use anyhow::{Error as AnyhowError, Result};
16use serde::{Deserialize, Serialize};
17use std::collections::HashMap;
18use std::sync::{Arc, RwLock};
19use std::time::{Duration, Instant};
20use tracing::{debug, span, Level};
21
22#[derive(Debug, Clone, Serialize, Deserialize)]
24pub struct VectorQueryConfig {
25 pub enable_vector_planning: bool,
27 pub cost_model: VectorCostModel,
29 pub optimization_strategies: Vec<OptimizationStrategy>,
31 pub join_optimization: JoinOptimizationConfig,
33 pub streaming_config: StreamingConfig,
35 pub monitoring: QueryMonitoringConfig,
37}
38
39#[derive(Debug, Clone, Serialize, Deserialize)]
41pub struct VectorCostModel {
42 pub base_cost: f64,
44 pub scaling_factors: CostScalingFactors,
46 pub index_costs: HashMap<String, f64>,
48 pub hardware_adjustments: HardwareAdjustments,
50}
51
52#[derive(Debug, Clone, Serialize, Deserialize)]
54pub struct CostScalingFactors {
55 pub search_scale: f64,
57 pub build_scale: f64,
59 pub add_scale: f64,
61 pub cross_modal_scale: f64,
63 pub similarity_scale: f64,
65}
66
67#[derive(Debug, Clone, Serialize, Deserialize)]
69pub struct HardwareAdjustments {
70 pub cpu_factor: f64,
72 pub memory_factor: f64,
74 pub gpu_factor: f64,
76 pub network_factor: f64,
78}
79
80#[derive(Debug, Clone, Serialize, Deserialize)]
82pub enum OptimizationStrategy {
83 VectorFilterPushdown,
85 VectorJoinReordering,
87 VectorIndexSelection,
89 VectorBatching,
91 VectorCaching,
93 VectorParallelization,
95 AdaptiveVectorStrategy,
97}
98
99#[derive(Debug, Clone, Serialize, Deserialize)]
101pub struct JoinOptimizationConfig {
102 pub enable_vector_join_ordering: bool,
104 pub join_algorithms: Vec<VectorJoinAlgorithm>,
106 pub cost_threshold: f64,
108 pub enable_caching: bool,
110}
111
112#[derive(Debug, Clone, Serialize, Deserialize)]
114pub enum VectorJoinAlgorithm {
115 VectorNestedLoop,
117 VectorHashJoin,
119 VectorSortMerge,
121 VectorIndexJoin,
123 SimilarityJoin,
125}
126
127#[derive(Debug, Clone, Serialize, Deserialize)]
129pub struct StreamingConfig {
130 pub enable_streaming: bool,
132 pub buffer_size: usize,
134 pub timeout_ms: u64,
136 pub enable_backpressure: bool,
138}
139
140#[derive(Debug, Clone, Serialize, Deserialize)]
142pub struct QueryMonitoringConfig {
143 pub enable_monitoring: bool,
145 pub monitor_vector_ops: bool,
147 pub monitor_joins: bool,
149 pub monitor_memory: bool,
151 pub metrics_format: MetricsFormat,
153}
154
155#[derive(Debug, Clone, Serialize, Deserialize)]
157pub enum MetricsFormat {
158 Prometheus,
159 JSON,
160 CSV,
161 Custom(String),
162}
163
164impl Default for VectorQueryConfig {
165 fn default() -> Self {
166 Self {
167 enable_vector_planning: true,
168 cost_model: VectorCostModel {
169 base_cost: 1.0,
170 scaling_factors: CostScalingFactors {
171 search_scale: 1.5,
172 build_scale: 10.0,
173 add_scale: 0.5,
174 cross_modal_scale: 2.0,
175 similarity_scale: 1.0,
176 },
177 index_costs: {
178 let mut costs = HashMap::new();
179 costs.insert("hnsw".to_string(), 1.2);
180 costs.insert("ivf".to_string(), 1.0);
181 costs.insert("flat".to_string(), 2.0);
182 costs
183 },
184 hardware_adjustments: HardwareAdjustments {
185 cpu_factor: 1.0,
186 memory_factor: 1.0,
187 gpu_factor: 0.3, network_factor: 1.5,
189 },
190 },
191 optimization_strategies: vec![
192 OptimizationStrategy::VectorFilterPushdown,
193 OptimizationStrategy::VectorJoinReordering,
194 OptimizationStrategy::VectorIndexSelection,
195 OptimizationStrategy::VectorBatching,
196 ],
197 join_optimization: JoinOptimizationConfig {
198 enable_vector_join_ordering: true,
199 join_algorithms: vec![
200 VectorJoinAlgorithm::VectorIndexJoin,
201 VectorJoinAlgorithm::SimilarityJoin,
202 VectorJoinAlgorithm::VectorHashJoin,
203 ],
204 cost_threshold: 1000.0,
205 enable_caching: true,
206 },
207 streaming_config: StreamingConfig {
208 enable_streaming: true,
209 buffer_size: 1000,
210 timeout_ms: 30000,
211 enable_backpressure: true,
212 },
213 monitoring: QueryMonitoringConfig {
214 enable_monitoring: true,
215 monitor_vector_ops: true,
216 monitor_joins: true,
217 monitor_memory: true,
218 metrics_format: MetricsFormat::JSON,
219 },
220 }
221 }
222}
223
224pub struct VectorQueryPlanner {
226 config: VectorQueryConfig,
228 vector_indices: Arc<RwLock<HashMap<String, Arc<dyn VectorIndex>>>>,
230 query_stats: Arc<RwLock<QueryStatistics>>,
232 optimization_cache: Arc<RwLock<HashMap<String, OptimizationPlan>>>,
234 performance_monitor: Arc<RwLock<VectorQueryPerformance>>,
236}
237
238#[derive(Debug, Clone, Default)]
240pub struct QueryStatistics {
241 pub total_queries: usize,
243 pub vector_op_counts: HashMap<String, usize>,
245 pub avg_execution_times: HashMap<String, Duration>,
247 pub join_stats: JoinStatistics,
249 pub index_usage: HashMap<String, IndexUsageStats>,
251}
252
253#[derive(Debug, Clone, Default)]
255pub struct JoinStatistics {
256 pub total_joins: usize,
258 pub algorithm_usage: HashMap<String, usize>,
260 pub avg_cardinality: f64,
262 pub selectivity_estimates: HashMap<String, f64>,
264}
265
266#[derive(Debug, Clone, Default)]
268pub struct IndexUsageStats {
269 pub usage_count: usize,
271 pub avg_search_time: Duration,
273 pub avg_result_count: f64,
275 pub cache_hit_rate: f32,
277}
278
279#[derive(Debug, Clone, Default)]
281pub struct VectorQueryPerformance {
282 pub execution_metrics: ExecutionMetrics,
284 pub resource_metrics: ResourceMetrics,
286 pub quality_metrics: QualityMetrics,
288 pub trend_analysis: TrendAnalysis,
290}
291
292#[derive(Debug, Clone, Default)]
294pub struct ExecutionMetrics {
295 pub total_time: Duration,
297 pub vector_op_time: Duration,
299 pub join_time: Duration,
301 pub planning_time: Duration,
303 pub materialization_time: Duration,
305}
306
307#[derive(Debug, Clone, Default)]
309pub struct ResourceMetrics {
310 pub cpu_utilization: f32,
312 pub memory_usage: usize,
314 pub gpu_utilization: f32,
316 pub network_io: usize,
318 pub disk_io: usize,
320}
321
322#[derive(Debug, Clone, Default)]
324pub struct QualityMetrics {
325 pub accuracy_score: f32,
327 pub completeness_score: f32,
329 pub relevance_score: f32,
331 pub confidence_score: f32,
333}
334
335#[derive(Debug, Clone, Default)]
337pub struct TrendAnalysis {
338 pub performance_trend: Vec<(Instant, f64)>,
340 pub resource_trend: Vec<(Instant, f64)>,
342 pub quality_trend: Vec<(Instant, f64)>,
344 pub optimization_effectiveness: f64,
346}
347
348#[derive(Debug, Clone)]
350pub struct OptimizationPlan {
351 pub plan_id: String,
353 pub steps: Vec<OptimizationStep>,
355 pub estimated_cost: f64,
357 pub estimated_time: Duration,
359 pub expected_quality: f32,
361 pub metadata: HashMap<String, String>,
363}
364
365#[derive(Debug, Clone)]
367pub struct OptimizationStep {
368 pub step_type: OptimizationStepType,
370 pub parameters: HashMap<String, serde_json::Value>,
372 pub cost: f64,
374 pub dependencies: Vec<String>,
376}
377
378#[derive(Debug, Clone)]
380pub enum OptimizationStepType {
381 IndexSelection {
383 index_type: String,
384 selection_criteria: SelectionCriteria,
385 },
386 FilterPushdown {
388 filter_type: FilterType,
389 pushdown_level: usize,
390 },
391 JoinReordering {
393 original_order: Vec<String>,
394 optimized_order: Vec<String>,
395 },
396 VectorBatching {
398 batch_size: usize,
399 batching_strategy: BatchingStrategy,
400 },
401 CachingSetup {
403 cache_type: CacheType,
404 cache_size: usize,
405 },
406 ParallelExecution {
408 parallelism_level: usize,
409 execution_strategy: ParallelStrategy,
410 },
411}
412
413#[derive(Debug, Clone)]
415pub enum SelectionCriteria {
416 Performance,
417 Memory,
418 Accuracy,
419 Hybrid(Vec<f32>), }
421
422#[derive(Debug, Clone)]
424pub enum FilterType {
425 SimilarityFilter,
426 ThresholdFilter,
427 RangeFilter,
428 CompositeFilter,
429}
430
431#[derive(Debug, Clone)]
433pub enum BatchingStrategy {
434 SizeBased,
435 TimeBased,
436 Adaptive,
437 ContentBased,
438}
439
440#[derive(Debug, Clone)]
442pub enum CacheType {
443 VectorCache,
444 ResultCache,
445 IndexCache,
446 QueryCache,
447}
448
449#[derive(Debug, Clone)]
451pub enum ParallelStrategy {
452 TaskParallel,
453 DataParallel,
454 PipelineParallel,
455 Hybrid,
456}
457
458pub struct VectorFunctionRegistry {
460 functions: Arc<RwLock<HashMap<String, Arc<dyn VectorFunction>>>>,
462 function_metadata: Arc<RwLock<HashMap<String, FunctionMetadata>>>,
464 type_checker: Arc<VectorTypeChecker>,
466 performance_monitor: Arc<RwLock<FunctionPerformanceMonitor>>,
468}
469
470impl std::fmt::Debug for VectorFunctionRegistry {
471 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
472 f.debug_struct("VectorFunctionRegistry")
473 .field("functions", &"<HashMap<String, Arc<dyn VectorFunction>>>")
474 .field("function_metadata", &self.function_metadata)
475 .field("type_checker", &"<Arc<VectorTypeChecker>>")
476 .field("performance_monitor", &self.performance_monitor)
477 .finish()
478 }
479}
480
481pub trait VectorFunction: Send + Sync {
483 fn name(&self) -> &str;
485
486 fn signature(&self) -> FunctionSignature;
488
489 fn execute(
491 &self,
492 args: &[FunctionArgument],
493 context: &ExecutionContext,
494 ) -> Result<FunctionResult>;
495
496 fn optimization_hints(&self) -> Vec<OptimizationHint>;
498
499 fn estimate_cost(&self, args: &[FunctionArgument]) -> f64;
501}
502
503#[derive(Debug, Clone)]
505pub struct FunctionSignature {
506 pub parameters: Vec<ParameterType>,
508 pub return_type: ReturnType,
510 pub variadic: bool,
512 pub required_params: usize,
514}
515
516#[derive(Debug, Clone)]
518pub enum ParameterType {
519 Vector,
520 Scalar(ScalarType),
521 Graph,
522 URI,
523 Literal(LiteralType),
524 Variable,
525}
526
527#[derive(Debug, Clone)]
529pub enum ScalarType {
530 Integer,
531 Float,
532 String,
533 Boolean,
534}
535
536#[derive(Debug, Clone)]
538pub enum LiteralType {
539 String,
540 Number,
541 Boolean,
542 DateTime,
543 Custom(String),
544}
545
546#[derive(Debug, Clone)]
548pub enum ReturnType {
549 Vector,
550 Scalar(ScalarType),
551 ResultSet,
552 Boolean,
553 Void,
554}
555
556#[derive(Debug, Clone)]
558pub enum FunctionArgument {
559 Vector(Vec<f32>),
560 Scalar(ScalarValue),
561 URI(String),
562 Literal(String, Option<String>), Variable(String),
564}
565
566#[derive(Debug, Clone)]
568pub enum ScalarValue {
569 Integer(i64),
570 Float(f64),
571 String(String),
572 Boolean(bool),
573}
574
575pub struct ExecutionContext {
577 pub vector_indices: Arc<RwLock<HashMap<String, Arc<dyn VectorIndex>>>>,
579 pub query_context: QueryContext,
581 pub performance_monitor: Arc<RwLock<VectorQueryPerformance>>,
583 pub config: VectorQueryConfig,
585}
586
587impl std::fmt::Debug for ExecutionContext {
588 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
589 f.debug_struct("ExecutionContext")
590 .field("vector_indices", &"<HashMap<String, Arc<dyn VectorIndex>>>")
591 .field("query_context", &self.query_context)
592 .field("performance_monitor", &self.performance_monitor)
593 .field("config", &self.config)
594 .finish()
595 }
596}
597
598#[derive(Debug, Clone)]
600pub struct QueryContext {
601 pub query_id: String,
603 pub timestamp: Instant,
605 pub bindings: HashMap<String, String>,
607 pub dataset: Option<String>,
609 pub metadata: HashMap<String, String>,
611}
612
613#[derive(Debug, Clone)]
615pub enum FunctionResult {
616 Vector(Vec<f32>),
617 Scalar(ScalarValue),
618 ResultSet(Vec<HashMap<String, String>>),
619 Boolean(bool),
620 Void,
621}
622
623#[derive(Debug, Clone)]
625pub struct FunctionMetadata {
626 pub description: String,
628 pub author: String,
630 pub version: String,
632 pub categories: Vec<String>,
634 pub performance_info: PerformanceInfo,
636}
637
638#[derive(Debug, Clone)]
640pub struct PerformanceInfo {
641 pub time_complexity: String,
643 pub space_complexity: String,
645 pub typical_time: Duration,
647 pub memory_usage: usize,
649}
650
651#[derive(Debug, Clone)]
653pub enum OptimizationHint {
654 PreferIndex(String),
656 Batchable,
658 Cacheable,
660 Parallelizable,
662 MemoryIntensive,
664 CpuIntensive,
666 GpuAccelerable,
668}
669
670#[derive(Debug)]
672pub struct VectorTypeChecker {
673 type_rules: HashMap<String, TypeRule>,
675 conversion_rules: HashMap<(String, String), ConversionRule>,
677}
678
679#[derive(Debug, Clone)]
681pub struct TypeRule {
682 pub compatible_types: Vec<String>,
684 pub conversion_costs: HashMap<String, f64>,
686 pub validator: Option<String>,
688}
689
690#[derive(Debug, Clone)]
692pub struct ConversionRule {
693 pub source_type: String,
695 pub target_type: String,
697 pub cost: f64,
699 pub lossy: bool,
701 pub converter: String,
703}
704
705#[derive(Debug, Default)]
707pub struct FunctionPerformanceMonitor {
708 pub call_counts: HashMap<String, usize>,
710 pub execution_times: HashMap<String, Vec<Duration>>,
712 pub memory_usage: HashMap<String, Vec<usize>>,
714 pub error_rates: HashMap<String, f32>,
716 pub trends: HashMap<String, Vec<(Instant, f64)>>,
718}
719
720impl VectorQueryPlanner {
721 pub fn new(config: VectorQueryConfig) -> Self {
723 Self {
724 config,
725 vector_indices: Arc::new(RwLock::new(HashMap::new())),
726 query_stats: Arc::new(RwLock::new(QueryStatistics::default())),
727 optimization_cache: Arc::new(RwLock::new(HashMap::new())),
728 performance_monitor: Arc::new(RwLock::new(VectorQueryPerformance::default())),
729 }
730 }
731
732 pub fn register_vector_index(&self, name: String, index: Arc<dyn VectorIndex>) -> Result<()> {
734 let mut indices = self.vector_indices.write().unwrap();
735 indices.insert(name, index);
736 Ok(())
737 }
738
739 pub fn create_optimization_plan(&self, query: &VectorQuery) -> Result<OptimizationPlan> {
741 let span = span!(Level::DEBUG, "create_optimization_plan");
742 let _enter = span.enter();
743
744 let plan_id = format!("plan_{}", uuid::Uuid::new_v4());
746
747 let optimization_opportunities = self.analyze_query(query)?;
749
750 let mut steps = Vec::new();
752 for opportunity in optimization_opportunities {
753 let step = self.generate_optimization_step(opportunity, query)?;
754 steps.push(step);
755 }
756
757 let estimated_cost = steps.iter().map(|s| s.cost).sum();
759 let estimated_time = self.estimate_execution_time(&steps, query)?;
760
761 let expected_quality = self.estimate_quality_score(&steps, query)?;
763
764 let plan = OptimizationPlan {
765 plan_id: plan_id.clone(),
766 steps,
767 estimated_cost,
768 estimated_time,
769 expected_quality,
770 metadata: {
771 let mut metadata = HashMap::new();
772 metadata.insert("created_at".to_string(), chrono::Utc::now().to_rfc3339());
773 metadata.insert("query_type".to_string(), query.query_type.clone());
774 metadata
775 },
776 };
777
778 {
780 let mut cache = self.optimization_cache.write().unwrap();
781 cache.insert(plan_id, plan.clone());
782 }
783
784 debug!("Created optimization plan with {} steps", plan.steps.len());
785 Ok(plan)
786 }
787
788 fn analyze_query(&self, query: &VectorQuery) -> Result<Vec<OptimizationOpportunity>> {
790 let mut opportunities = Vec::new();
791
792 if query.has_vector_filters() {
794 opportunities.push(OptimizationOpportunity::FilterPushdown);
795 }
796
797 if query.has_joins() && query.join_count() > 1 {
799 opportunities.push(OptimizationOpportunity::JoinReordering);
800 }
801
802 if query.has_vector_operations() {
804 opportunities.push(OptimizationOpportunity::IndexSelection);
805 }
806
807 if query.has_multiple_similar_operations() {
809 opportunities.push(OptimizationOpportunity::Batching);
810 }
811
812 if query.has_repeated_subqueries() {
814 opportunities.push(OptimizationOpportunity::Caching);
815 }
816
817 Ok(opportunities)
818 }
819
820 fn generate_optimization_step(
822 &self,
823 opportunity: OptimizationOpportunity,
824 query: &VectorQuery,
825 ) -> Result<OptimizationStep> {
826 match opportunity {
827 OptimizationOpportunity::FilterPushdown => Ok(OptimizationStep {
828 step_type: OptimizationStepType::FilterPushdown {
829 filter_type: FilterType::SimilarityFilter,
830 pushdown_level: 2,
831 },
832 parameters: HashMap::new(),
833 cost: self.estimate_filter_pushdown_cost(query),
834 dependencies: Vec::new(),
835 }),
836 OptimizationOpportunity::JoinReordering => {
837 let original_order = query.get_join_order();
838 let optimized_order = self.optimize_join_order(&original_order, query)?;
839
840 Ok(OptimizationStep {
841 step_type: OptimizationStepType::JoinReordering {
842 original_order,
843 optimized_order,
844 },
845 parameters: HashMap::new(),
846 cost: self.estimate_join_reorder_cost(query),
847 dependencies: Vec::new(),
848 })
849 }
850 OptimizationOpportunity::IndexSelection => {
851 let best_index = self.select_optimal_index(query)?;
852
853 Ok(OptimizationStep {
854 step_type: OptimizationStepType::IndexSelection {
855 index_type: best_index,
856 selection_criteria: SelectionCriteria::Hybrid(vec![0.4, 0.3, 0.3]), },
858 parameters: HashMap::new(),
859 cost: self.estimate_index_selection_cost(query),
860 dependencies: Vec::new(),
861 })
862 }
863 OptimizationOpportunity::Batching => Ok(OptimizationStep {
864 step_type: OptimizationStepType::VectorBatching {
865 batch_size: self.calculate_optimal_batch_size(query),
866 batching_strategy: BatchingStrategy::Adaptive,
867 },
868 parameters: HashMap::new(),
869 cost: self.estimate_batching_cost(query),
870 dependencies: Vec::new(),
871 }),
872 OptimizationOpportunity::Caching => Ok(OptimizationStep {
873 step_type: OptimizationStepType::CachingSetup {
874 cache_type: CacheType::ResultCache,
875 cache_size: 1000,
876 },
877 parameters: HashMap::new(),
878 cost: self.estimate_caching_cost(query),
879 dependencies: Vec::new(),
880 }),
881 }
882 }
883
884 fn estimate_execution_time(
886 &self,
887 steps: &[OptimizationStep],
888 query: &VectorQuery,
889 ) -> Result<Duration> {
890 let base_time = self.estimate_base_execution_time(query);
891 let optimization_factor = self.calculate_optimization_factor(steps);
892
893 Ok(Duration::from_secs_f64(
894 base_time.as_secs_f64() * optimization_factor,
895 ))
896 }
897
898 fn estimate_quality_score(
900 &self,
901 steps: &[OptimizationStep],
902 _query: &VectorQuery,
903 ) -> Result<f32> {
904 let base_quality = 0.8; let quality_improvement = steps
906 .iter()
907 .map(|step| self.estimate_step_quality_impact(step))
908 .sum::<f32>();
909
910 Ok((base_quality + quality_improvement).min(1.0))
911 }
912
913 fn estimate_filter_pushdown_cost(&self, _query: &VectorQuery) -> f64 {
915 10.0 }
917
918 fn estimate_join_reorder_cost(&self, _query: &VectorQuery) -> f64 {
919 20.0
920 }
921
922 fn estimate_index_selection_cost(&self, _query: &VectorQuery) -> f64 {
923 5.0
924 }
925
926 fn estimate_batching_cost(&self, _query: &VectorQuery) -> f64 {
927 15.0
928 }
929
930 fn estimate_caching_cost(&self, _query: &VectorQuery) -> f64 {
931 8.0
932 }
933
934 fn estimate_base_execution_time(&self, _query: &VectorQuery) -> Duration {
935 Duration::from_millis(100) }
937
938 fn calculate_optimization_factor(&self, _steps: &[OptimizationStep]) -> f64 {
939 0.7 }
941
942 fn estimate_step_quality_impact(&self, _step: &OptimizationStep) -> f32 {
943 0.05 }
945
946 fn optimize_join_order(
947 &self,
948 original_order: &[String],
949 _query: &VectorQuery,
950 ) -> Result<Vec<String>> {
951 let mut optimized = original_order.to_vec();
953 optimized.reverse(); Ok(optimized)
955 }
956
957 fn select_optimal_index(&self, _query: &VectorQuery) -> Result<String> {
958 Ok("hnsw".to_string()) }
961
962 fn calculate_optimal_batch_size(&self, _query: &VectorQuery) -> usize {
963 1000 }
965
966 pub fn update_statistics(
968 &self,
969 query: &VectorQuery,
970 execution_time: Duration,
971 _result_count: usize,
972 ) -> Result<()> {
973 let mut stats = self.query_stats.write().unwrap();
974
975 stats.total_queries += 1;
976
977 for op in &query.vector_operations {
979 *stats.vector_op_counts.entry(op.clone()).or_insert(0) += 1;
980 }
981
982 stats
984 .avg_execution_times
985 .insert(query.query_type.clone(), execution_time);
986
987 Ok(())
988 }
989
990 pub fn get_performance_metrics(&self) -> Result<VectorQueryPerformance> {
992 let performance = self.performance_monitor.read().unwrap();
993 Ok(performance.clone())
994 }
995}
996
997impl Default for VectorFunctionRegistry {
998 fn default() -> Self {
999 Self::new()
1000 }
1001}
1002
1003impl VectorFunctionRegistry {
1004 pub fn new() -> Self {
1006 Self {
1007 functions: Arc::new(RwLock::new(HashMap::new())),
1008 function_metadata: Arc::new(RwLock::new(HashMap::new())),
1009 type_checker: Arc::new(VectorTypeChecker::new()),
1010 performance_monitor: Arc::new(RwLock::new(FunctionPerformanceMonitor::default())),
1011 }
1012 }
1013
1014 pub fn register_function(
1016 &self,
1017 function: Arc<dyn VectorFunction>,
1018 metadata: FunctionMetadata,
1019 ) -> Result<()> {
1020 let name = function.name().to_string();
1021
1022 self.type_checker
1024 .validate_signature(&function.signature())?;
1025
1026 {
1028 let mut functions = self.functions.write().unwrap();
1029 functions.insert(name.clone(), function);
1030 }
1031
1032 {
1034 let mut meta = self.function_metadata.write().unwrap();
1035 meta.insert(name, metadata);
1036 }
1037
1038 Ok(())
1039 }
1040
1041 pub fn execute_function(
1043 &self,
1044 name: &str,
1045 args: &[FunctionArgument],
1046 context: &ExecutionContext,
1047 ) -> Result<FunctionResult> {
1048 let function = {
1049 let functions = self.functions.read().unwrap();
1050 functions
1051 .get(name)
1052 .ok_or_else(|| AnyhowError::msg(format!("Function not found: {name}")))?
1053 .clone()
1054 };
1055
1056 self.type_checker
1058 .check_arguments(&function.signature(), args)?;
1059
1060 let start_time = Instant::now();
1062 let result = function.execute(args, context)?;
1063 let execution_time = start_time.elapsed();
1064
1065 self.update_function_performance(name, execution_time)?;
1067
1068 Ok(result)
1069 }
1070
1071 fn update_function_performance(&self, name: &str, execution_time: Duration) -> Result<()> {
1073 let mut monitor = self.performance_monitor.write().unwrap();
1074
1075 *monitor.call_counts.entry(name.to_string()).or_insert(0) += 1;
1077
1078 monitor
1080 .execution_times
1081 .entry(name.to_string())
1082 .or_default()
1083 .push(execution_time);
1084
1085 monitor
1087 .trends
1088 .entry(name.to_string())
1089 .or_default()
1090 .push((Instant::now(), execution_time.as_secs_f64()));
1091
1092 Ok(())
1093 }
1094
1095 pub fn get_function_stats(&self, name: &str) -> Result<FunctionStats> {
1097 let monitor = self.performance_monitor.read().unwrap();
1098
1099 let call_count = monitor.call_counts.get(name).copied().unwrap_or(0);
1100 let execution_times = monitor
1101 .execution_times
1102 .get(name)
1103 .cloned()
1104 .unwrap_or_default();
1105
1106 let avg_time = if !execution_times.is_empty() {
1107 execution_times.iter().sum::<Duration>() / execution_times.len() as u32
1108 } else {
1109 Duration::ZERO
1110 };
1111
1112 Ok(FunctionStats {
1113 name: name.to_string(),
1114 call_count,
1115 avg_execution_time: avg_time,
1116 total_execution_time: execution_times.iter().sum(),
1117 error_rate: monitor.error_rates.get(name).copied().unwrap_or(0.0),
1118 })
1119 }
1120}
1121
1122impl Default for VectorTypeChecker {
1123 fn default() -> Self {
1124 Self::new()
1125 }
1126}
1127
1128impl VectorTypeChecker {
1129 pub fn new() -> Self {
1131 Self {
1132 type_rules: HashMap::new(),
1133 conversion_rules: HashMap::new(),
1134 }
1135 }
1136
1137 pub fn validate_signature(&self, _signature: &FunctionSignature) -> Result<()> {
1139 Ok(())
1141 }
1142
1143 pub fn check_arguments(
1145 &self,
1146 signature: &FunctionSignature,
1147 args: &[FunctionArgument],
1148 ) -> Result<()> {
1149 if args.len() < signature.required_params {
1150 return Err(AnyhowError::msg("Insufficient arguments"));
1151 }
1152
1153 if !signature.variadic && args.len() > signature.parameters.len() {
1154 return Err(AnyhowError::msg("Too many arguments"));
1155 }
1156
1157 for (i, arg) in args.iter().enumerate() {
1159 if i < signature.parameters.len() {
1160 self.check_argument_type(arg, &signature.parameters[i])?;
1161 }
1162 }
1163
1164 Ok(())
1165 }
1166
1167 fn check_argument_type(
1169 &self,
1170 arg: &FunctionArgument,
1171 expected_type: &ParameterType,
1172 ) -> Result<()> {
1173 match (arg, expected_type) {
1174 (FunctionArgument::Vector(_), ParameterType::Vector) => Ok(()),
1175 (FunctionArgument::Scalar(_), ParameterType::Scalar(_)) => Ok(()),
1176 (FunctionArgument::URI(_), ParameterType::URI) => Ok(()),
1177 (FunctionArgument::Literal(_, _), ParameterType::Literal(_)) => Ok(()),
1178 (FunctionArgument::Variable(_), ParameterType::Variable) => Ok(()),
1179 _ => Err(AnyhowError::msg("Type mismatch")),
1180 }
1181 }
1182}
1183
1184#[derive(Debug, Clone)]
1186pub struct VectorQuery {
1187 pub query_type: String,
1189 pub vector_operations: Vec<String>,
1191 pub joins: Vec<String>,
1193 pub filters: Vec<String>,
1195 pub metadata: HashMap<String, String>,
1197}
1198
1199impl VectorQuery {
1200 pub fn has_vector_filters(&self) -> bool {
1202 self.filters
1203 .iter()
1204 .any(|f| f.contains("vector") || f.contains("similarity"))
1205 }
1206
1207 pub fn has_joins(&self) -> bool {
1209 !self.joins.is_empty()
1210 }
1211
1212 pub fn join_count(&self) -> usize {
1214 self.joins.len()
1215 }
1216
1217 pub fn has_vector_operations(&self) -> bool {
1219 !self.vector_operations.is_empty()
1220 }
1221
1222 pub fn has_multiple_similar_operations(&self) -> bool {
1224 self.vector_operations.len() > 1
1225 }
1226
1227 pub fn has_repeated_subqueries(&self) -> bool {
1229 self.metadata.contains_key("repeated_patterns")
1231 }
1232
1233 pub fn get_join_order(&self) -> Vec<String> {
1235 self.joins.clone()
1236 }
1237}
1238
1239#[derive(Debug, Clone)]
1241pub enum OptimizationOpportunity {
1242 FilterPushdown,
1243 JoinReordering,
1244 IndexSelection,
1245 Batching,
1246 Caching,
1247}
1248
1249#[derive(Debug, Clone)]
1251pub struct FunctionStats {
1252 pub name: String,
1254 pub call_count: usize,
1256 pub avg_execution_time: Duration,
1258 pub total_execution_time: Duration,
1260 pub error_rate: f32,
1262}
1263
1264#[cfg(test)]
1265mod tests {
1266 use super::*;
1267
1268 #[test]
1269 fn test_vector_query_planner_creation() {
1270 let config = VectorQueryConfig::default();
1271 let planner = VectorQueryPlanner::new(config);
1272
1273 assert_eq!(planner.vector_indices.read().unwrap().len(), 0);
1274 }
1275
1276 #[test]
1277 fn test_vector_function_registry() {
1278 let registry = VectorFunctionRegistry::new();
1279
1280 assert_eq!(registry.functions.read().unwrap().len(), 0);
1281 }
1282
1283 #[test]
1284 fn test_optimization_plan_creation() {
1285 let config = VectorQueryConfig::default();
1286 let planner = VectorQueryPlanner::new(config);
1287
1288 let query = VectorQuery {
1289 query_type: "test".to_string(),
1290 vector_operations: vec!["similarity".to_string()],
1291 joins: vec!["inner_join".to_string()],
1292 filters: vec!["vector_filter".to_string()],
1293 metadata: HashMap::new(),
1294 };
1295
1296 let plan = planner.create_optimization_plan(&query).unwrap();
1297 assert!(!plan.steps.is_empty());
1298 }
1299
1300 #[test]
1301 fn test_vector_query_analysis() {
1302 let query = VectorQuery {
1303 query_type: "test".to_string(),
1304 vector_operations: vec!["similarity".to_string()],
1305 joins: vec!["join1".to_string(), "join2".to_string()],
1306 filters: vec!["similarity_filter".to_string()],
1307 metadata: HashMap::new(),
1308 };
1309
1310 assert!(query.has_vector_filters());
1311 assert!(query.has_joins());
1312 assert!(query.has_vector_operations());
1313 assert_eq!(query.join_count(), 2);
1314 }
1315}