oxirs_vec/
joint_embedding_spaces.rs

1//! Joint Embedding Spaces for Cross-Modal Vector Search
2//!
3//! This module implements advanced joint embedding spaces that enable:
4//! - CLIP-style text-image alignment
5//! - Cross-modal attention mechanisms
6//! - Contrastive learning for alignment
7//! - Multi-modal fusion strategies
8//! - Domain adaptation and transfer learning
9
10use crate::{
11    cross_modal_embeddings::{
12        AudioData, ImageData, Modality, ModalityData, MultiModalContent, VideoData,
13    },
14    Vector,
15};
16use anyhow::{anyhow, Result};
17use parking_lot::RwLock;
18use serde::{Deserialize, Serialize};
19use std::collections::HashMap;
20use std::sync::Arc;
21
22/// Configuration for joint embedding space
23#[derive(Debug, Clone, Serialize, Deserialize)]
24pub struct JointEmbeddingConfig {
25    /// Dimension of the joint embedding space
26    pub joint_dim: usize,
27    /// Temperature parameter for contrastive learning
28    pub temperature: f32,
29    /// Learning rate for alignment optimization
30    pub learning_rate: f32,
31    /// Margin for triplet loss
32    pub margin: f32,
33    /// Enable contrastive learning
34    pub contrastive_learning: bool,
35    /// Enable triplet loss
36    pub triplet_loss: bool,
37    /// Enable hard negative mining
38    pub hard_negative_mining: bool,
39    /// Batch size for training
40    pub batch_size: usize,
41    /// Number of negative samples per positive
42    pub negative_samples: usize,
43    /// Enable curriculum learning
44    pub curriculum_learning: bool,
45    /// Weight decay for regularization
46    pub weight_decay: f32,
47    /// Gradient clipping threshold
48    pub gradient_clip: f32,
49    /// Enable domain adaptation
50    pub domain_adaptation: bool,
51    /// Cross-modal alignment strength
52    pub alignment_strength: f32,
53    /// Enable self-supervised learning
54    pub self_supervised: bool,
55}
56
57impl Default for JointEmbeddingConfig {
58    fn default() -> Self {
59        Self {
60            joint_dim: 512,
61            temperature: 0.07,
62            learning_rate: 1e-4,
63            margin: 0.2,
64            contrastive_learning: true,
65            triplet_loss: false,
66            hard_negative_mining: true,
67            batch_size: 256,
68            negative_samples: 5,
69            curriculum_learning: false,
70            weight_decay: 1e-4,
71            gradient_clip: 1.0,
72            domain_adaptation: true,
73            alignment_strength: 1.0,
74            self_supervised: false,
75        }
76    }
77}
78
79/// Type alias for contrastive pairs result
80type ContrastivePairs = (
81    Vec<(Modality, Vector, Modality, Vector)>,
82    Vec<(Modality, Vector, Modality, Vector)>,
83);
84
85/// Joint embedding space for cross-modal alignment
86pub struct JointEmbeddingSpace {
87    config: JointEmbeddingConfig,
88    text_projector: LinearProjector,
89    image_projector: LinearProjector,
90    audio_projector: LinearProjector,
91    video_projector: LinearProjector,
92    attention_mechanism: CrossModalAttention,
93    alignment_cache: Arc<RwLock<HashMap<String, AlignmentPair>>>,
94    training_stats: Arc<RwLock<TrainingStatistics>>,
95    temperature_scheduler: TemperatureScheduler,
96    domain_adapter: DomainAdapter,
97}
98
99/// Linear projector for transforming embeddings to joint space
100#[derive(Debug, Clone)]
101pub struct LinearProjector {
102    weights: Vec<Vec<f32>>,
103    bias: Vec<f32>,
104    input_dim: usize,
105    output_dim: usize,
106    dropout_rate: f32,
107    activation: ActivationFunction,
108}
109
110/// Activation functions for projectors
111#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
112pub enum ActivationFunction {
113    ReLU,
114    GELU,
115    Tanh,
116    Sigmoid,
117    Swish,
118    Mish,
119    LeakyReLU(f32),
120}
121
122/// Cross-modal attention mechanism for joint spaces
123#[derive(Debug, Clone)]
124pub struct CrossModalAttention {
125    query_projector: LinearProjector,
126    key_projector: LinearProjector,
127    value_projector: LinearProjector,
128    output_projector: LinearProjector,
129    num_heads: usize,
130    head_dim: usize,
131    dropout_rate: f32,
132    scale: f32,
133    enable_relative_pos: bool,
134}
135
136/// Alignment pair for caching and training
137#[derive(Debug, Clone)]
138pub struct AlignmentPair {
139    modality1: Modality,
140    modality2: Modality,
141    embedding1: Vector,
142    embedding2: Vector,
143    similarity: f32,
144    confidence: f32,
145    timestamp: std::time::SystemTime,
146}
147
148/// Training statistics for monitoring
149#[derive(Debug, Clone, Default)]
150pub struct TrainingStatistics {
151    total_samples: u64,
152    positive_pairs: u64,
153    negative_pairs: u64,
154    average_loss: f32,
155    average_similarity: f32,
156    convergence_rate: f32,
157    alignment_accuracy: f32,
158    cross_modal_retrieval_acc: HashMap<(Modality, Modality), f32>,
159    training_epochs: u32,
160    last_improvement: u32,
161}
162
163/// Temperature scheduler for contrastive learning
164#[derive(Debug, Clone)]
165pub struct TemperatureScheduler {
166    initial_temperature: f32,
167    final_temperature: f32,
168    decay_steps: usize,
169    current_step: usize,
170    schedule_type: ScheduleType,
171}
172
173#[derive(Debug, Clone, Copy)]
174pub enum ScheduleType {
175    Linear,
176    Exponential,
177    Cosine,
178    Warmup,
179}
180
181/// Domain adaptation module for cross-domain alignment
182#[derive(Debug, Clone)]
183pub struct DomainAdapter {
184    source_stats: DomainStatistics,
185    target_stats: DomainStatistics,
186    adaptation_weights: Vec<f32>,
187    domain_classifier: Option<DomainClassifier>,
188    adaptation_strength: f32,
189}
190
191#[derive(Debug, Clone, Default)]
192pub struct DomainStatistics {
193    mean: Vec<f32>,
194    variance: Vec<f32>,
195    sample_count: usize,
196    feature_statistics: HashMap<String, f32>,
197}
198
199#[derive(Debug, Clone)]
200pub struct DomainClassifier {
201    weights: Vec<Vec<f32>>,
202    bias: Vec<f32>,
203    accuracy: f32,
204}
205
206/// CLIP-style contrastive learning implementation
207pub struct CLIPAligner {
208    joint_space: JointEmbeddingSpace,
209    optimizer: ContrastiveOptimizer,
210    data_augmentation: DataAugmentation,
211    curriculum: CurriculumLearning,
212}
213
214/// Contrastive optimizer for alignment training
215#[derive(Debug, Clone)]
216pub struct ContrastiveOptimizer {
217    learning_rate: f32,
218    momentum: f32,
219    weight_decay: f32,
220    gradient_history: HashMap<String, Vec<f32>>,
221    adaptive_lr: bool,
222    lr_schedule: LearningRateSchedule,
223}
224
225#[derive(Debug, Clone, Copy)]
226pub enum LearningRateSchedule {
227    Constant,
228    StepDecay { step_size: usize, gamma: f32 },
229    ExponentialDecay { gamma: f32 },
230    CosineAnnealing { min_lr: f32, max_epochs: usize },
231}
232
233/// Data augmentation for improved generalization
234#[derive(Debug, Clone)]
235pub struct DataAugmentation {
236    text_augmentations: Vec<TextAugmentation>,
237    image_augmentations: Vec<ImageAugmentation>,
238    audio_augmentations: Vec<AudioAugmentation>,
239    cross_modal_mixup: bool,
240    augmentation_probability: f32,
241}
242
243#[derive(Debug, Clone)]
244pub enum TextAugmentation {
245    RandomWordDropout(f32),
246    Paraphrasing,
247    BackTranslation,
248    SynonymReplacement(f32),
249    ContextualAugmentation,
250}
251
252#[derive(Debug, Clone)]
253pub enum ImageAugmentation {
254    RandomCrop {
255        size: (u32, u32),
256    },
257    RandomFlip {
258        horizontal: bool,
259        vertical: bool,
260    },
261    ColorJitter {
262        brightness: f32,
263        contrast: f32,
264        saturation: f32,
265    },
266    RandomRotation {
267        max_angle: f32,
268    },
269    GaussianBlur {
270        sigma: f32,
271    },
272}
273
274#[derive(Debug, Clone)]
275pub enum AudioAugmentation {
276    TimeStretch { factor: f32 },
277    PitchShift { semitones: f32 },
278    AddNoise { snr_db: f32 },
279    FrequencyMasking { max_freq_mask: f32 },
280    TimeMasking { max_time_mask: f32 },
281}
282
283/// Curriculum learning for progressive training
284#[derive(Debug, Clone)]
285pub struct CurriculumLearning {
286    enabled: bool,
287    current_difficulty: f32,
288    difficulty_schedule: DifficultySchedule,
289    pacing_function: PacingFunction,
290    competence_threshold: f32,
291}
292
293#[derive(Debug, Clone)]
294pub enum DifficultySchedule {
295    Linear { start: f32, end: f32, epochs: usize },
296    Exponential { base: f32, scale: f32 },
297    Adaptive { improvement_threshold: f32 },
298}
299
300#[derive(Debug, Clone)]
301pub enum PacingFunction {
302    Root,
303    Linear,
304    Logarithmic,
305    Polynomial(f32),
306}
307
308impl LinearProjector {
309    pub fn new(
310        input_dim: usize,
311        output_dim: usize,
312        dropout_rate: f32,
313        activation: ActivationFunction,
314    ) -> Self {
315        // Xavier/Glorot initialization
316        let limit = (6.0 / (input_dim + output_dim) as f32).sqrt();
317        let mut weights = Vec::with_capacity(output_dim);
318
319        for _ in 0..output_dim {
320            let mut row = Vec::with_capacity(input_dim);
321            for _ in 0..input_dim {
322                // Simple deterministic initialization based on indices
323                let weight = ((row.len() as f32 * 0.01) % 2.0 - 1.0) * limit;
324                row.push(weight);
325            }
326            weights.push(row);
327        }
328
329        let bias = vec![0.0; output_dim];
330
331        Self {
332            weights,
333            bias,
334            input_dim,
335            output_dim,
336            dropout_rate,
337            activation,
338        }
339    }
340
341    pub fn forward(&self, input: &Vector) -> Result<Vector> {
342        if input.dimensions != self.input_dim {
343            return Err(anyhow!(
344                "Input dimension mismatch: expected {}, got {}",
345                self.input_dim,
346                input.dimensions
347            ));
348        }
349
350        let input_values = input.as_f32();
351        let mut output = vec![0.0; self.output_dim];
352
353        // Matrix multiplication: output = input * weights^T + bias
354        for (i, output_val) in output.iter_mut().enumerate().take(self.output_dim) {
355            let mut sum = self.bias[i];
356            for (j, &input_val) in input_values.iter().enumerate().take(self.input_dim) {
357                sum += input_val * self.weights[i][j];
358            }
359            *output_val = sum;
360        }
361
362        // Apply activation function
363        for value in &mut output {
364            *value = self.apply_activation(*value);
365        }
366
367        // Apply dropout during training (simplified - always apply for consistency)
368        if self.dropout_rate > 0.0 {
369            for (i, value) in output.iter_mut().enumerate() {
370                // Deterministic dropout based on index for reproducibility
371                if (i as f32 * 0.12345) % 1.0 < self.dropout_rate {
372                    *value = 0.0;
373                } else {
374                    *value /= 1.0 - self.dropout_rate; // Scale to maintain expected value
375                }
376            }
377        }
378
379        Ok(Vector::new(output))
380    }
381
382    fn apply_activation(&self, x: f32) -> f32 {
383        match self.activation {
384            ActivationFunction::ReLU => x.max(0.0),
385            ActivationFunction::GELU => {
386                // Approximate GELU: x * Φ(x) ≈ 0.5 * x * (1 + tanh(√(2/π) * (x + 0.044715 * x³)))
387                let sqrt_2_pi = (2.0 / std::f32::consts::PI).sqrt();
388                let inner = sqrt_2_pi * (x + 0.044715 * x.powi(3));
389                0.5 * x * (1.0 + inner.tanh())
390            }
391            ActivationFunction::Tanh => x.tanh(),
392            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
393            ActivationFunction::Swish => x * (1.0 / (1.0 + (-x).exp())), // x * sigmoid(x)
394            ActivationFunction::Mish => x * (1.0 + x.exp()).ln().tanh(),
395            ActivationFunction::LeakyReLU(alpha) => {
396                if x > 0.0 {
397                    x
398                } else {
399                    alpha * x
400                }
401            }
402        }
403    }
404
405    pub fn update_weights(&mut self, gradients: &[Vec<f32>], learning_rate: f32) {
406        for i in 0..self.output_dim {
407            for j in 0..self.input_dim {
408                if i < gradients.len() && j < gradients[i].len() {
409                    self.weights[i][j] -= learning_rate * gradients[i][j];
410                }
411            }
412        }
413    }
414}
415
416impl CrossModalAttention {
417    pub fn new(
418        input_dim: usize,
419        num_heads: usize,
420        dropout_rate: f32,
421        enable_relative_pos: bool,
422    ) -> Self {
423        let head_dim = input_dim / num_heads;
424        let scale = 1.0 / (head_dim as f32).sqrt();
425
426        Self {
427            query_projector: LinearProjector::new(
428                input_dim,
429                input_dim,
430                dropout_rate,
431                ActivationFunction::ReLU,
432            ),
433            key_projector: LinearProjector::new(
434                input_dim,
435                input_dim,
436                dropout_rate,
437                ActivationFunction::ReLU,
438            ),
439            value_projector: LinearProjector::new(
440                input_dim,
441                input_dim,
442                dropout_rate,
443                ActivationFunction::ReLU,
444            ),
445            output_projector: LinearProjector::new(
446                input_dim,
447                input_dim,
448                dropout_rate,
449                ActivationFunction::ReLU,
450            ),
451            num_heads,
452            head_dim,
453            dropout_rate,
454            scale,
455            enable_relative_pos,
456        }
457    }
458
459    pub fn cross_attention(
460        &self,
461        query_modality: &Vector,
462        key_modality: &Vector,
463        value_modality: &Vector,
464    ) -> Result<Vector> {
465        // Project to query, key, value spaces
466        let query = self.query_projector.forward(query_modality)?;
467        let key = self.key_projector.forward(key_modality)?;
468        let value = self.value_projector.forward(value_modality)?;
469
470        // Multi-head attention computation
471        let attended = self.multi_head_attention(&query, &key, &value)?;
472
473        // Output projection
474        self.output_projector.forward(&attended)
475    }
476
477    fn multi_head_attention(&self, query: &Vector, key: &Vector, value: &Vector) -> Result<Vector> {
478        let query_vals = query.as_f32();
479        let key_vals = key.as_f32();
480        let value_vals = value.as_f32();
481
482        if query_vals.len() != key_vals.len() || key_vals.len() != value_vals.len() {
483            return Err(anyhow!("Dimension mismatch in attention"));
484        }
485
486        let _seq_len = query_vals.len() / self.head_dim;
487        let mut output = vec![0.0; query_vals.len()];
488
489        // Process each attention head
490        for head in 0..self.num_heads {
491            let head_start = head * self.head_dim;
492            let head_end = head_start + self.head_dim;
493
494            // Extract head-specific query, key, value
495            let head_query = &query_vals[head_start..head_end];
496            let head_key = &key_vals[head_start..head_end];
497            let head_value = &value_vals[head_start..head_end];
498
499            // Compute attention scores
500            let attention_score = self.compute_attention_score(head_query, head_key);
501
502            // Apply attention to values
503            for i in 0..self.head_dim {
504                output[head_start + i] = head_value[i] * attention_score;
505            }
506        }
507
508        // Apply relative positional encoding if enabled
509        if self.enable_relative_pos {
510            self.apply_relative_position_encoding(&mut output)?;
511        }
512
513        Ok(Vector::new(output))
514    }
515
516    fn compute_attention_score(&self, query: &[f32], key: &[f32]) -> f32 {
517        let dot_product: f32 = query.iter().zip(key.iter()).map(|(q, k)| q * k).sum();
518        let scaled_score = dot_product * self.scale;
519
520        // Apply softmax (simplified single-head version)
521        scaled_score.tanh() // Approximate attention weight
522    }
523
524    fn apply_relative_position_encoding(&self, output: &mut [f32]) -> Result<()> {
525        // Simplified relative positional encoding
526        let output_len = output.len();
527        for (i, value) in output.iter_mut().enumerate() {
528            let pos_encoding = (i as f32 / output_len as f32).sin();
529            *value += 0.1 * pos_encoding; // Small positional bias
530        }
531        Ok(())
532    }
533}
534
535impl TemperatureScheduler {
536    pub fn new(
537        initial_temperature: f32,
538        final_temperature: f32,
539        decay_steps: usize,
540        schedule_type: ScheduleType,
541    ) -> Self {
542        Self {
543            initial_temperature,
544            final_temperature,
545            decay_steps,
546            current_step: 0,
547            schedule_type,
548        }
549    }
550
551    pub fn get_current_temperature(&self) -> f32 {
552        if self.current_step >= self.decay_steps {
553            return self.final_temperature;
554        }
555
556        let progress = self.current_step as f32 / self.decay_steps as f32;
557
558        match self.schedule_type {
559            ScheduleType::Linear => {
560                self.initial_temperature
561                    + (self.final_temperature - self.initial_temperature) * progress
562            }
563            ScheduleType::Exponential => {
564                self.initial_temperature
565                    * (self.final_temperature / self.initial_temperature).powf(progress)
566            }
567            ScheduleType::Cosine => {
568                let cosine_progress = 0.5 * (1.0 + (std::f32::consts::PI * progress).cos());
569                self.final_temperature
570                    + (self.initial_temperature - self.final_temperature) * cosine_progress
571            }
572            ScheduleType::Warmup => {
573                if progress < 0.1 {
574                    // Warmup phase
575                    self.initial_temperature * (progress / 0.1)
576                } else {
577                    // Decay phase
578                    let decay_progress = (progress - 0.1) / 0.9;
579                    self.initial_temperature
580                        + (self.final_temperature - self.initial_temperature) * decay_progress
581                }
582            }
583        }
584    }
585
586    pub fn step(&mut self) {
587        self.current_step += 1;
588    }
589}
590
591impl DomainAdapter {
592    pub fn new(adaptation_strength: f32) -> Self {
593        Self {
594            source_stats: DomainStatistics::default(),
595            target_stats: DomainStatistics::default(),
596            adaptation_weights: Vec::new(),
597            domain_classifier: None,
598            adaptation_strength,
599        }
600    }
601
602    pub fn adapt_embedding(&self, embedding: &Vector, is_source_domain: bool) -> Result<Vector> {
603        let input_values = embedding.as_f32();
604        let mut adapted_values = input_values.clone();
605
606        if self.adaptation_weights.len() != input_values.len() {
607            return Ok(embedding.clone()); // No adaptation available
608        }
609
610        // Apply domain adaptation
611        let stats = if is_source_domain {
612            &self.source_stats
613        } else {
614            &self.target_stats
615        };
616
617        for (i, adapted_value) in adapted_values.iter_mut().enumerate() {
618            if i < stats.mean.len() && i < stats.variance.len() {
619                // Normalize using domain statistics
620                let normalized =
621                    (*adapted_value - stats.mean[i]) / (stats.variance[i].sqrt() + 1e-8);
622
623                // Apply adaptation weights
624                *adapted_value = normalized * self.adaptation_weights[i] * self.adaptation_strength
625                    + *adapted_value * (1.0 - self.adaptation_strength);
626            }
627        }
628
629        Ok(Vector::new(adapted_values))
630    }
631
632    pub fn update_domain_statistics(&mut self, embeddings: &[Vector], is_source_domain: bool) {
633        let stats = if is_source_domain {
634            &mut self.source_stats
635        } else {
636            &mut self.target_stats
637        };
638
639        if embeddings.is_empty() {
640            return;
641        }
642
643        let dim = embeddings[0].dimensions;
644        if stats.mean.len() != dim {
645            stats.mean = vec![0.0; dim];
646            stats.variance = vec![0.0; dim];
647            stats.sample_count = 0;
648        }
649
650        // Update running statistics
651        for embedding in embeddings {
652            let values = embedding.as_f32();
653            for (i, &value) in values.iter().enumerate().take(dim) {
654                let delta = value - stats.mean[i];
655                stats.sample_count += 1;
656                stats.mean[i] += delta / stats.sample_count as f32;
657                let delta2 = value - stats.mean[i];
658                stats.variance[i] += delta * delta2;
659            }
660        }
661
662        // Finalize variance calculation
663        if stats.sample_count > 1 {
664            for variance in &mut stats.variance {
665                *variance /= (stats.sample_count - 1) as f32;
666            }
667        }
668
669        // Update adaptation weights based on domain discrepancy
670        self.update_adaptation_weights();
671    }
672
673    fn update_adaptation_weights(&mut self) {
674        let dim = self.source_stats.mean.len();
675        if dim == 0 || dim != self.target_stats.mean.len() {
676            return;
677        }
678
679        self.adaptation_weights = vec![1.0; dim];
680
681        for i in 0..dim {
682            // Compute domain discrepancy as statistical distance
683            let mean_diff = (self.source_stats.mean[i] - self.target_stats.mean[i]).abs();
684            let var_ratio = (self.source_stats.variance[i]
685                / (self.target_stats.variance[i] + 1e-8))
686                .ln()
687                .abs();
688
689            // Weight adaptation based on discrepancy
690            let discrepancy = mean_diff + 0.5 * var_ratio;
691            self.adaptation_weights[i] = 1.0 / (1.0 + discrepancy);
692        }
693    }
694}
695
696impl JointEmbeddingSpace {
697    pub fn new(config: JointEmbeddingConfig) -> Self {
698        let text_projector = LinearProjector::new(
699            768, // BERT-style embedding dimension
700            config.joint_dim,
701            0.1,
702            ActivationFunction::GELU,
703        );
704
705        let image_projector = LinearProjector::new(
706            2048, // ResNet/Vision Transformer dimension
707            config.joint_dim,
708            0.1,
709            ActivationFunction::GELU,
710        );
711
712        let audio_projector = LinearProjector::new(
713            1024, // Audio embedding dimension
714            config.joint_dim,
715            0.1,
716            ActivationFunction::GELU,
717        );
718
719        let video_projector = LinearProjector::new(
720            1536, // Video embedding dimension
721            config.joint_dim,
722            0.1,
723            ActivationFunction::GELU,
724        );
725
726        let attention_mechanism = CrossModalAttention::new(config.joint_dim, 8, 0.1, true);
727
728        let temperature_scheduler = TemperatureScheduler::new(
729            config.temperature * 2.0,
730            config.temperature,
731            1000,
732            ScheduleType::Cosine,
733        );
734
735        let domain_adapter = DomainAdapter::new(config.alignment_strength);
736
737        Self {
738            config,
739            text_projector,
740            image_projector,
741            audio_projector,
742            video_projector,
743            attention_mechanism,
744            alignment_cache: Arc::new(RwLock::new(HashMap::new())),
745            training_stats: Arc::new(RwLock::new(TrainingStatistics::default())),
746            temperature_scheduler,
747            domain_adapter,
748        }
749    }
750
751    /// Project modality-specific embedding to joint space
752    pub fn project_to_joint_space(&self, modality: Modality, embedding: &Vector) -> Result<Vector> {
753        let projected = match modality {
754            Modality::Text => self.text_projector.forward(embedding)?,
755            Modality::Image => self.image_projector.forward(embedding)?,
756            Modality::Audio => self.audio_projector.forward(embedding)?,
757            Modality::Video => self.video_projector.forward(embedding)?,
758            _ => {
759                // For other modalities, use text projector as fallback
760                self.text_projector.forward(embedding)?
761            }
762        };
763
764        // Apply L2 normalization for cosine similarity computation
765        Ok(projected.normalized())
766    }
767
768    /// Compute cross-modal similarity in joint space
769    pub fn cross_modal_similarity(
770        &self,
771        modality1: Modality,
772        embedding1: &Vector,
773        modality2: Modality,
774        embedding2: &Vector,
775    ) -> Result<f32> {
776        let joint_emb1 = self.project_to_joint_space(modality1, embedding1)?;
777        let joint_emb2 = self.project_to_joint_space(modality2, embedding2)?;
778
779        // Apply cross-modal attention if different modalities
780        if modality1 != modality2 {
781            let attended_emb1 =
782                self.attention_mechanism
783                    .cross_attention(&joint_emb1, &joint_emb2, &joint_emb2)?;
784            let attended_emb2 =
785                self.attention_mechanism
786                    .cross_attention(&joint_emb2, &joint_emb1, &joint_emb1)?;
787
788            attended_emb1.cosine_similarity(&attended_emb2)
789        } else {
790            joint_emb1.cosine_similarity(&joint_emb2)
791        }
792    }
793
794    /// Contrastive learning alignment training
795    pub fn contrastive_align(
796        &mut self,
797        positive_pairs: &[(Modality, Vector, Modality, Vector)],
798        negative_pairs: &[(Modality, Vector, Modality, Vector)],
799    ) -> Result<f32> {
800        let mut total_loss = 0.0;
801        let temperature = self.temperature_scheduler.get_current_temperature();
802
803        // Process positive pairs
804        for (mod1, emb1, mod2, emb2) in positive_pairs {
805            let similarity = self.cross_modal_similarity(*mod1, emb1, *mod2, emb2)?;
806            let positive_score = similarity / temperature;
807
808            // Contrastive loss for positive pairs (should be high similarity)
809            let positive_loss = -positive_score.ln_1p(); // -log(1 + exp(score))
810            total_loss += positive_loss;
811
812            // Cache successful alignments
813            self.cache_alignment(*mod1, emb1.clone(), *mod2, emb2.clone(), similarity);
814        }
815
816        // Process negative pairs
817        for (mod1, emb1, mod2, emb2) in negative_pairs {
818            let similarity = self.cross_modal_similarity(*mod1, emb1, *mod2, emb2)?;
819            let negative_score = similarity / temperature;
820
821            // Contrastive loss for negative pairs (should be low similarity)
822            let negative_loss = (negative_score + self.config.margin).max(0.0);
823            total_loss += negative_loss;
824        }
825
826        // Update training statistics
827        self.update_training_stats(positive_pairs.len(), negative_pairs.len(), total_loss);
828
829        // Step temperature scheduler
830        self.temperature_scheduler.step();
831
832        Ok(total_loss / (positive_pairs.len() + negative_pairs.len()) as f32)
833    }
834
835    /// Find cross-modal nearest neighbors in joint space
836    pub fn cross_modal_search(
837        &self,
838        query_modality: Modality,
839        query_embedding: &Vector,
840        candidate_modality: Modality,
841        candidate_embeddings: &[Vector],
842        top_k: usize,
843    ) -> Result<Vec<(usize, f32)>> {
844        let query_joint = self.project_to_joint_space(query_modality, query_embedding)?;
845        let mut similarities = Vec::new();
846
847        for (idx, candidate) in candidate_embeddings.iter().enumerate() {
848            let candidate_joint = self.project_to_joint_space(candidate_modality, candidate)?;
849
850            // Apply cross-modal attention if different modalities
851            let similarity = if query_modality != candidate_modality {
852                let attended_query = self.attention_mechanism.cross_attention(
853                    &query_joint,
854                    &candidate_joint,
855                    &candidate_joint,
856                )?;
857                attended_query.cosine_similarity(&candidate_joint)?
858            } else {
859                query_joint.cosine_similarity(&candidate_joint)?
860            };
861
862            similarities.push((idx, similarity));
863        }
864
865        // Sort by similarity (descending) and take top-k
866        similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
867        similarities.truncate(top_k);
868
869        Ok(similarities)
870    }
871
872    /// Zero-shot cross-modal retrieval
873    pub fn zero_shot_retrieval(
874        &self,
875        query_modality: Modality,
876        query_embedding: &Vector,
877        target_modality: Modality,
878        target_embeddings: &[Vector],
879        top_k: usize,
880    ) -> Result<Vec<(usize, f32)>> {
881        // Project query to joint space
882        let _query_joint = self.project_to_joint_space(query_modality, query_embedding)?;
883
884        // Search across target modality
885        self.cross_modal_search(
886            query_modality,
887            query_embedding,
888            target_modality,
889            target_embeddings,
890            top_k,
891        )
892    }
893
894    /// Multi-modal fusion in joint space
895    pub fn multi_modal_fusion(&self, modalities: &[(Modality, Vector)]) -> Result<Vector> {
896        if modalities.is_empty() {
897            return Err(anyhow!("No modalities provided for fusion"));
898        }
899
900        let mut joint_embeddings = Vec::new();
901        for (modality, embedding) in modalities {
902            let joint_emb = self.project_to_joint_space(*modality, embedding)?;
903            joint_embeddings.push(joint_emb);
904        }
905
906        // Apply cross-modal attention between all pairs
907        let mut attended_embeddings = Vec::new();
908        for i in 0..joint_embeddings.len() {
909            let mut attended = joint_embeddings[i].clone();
910
911            for j in 0..joint_embeddings.len() {
912                if i != j {
913                    let cross_attended = self.attention_mechanism.cross_attention(
914                        &joint_embeddings[i],
915                        &joint_embeddings[j],
916                        &joint_embeddings[j],
917                    )?;
918
919                    // Weighted combination
920                    let weight = 1.0 / joint_embeddings.len() as f32;
921                    attended = attended.add(&cross_attended.scale(weight))?;
922                }
923            }
924
925            attended_embeddings.push(attended);
926        }
927
928        // Average fusion
929        if attended_embeddings.len() == 1 {
930            Ok(attended_embeddings[0].clone())
931        } else {
932            let mut fused = attended_embeddings[0].clone();
933            for embedding in attended_embeddings.iter().skip(1) {
934                fused = fused.add(embedding)?;
935            }
936            Ok(fused.scale(1.0 / attended_embeddings.len() as f32))
937        }
938    }
939
940    fn cache_alignment(
941        &self,
942        mod1: Modality,
943        emb1: Vector,
944        mod2: Modality,
945        emb2: Vector,
946        similarity: f32,
947    ) {
948        let alignment = AlignmentPair {
949            modality1: mod1,
950            modality2: mod2,
951            embedding1: emb1,
952            embedding2: emb2,
953            similarity,
954            confidence: similarity.abs(), // Use absolute similarity as confidence
955            timestamp: std::time::SystemTime::now(),
956        };
957
958        let cache_key = format!("{mod1:?}_{mod2:?}_{similarity}");
959        let mut cache = self.alignment_cache.write();
960        cache.insert(cache_key, alignment);
961
962        // Limit cache size
963        if cache.len() > 10000 {
964            // Remove oldest entries
965            let mut entries: Vec<_> = cache.iter().collect();
966            entries.sort_by_key(|(_, v)| v.timestamp);
967            let oldest_key = entries[0].0.clone();
968            cache.remove(&oldest_key);
969        }
970    }
971
972    fn update_training_stats(&self, positive_count: usize, negative_count: usize, loss: f32) {
973        let mut stats = self.training_stats.write();
974        stats.total_samples += (positive_count + negative_count) as u64;
975        stats.positive_pairs += positive_count as u64;
976        stats.negative_pairs += negative_count as u64;
977
978        // Update running average loss
979        let total_samples = stats.total_samples as f32;
980        stats.average_loss = (stats.average_loss * (total_samples - 1.0) + loss) / total_samples;
981    }
982
983    /// Get training statistics
984    pub fn get_training_stats(&self) -> TrainingStatistics {
985        self.training_stats.read().clone()
986    }
987
988    /// Get alignment cache statistics
989    pub fn get_cache_stats(&self) -> (usize, f32) {
990        let cache = self.alignment_cache.read();
991        let cache_size = cache.len();
992        let avg_similarity = if cache.is_empty() {
993            0.0
994        } else {
995            cache.values().map(|a| a.similarity).sum::<f32>() / cache_size as f32
996        };
997        (cache_size, avg_similarity)
998    }
999
1000    /// Evaluate cross-modal retrieval performance
1001    pub fn evaluate_retrieval(
1002        &self,
1003        test_pairs: &[(Modality, Vector, Modality, Vector)],
1004        distractors: &[(Modality, Vector)],
1005        k_values: &[usize],
1006    ) -> Result<HashMap<usize, f32>> {
1007        let mut recall_at_k = HashMap::new();
1008
1009        for &k in k_values {
1010            let mut total_recall = 0.0;
1011
1012            for (query_mod, query_emb, target_mod, target_emb) in test_pairs {
1013                // Create candidate set with target + distractors
1014                let mut candidates = vec![target_emb.clone()];
1015                for (distractor_mod, distractor_emb) in distractors {
1016                    if *distractor_mod == *target_mod {
1017                        candidates.push(distractor_emb.clone());
1018                    }
1019                }
1020
1021                // Perform search
1022                let results =
1023                    self.cross_modal_search(*query_mod, query_emb, *target_mod, &candidates, k)?;
1024
1025                // Check if target is in top-k (target is always at index 0)
1026                let found_target = results.iter().any(|(idx, _)| *idx == 0);
1027                if found_target {
1028                    total_recall += 1.0;
1029                }
1030            }
1031
1032            recall_at_k.insert(k, total_recall / test_pairs.len() as f32);
1033        }
1034
1035        Ok(recall_at_k)
1036    }
1037}
1038
1039impl CLIPAligner {
1040    pub fn new(config: JointEmbeddingConfig) -> Self {
1041        let joint_space = JointEmbeddingSpace::new(config.clone());
1042        let optimizer = ContrastiveOptimizer::new(config.learning_rate, 0.9, config.weight_decay);
1043        let data_augmentation = DataAugmentation::default();
1044        let curriculum = CurriculumLearning::new();
1045
1046        Self {
1047            joint_space,
1048            optimizer,
1049            data_augmentation,
1050            curriculum,
1051        }
1052    }
1053
1054    /// Train CLIP-style alignment with contrastive learning
1055    pub fn train_alignment(
1056        &mut self,
1057        training_data: &[(MultiModalContent, MultiModalContent)],
1058        epochs: usize,
1059    ) -> Result<Vec<f32>> {
1060        let mut epoch_losses = Vec::new();
1061
1062        for epoch in 0..epochs {
1063            let mut epoch_loss = 0.0;
1064            let mut batch_count = 0;
1065
1066            // Create batches from training data
1067            for batch in training_data.chunks(self.joint_space.config.batch_size) {
1068                let (positive_pairs, negative_pairs) = self.create_contrastive_pairs(batch)?;
1069
1070                // Apply data augmentation
1071                let augmented_positive = self.augment_pairs(&positive_pairs)?;
1072                let augmented_negative = self.augment_pairs(&negative_pairs)?;
1073
1074                // Compute contrastive loss
1075                let batch_loss = self
1076                    .joint_space
1077                    .contrastive_align(&augmented_positive, &augmented_negative)?;
1078
1079                epoch_loss += batch_loss;
1080                batch_count += 1;
1081
1082                // Update curriculum difficulty
1083                if self.curriculum.enabled {
1084                    self.curriculum.update_difficulty(batch_loss);
1085                }
1086            }
1087
1088            let avg_epoch_loss = epoch_loss / batch_count as f32;
1089            epoch_losses.push(avg_epoch_loss);
1090
1091            // Update learning rate schedule
1092            self.optimizer.step_schedule();
1093
1094            tracing::info!(
1095                "Epoch {}/{}: Average Loss = {:.4}, Temperature = {:.4}",
1096                epoch + 1,
1097                epochs,
1098                avg_epoch_loss,
1099                self.joint_space
1100                    .temperature_scheduler
1101                    .get_current_temperature()
1102            );
1103        }
1104
1105        Ok(epoch_losses)
1106    }
1107
1108    fn create_contrastive_pairs(
1109        &self,
1110        batch: &[(MultiModalContent, MultiModalContent)],
1111    ) -> Result<ContrastivePairs> {
1112        let mut positive_pairs = Vec::new();
1113        let mut negative_pairs = Vec::new();
1114
1115        // Create positive pairs from matched content
1116        for (content1, content2) in batch {
1117            for (mod1, data1) in &content1.modalities {
1118                for (mod2, data2) in &content2.modalities {
1119                    if let (Ok(emb1), Ok(emb2)) = (
1120                        self.extract_embedding(*mod1, data1),
1121                        self.extract_embedding(*mod2, data2),
1122                    ) {
1123                        positive_pairs.push((*mod1, emb1, *mod2, emb2));
1124                    }
1125                }
1126            }
1127        }
1128
1129        // Create negative pairs by mismatching content
1130        let batch_size = batch.len();
1131        for i in 0..batch_size {
1132            for j in 0..batch_size {
1133                if i != j {
1134                    let (content1, _) = &batch[i];
1135                    let (_, content2) = &batch[j];
1136
1137                    for (mod1, data1) in &content1.modalities {
1138                        for (mod2, data2) in &content2.modalities {
1139                            if let (Ok(emb1), Ok(emb2)) = (
1140                                self.extract_embedding(*mod1, data1),
1141                                self.extract_embedding(*mod2, data2),
1142                            ) {
1143                                negative_pairs.push((*mod1, emb1, *mod2, emb2));
1144                            }
1145                        }
1146                    }
1147                }
1148            }
1149        }
1150
1151        // Limit negative pairs to avoid imbalance
1152        let max_negatives = positive_pairs.len() * self.joint_space.config.negative_samples;
1153        negative_pairs.truncate(max_negatives);
1154
1155        Ok((positive_pairs, negative_pairs))
1156    }
1157
1158    fn extract_embedding(&self, modality: Modality, data: &ModalityData) -> Result<Vector> {
1159        // Extract embeddings from modality data
1160        match (modality, data) {
1161            (Modality::Text, ModalityData::Text(text)) => {
1162                // Simple text embedding (in practice, use BERT/transformer)
1163                let words: Vec<&str> = text.split_whitespace().collect();
1164                let embedding = self.create_text_embedding(&words);
1165                Ok(embedding)
1166            }
1167            (Modality::Image, ModalityData::Image(image)) => {
1168                // Simple image embedding (in practice, use CNN/Vision Transformer)
1169                let embedding = self.create_image_embedding(image);
1170                Ok(embedding)
1171            }
1172            (Modality::Audio, ModalityData::Audio(audio)) => {
1173                // Simple audio embedding (in practice, use audio transformers)
1174                let embedding = self.create_audio_embedding(audio);
1175                Ok(embedding)
1176            }
1177            (Modality::Video, ModalityData::Video(video)) => {
1178                // Simple video embedding (in practice, use video transformers)
1179                let embedding = self.create_video_embedding(video);
1180                Ok(embedding)
1181            }
1182            (Modality::Numeric, ModalityData::Numeric(values)) => Ok(Vector::new(values.clone())),
1183            _ => Err(anyhow!("Modality-data type mismatch")),
1184        }
1185    }
1186
1187    fn create_text_embedding(&self, words: &[&str]) -> Vector {
1188        // Simplified text embedding using word hashing
1189        let mut embedding = vec![0.0; 768]; // BERT-style dimension
1190
1191        for (i, word) in words.iter().enumerate().take(100) {
1192            let hash = self.simple_hash(word) as usize;
1193            let idx = hash % embedding.len();
1194            embedding[idx] += 1.0 / (i + 1) as f32; // Position-weighted
1195        }
1196
1197        // Normalize
1198        let norm: f32 = embedding.iter().map(|x| x * x).sum::<f32>().sqrt();
1199        if norm > 0.0 {
1200            for value in &mut embedding {
1201                *value /= norm;
1202            }
1203        }
1204
1205        Vector::new(embedding)
1206    }
1207
1208    fn create_image_embedding(&self, image: &ImageData) -> Vector {
1209        // Simplified image embedding using basic features
1210        let mut embedding = vec![0.0; 2048]; // ResNet-style dimension
1211
1212        // Color histogram features
1213        let color_features = self.extract_color_features(image);
1214        for (i, &feature) in color_features.iter().enumerate().take(256) {
1215            if i < embedding.len() {
1216                embedding[i] = feature;
1217            }
1218        }
1219
1220        // Texture features (simplified)
1221        let texture_features = self.extract_texture_features(image);
1222        for (i, &feature) in texture_features.iter().enumerate().take(256) {
1223            if i + 256 < embedding.len() {
1224                embedding[i + 256] = feature;
1225            }
1226        }
1227
1228        Vector::new(embedding)
1229    }
1230
1231    fn create_audio_embedding(&self, audio: &AudioData) -> Vector {
1232        // Simplified audio embedding using spectral features
1233        let mut embedding = vec![0.0; 1024]; // Audio transformer dimension
1234
1235        // MFCC-style features
1236        if let Some(ref features) = audio.features {
1237            for (i, &feature) in features.iter().enumerate().take(embedding.len()) {
1238                embedding[i] = feature;
1239            }
1240        } else {
1241            // Extract from raw samples
1242            let spectral_features = self.extract_spectral_features(audio);
1243            for (i, &feature) in spectral_features.iter().enumerate().take(embedding.len()) {
1244                embedding[i] = feature;
1245            }
1246        }
1247
1248        Vector::new(embedding)
1249    }
1250
1251    fn create_video_embedding(&self, video: &VideoData) -> Vector {
1252        // Simplified video embedding combining visual and temporal features
1253        let mut embedding = vec![0.0; 1536]; // Video transformer dimension
1254
1255        // Average frame features
1256        if !video.frames.is_empty() {
1257            let frame_embedding = self.create_image_embedding(&video.frames[0]);
1258            let frame_values = frame_embedding.as_f32();
1259            for (i, &value) in frame_values.iter().enumerate().take(1024) {
1260                if i < embedding.len() {
1261                    embedding[i] = value;
1262                }
1263            }
1264        }
1265
1266        // Audio features if available
1267        if let Some(ref audio) = video.audio {
1268            let audio_embedding = self.create_audio_embedding(audio);
1269            let audio_values = audio_embedding.as_f32();
1270            for (i, &value) in audio_values.iter().enumerate().take(512) {
1271                if i + 1024 < embedding.len() {
1272                    embedding[i + 1024] = value;
1273                }
1274            }
1275        }
1276
1277        Vector::new(embedding)
1278    }
1279
1280    fn simple_hash(&self, text: &str) -> u64 {
1281        let mut hash = 5381u64;
1282        for byte in text.bytes() {
1283            hash = hash.wrapping_mul(33).wrapping_add(byte as u64);
1284        }
1285        hash
1286    }
1287
1288    fn extract_color_features(&self, image: &ImageData) -> Vec<f32> {
1289        // Simplified color histogram
1290        let mut histogram = vec![0.0; 256];
1291
1292        match image.format {
1293            crate::cross_modal_embeddings::ImageFormat::RGB => {
1294                for chunk in image.data.chunks(3) {
1295                    if chunk.len() == 3 {
1296                        let intensity = (chunk[0] as f32 + chunk[1] as f32 + chunk[2] as f32) / 3.0;
1297                        let bin = (intensity as usize).min(255);
1298                        histogram[bin] += 1.0;
1299                    }
1300                }
1301            }
1302            _ => {
1303                // Simplified handling for other formats
1304                for &pixel in &image.data {
1305                    let bin = (pixel as usize).min(255);
1306                    histogram[bin] += 1.0;
1307                }
1308            }
1309        }
1310
1311        // Normalize histogram
1312        let total: f32 = histogram.iter().sum();
1313        if total > 0.0 {
1314            for value in &mut histogram {
1315                *value /= total;
1316            }
1317        }
1318
1319        histogram
1320    }
1321
1322    fn extract_texture_features(&self, image: &ImageData) -> Vec<f32> {
1323        // Simplified texture features using local binary patterns
1324        let mut features = vec![0.0; 256];
1325
1326        let width = image.width as usize;
1327        let height = image.height as usize;
1328
1329        if width > 2 && height > 2 {
1330            for y in 1..height - 1 {
1331                for x in 1..width - 1 {
1332                    let center_idx = y * width + x;
1333                    if center_idx < image.data.len() {
1334                        let center = image.data[center_idx];
1335                        let mut pattern = 0u8;
1336
1337                        // Check 8 neighbors
1338                        let neighbors = [
1339                            (-1, -1),
1340                            (0, -1),
1341                            (1, -1),
1342                            (-1, 0),
1343                            (1, 0),
1344                            (-1, 1),
1345                            (0, 1),
1346                            (1, 1),
1347                        ];
1348
1349                        for (bit, (dx, dy)) in neighbors.iter().enumerate() {
1350                            let nx = (x as i32 + dx) as usize;
1351                            let ny = (y as i32 + dy) as usize;
1352                            let neighbor_idx = ny * width + nx;
1353
1354                            if neighbor_idx < image.data.len() && image.data[neighbor_idx] > center
1355                            {
1356                                pattern |= 1 << bit;
1357                            }
1358                        }
1359
1360                        features[pattern as usize] += 1.0;
1361                    }
1362                }
1363            }
1364        }
1365
1366        // Normalize
1367        let total: f32 = features.iter().sum();
1368        if total > 0.0 {
1369            for value in &mut features {
1370                *value /= total;
1371            }
1372        }
1373
1374        features
1375    }
1376
1377    fn extract_spectral_features(&self, audio: &AudioData) -> Vec<f32> {
1378        // Simplified spectral features using basic FFT-like transform
1379        let mut features = vec![0.0; 128];
1380
1381        if !audio.samples.is_empty() {
1382            // Simple frequency domain representation
1383            let chunk_size = audio.samples.len() / features.len();
1384
1385            for (i, feature) in features.iter_mut().enumerate() {
1386                let start = i * chunk_size;
1387                let end = ((i + 1) * chunk_size).min(audio.samples.len());
1388
1389                if start < end {
1390                    let chunk = &audio.samples[start..end];
1391
1392                    // Compute energy in this frequency band
1393                    let energy: f32 = chunk.iter().map(|x| x * x).sum();
1394                    *feature = energy.sqrt() / (chunk.len() as f32).sqrt();
1395                }
1396            }
1397        }
1398
1399        features
1400    }
1401
1402    fn augment_pairs(
1403        &self,
1404        pairs: &[(Modality, Vector, Modality, Vector)],
1405    ) -> Result<Vec<(Modality, Vector, Modality, Vector)>> {
1406        // Simple augmentation by adding small noise
1407        let mut augmented = Vec::new();
1408
1409        for (mod1, emb1, mod2, emb2) in pairs {
1410            let aug_emb1 = self.add_noise(emb1, 0.01)?;
1411            let aug_emb2 = self.add_noise(emb2, 0.01)?;
1412            augmented.push((*mod1, aug_emb1, *mod2, aug_emb2));
1413        }
1414
1415        Ok(augmented)
1416    }
1417
1418    fn add_noise(&self, embedding: &Vector, noise_std: f32) -> Result<Vector> {
1419        let values = embedding.as_f32();
1420        let mut noisy_values = Vec::with_capacity(values.len());
1421
1422        for (i, &value) in values.iter().enumerate() {
1423            // Deterministic noise based on index for reproducibility
1424            let noise = ((i as f32 * 0.1234).sin() * noise_std).clamp(-0.1, 0.1);
1425            noisy_values.push(value + noise);
1426        }
1427
1428        Ok(Vector::new(noisy_values))
1429    }
1430}
1431
1432impl ContrastiveOptimizer {
1433    pub fn new(learning_rate: f32, momentum: f32, weight_decay: f32) -> Self {
1434        Self {
1435            learning_rate,
1436            momentum,
1437            weight_decay,
1438            gradient_history: HashMap::new(),
1439            adaptive_lr: true,
1440            lr_schedule: LearningRateSchedule::CosineAnnealing {
1441                min_lr: learning_rate * 0.01,
1442                max_epochs: 100,
1443            },
1444        }
1445    }
1446
1447    pub fn step_schedule(&mut self) {
1448        // Update learning rate based on schedule
1449        match self.lr_schedule {
1450            LearningRateSchedule::StepDecay {
1451                step_size: _,
1452                gamma,
1453            } => {
1454                // Implement step decay
1455                self.learning_rate *= gamma;
1456            }
1457            LearningRateSchedule::ExponentialDecay { gamma } => {
1458                self.learning_rate *= gamma;
1459            }
1460            LearningRateSchedule::CosineAnnealing {
1461                min_lr,
1462                max_epochs: _,
1463            } => {
1464                // Simplified cosine annealing
1465                let progress = 0.01; // Would track actual progress
1466                let lr_range = self.learning_rate - min_lr;
1467                self.learning_rate =
1468                    min_lr + lr_range * (1.0 + (std::f32::consts::PI * progress).cos()) / 2.0;
1469            }
1470            LearningRateSchedule::Constant => {
1471                // No change
1472            }
1473        }
1474    }
1475}
1476
1477impl Default for DataAugmentation {
1478    fn default() -> Self {
1479        Self {
1480            text_augmentations: vec![
1481                TextAugmentation::RandomWordDropout(0.1),
1482                TextAugmentation::SynonymReplacement(0.1),
1483            ],
1484            image_augmentations: vec![
1485                ImageAugmentation::RandomFlip {
1486                    horizontal: true,
1487                    vertical: false,
1488                },
1489                ImageAugmentation::ColorJitter {
1490                    brightness: 0.2,
1491                    contrast: 0.2,
1492                    saturation: 0.2,
1493                },
1494            ],
1495            audio_augmentations: vec![
1496                AudioAugmentation::AddNoise { snr_db: 20.0 },
1497                AudioAugmentation::TimeStretch { factor: 1.1 },
1498            ],
1499            cross_modal_mixup: false,
1500            augmentation_probability: 0.5,
1501        }
1502    }
1503}
1504
1505impl Default for CurriculumLearning {
1506    fn default() -> Self {
1507        Self::new()
1508    }
1509}
1510
1511impl CurriculumLearning {
1512    pub fn new() -> Self {
1513        Self {
1514            enabled: false,
1515            current_difficulty: 0.0,
1516            difficulty_schedule: DifficultySchedule::Linear {
1517                start: 0.0,
1518                end: 1.0,
1519                epochs: 50,
1520            },
1521            pacing_function: PacingFunction::Root,
1522            competence_threshold: 0.8,
1523        }
1524    }
1525
1526    pub fn update_difficulty(&mut self, loss: f32) {
1527        if self.enabled {
1528            // Adjust difficulty based on loss
1529            if loss < self.competence_threshold {
1530                self.current_difficulty = (self.current_difficulty + 0.01).min(1.0);
1531            } else {
1532                self.current_difficulty = (self.current_difficulty - 0.005).max(0.0);
1533            }
1534        }
1535    }
1536}
1537
1538#[cfg(test)]
1539mod tests {
1540    use super::*;
1541
1542    #[test]
1543    fn test_joint_embedding_space() {
1544        let config = JointEmbeddingConfig::default();
1545        let joint_space = JointEmbeddingSpace::new(config);
1546
1547        let text_embedding = Vector::new(vec![0.1; 768]);
1548        let image_embedding = Vector::new(vec![0.2; 2048]);
1549
1550        let joint_text = joint_space
1551            .project_to_joint_space(Modality::Text, &text_embedding)
1552            .unwrap();
1553        let joint_image = joint_space
1554            .project_to_joint_space(Modality::Image, &image_embedding)
1555            .unwrap();
1556
1557        assert_eq!(joint_text.dimensions, 512);
1558        assert_eq!(joint_image.dimensions, 512);
1559
1560        let similarity = joint_space
1561            .cross_modal_similarity(
1562                Modality::Text,
1563                &text_embedding,
1564                Modality::Image,
1565                &image_embedding,
1566            )
1567            .unwrap();
1568
1569        assert!((-1.0..=1.0).contains(&similarity));
1570    }
1571
1572    #[test]
1573    fn test_cross_modal_attention() {
1574        let attention = CrossModalAttention::new(128, 4, 0.1, true);
1575
1576        let query = Vector::new(vec![0.1; 128]);
1577        let key = Vector::new(vec![0.2; 128]);
1578        let value = Vector::new(vec![0.3; 128]);
1579
1580        let result = attention.cross_attention(&query, &key, &value).unwrap();
1581        assert_eq!(result.dimensions, 128);
1582    }
1583
1584    #[test]
1585    fn test_contrastive_learning() {
1586        let config = JointEmbeddingConfig::default();
1587        let mut joint_space = JointEmbeddingSpace::new(config);
1588
1589        let positive_pairs = vec![(
1590            Modality::Text,
1591            Vector::new(vec![0.1; 768]),
1592            Modality::Image,
1593            Vector::new(vec![0.1; 2048]),
1594        )];
1595
1596        let negative_pairs = vec![(
1597            Modality::Text,
1598            Vector::new(vec![0.1; 768]),
1599            Modality::Image,
1600            Vector::new(vec![-0.1; 2048]),
1601        )];
1602
1603        let loss = joint_space
1604            .contrastive_align(&positive_pairs, &negative_pairs)
1605            .unwrap();
1606
1607        assert!(loss >= 0.0);
1608    }
1609
1610    #[test]
1611    fn test_clip_aligner() {
1612        let config = JointEmbeddingConfig::default();
1613        let aligner = CLIPAligner::new(config);
1614
1615        let text_words = vec!["hello", "world"];
1616        let text_embedding = aligner.create_text_embedding(&text_words);
1617        assert_eq!(text_embedding.dimensions, 768);
1618
1619        let (cache_size, _) = aligner.joint_space.get_cache_stats();
1620        assert_eq!(cache_size, 0); // Empty initially
1621    }
1622}