oxirs_vec/hnsw/
gpu.rs

1//! GPU acceleration for HNSW operations
2
3#[cfg(feature = "gpu")]
4use crate::gpu::GpuAccelerator;
5use crate::hnsw::HnswIndex;
6use crate::Vector;
7use anyhow::Result;
8use std::sync::Arc;
9
10/// GPU performance statistics
11#[derive(Debug, Clone)]
12pub struct GpuPerformanceStats {
13    pub gpu_memory_used: usize,
14    pub kernel_execution_time: f64,
15    pub memory_transfer_time: f64,
16    pub throughput_vectors_per_second: f64,
17}
18
19#[cfg(feature = "gpu")]
20impl HnswIndex {
21    /// GPU-accelerated batch distance calculation
22    pub fn gpu_batch_distance_calculation(
23        &self,
24        query: &Vector,
25        candidates: &[usize],
26    ) -> Result<Vec<f32>> {
27        if candidates.len() < self.config().gpu_batch_threshold {
28            // Fall back to CPU for small batches
29            return self.cpu_batch_distance_calculation(query, candidates);
30        }
31
32        if let Some(accelerator) = self.gpu_accelerator() {
33            self.single_gpu_distance_calculation(accelerator, query, candidates)
34        } else if !self.multi_gpu_accelerators().is_empty() {
35            self.multi_gpu_distance_calculation(query, candidates)
36        } else {
37            // Fallback to CPU
38            self.cpu_batch_distance_calculation(query, candidates)
39        }
40    }
41
42    /// Single GPU distance calculation
43    pub fn single_gpu_distance_calculation(
44        &self,
45        _accelerator: &Arc<GpuAccelerator>,
46        query: &Vector,
47        candidates: &[usize],
48    ) -> Result<Vec<f32>> {
49        // Placeholder for single GPU implementation
50        // Real implementation would:
51        // 1. Transfer query vector to GPU
52        // 2. Transfer candidate vectors to GPU
53        // 3. Launch CUDA kernels for distance calculation
54        // 4. Transfer results back to CPU
55
56        // For now, fall back to CPU
57        self.cpu_batch_distance_calculation(query, candidates)
58    }
59
60    /// Multi-GPU distance calculation with load balancing
61    pub fn multi_gpu_distance_calculation(
62        &self,
63        query: &Vector,
64        candidates: &[usize],
65    ) -> Result<Vec<f32>> {
66        if self.multi_gpu_accelerators().is_empty() {
67            return self.cpu_batch_distance_calculation(query, candidates);
68        }
69
70        // Placeholder for multi-GPU implementation
71        // Real implementation would:
72        // 1. Partition candidates across GPUs
73        // 2. Distribute work based on GPU capabilities
74        // 3. Launch parallel computations
75        // 4. Collect and merge results
76
77        // For now, fall back to CPU
78        self.cpu_batch_distance_calculation(query, candidates)
79    }
80
81    /// GPU-accelerated search with CUDA kernels
82    pub fn gpu_search(&self, query: &Vector, k: usize) -> Result<Vec<(String, f32)>> {
83        // Implementation of GPU-accelerated HNSW search
84
85        if self.nodes().is_empty() || self.entry_point().is_none() {
86            return Ok(Vec::new());
87        }
88
89        // Check if GPU acceleration is available
90        if !self.is_gpu_enabled() {
91            // Fallback to CPU search
92            return self.search_knn(query, k);
93        }
94
95        // For large search operations, use GPU acceleration
96        if k >= self.config().gpu_batch_threshold && self.nodes().len() >= 1000 {
97            return self.gpu_accelerated_search_large(query, k);
98        }
99
100        // For smaller operations, regular CPU search might be faster
101        self.search_knn(query, k)
102    }
103
104    /// GPU-accelerated search for large datasets
105    fn gpu_accelerated_search_large(&self, query: &Vector, k: usize) -> Result<Vec<(String, f32)>> {
106        // Get all candidate node IDs
107        let candidate_ids: Vec<usize> = (0..self.nodes().len()).collect();
108
109        // Use GPU batch distance calculation
110        let distances = self.gpu_batch_distance_calculation(query, &candidate_ids)?;
111
112        // Combine IDs with distances and sort
113        let mut id_distance_pairs: Vec<(usize, f32)> =
114            candidate_ids.into_iter().zip(distances).collect();
115
116        // Sort by distance (ascending)
117        id_distance_pairs
118            .sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
119
120        // Take top k and convert to results
121        let results: Vec<(String, f32)> = id_distance_pairs
122            .into_iter()
123            .take(k)
124            .filter_map(|(id, distance)| {
125                self.nodes()
126                    .get(id)
127                    .map(|node| (node.uri.clone(), distance))
128            })
129            .collect();
130
131        Ok(results)
132    }
133
134    /// Check if GPU acceleration is enabled and available
135    pub fn is_gpu_enabled(&self) -> bool {
136        self.gpu_accelerator().is_some() || !self.multi_gpu_accelerators().is_empty()
137    }
138
139    /// Get GPU performance statistics
140    pub fn gpu_performance_stats(&self) -> Option<GpuPerformanceStats> {
141        self.gpu_accelerator()
142            .map(|accelerator| GpuPerformanceStats {
143                gpu_memory_used: accelerator.get_memory_usage().unwrap_or(0),
144                kernel_execution_time: 0.0, // Would be tracked in real implementation
145                memory_transfer_time: 0.0,  // Would be tracked in real implementation
146                throughput_vectors_per_second: 0.0, // Would be calculated in real implementation
147            })
148    }
149
150    /// Warm up GPU kernels and memory
151    pub fn warmup_gpu(&self) -> Result<()> {
152        if !self.is_gpu_enabled() {
153            return Ok(());
154        }
155
156        // Placeholder for GPU warmup
157        // Real implementation would:
158        // 1. Pre-allocate GPU memory
159        // 2. Compile and cache kernels
160        // 3. Warm up GPU clocks
161
162        Ok(())
163    }
164
165    /// Transfer index data to GPU memory for faster access
166    pub fn preload_to_gpu(&self) -> Result<()> {
167        if !self.is_gpu_enabled() {
168            return Ok(());
169        }
170
171        // Placeholder for GPU data preloading
172        // Real implementation would:
173        // 1. Transfer all vectors to GPU memory
174        // 2. Create optimized GPU data structures
175        // 3. Cache frequently accessed data
176
177        Ok(())
178    }
179}
180
181#[cfg(not(feature = "gpu"))]
182impl HnswIndex {
183    /// Stub implementation when GPU feature is disabled
184    pub fn gpu_batch_distance_calculation(
185        &self,
186        query: &Vector,
187        candidates: &[usize],
188    ) -> Result<Vec<f32>> {
189        self.cpu_batch_distance_calculation(query, candidates)
190    }
191}