oxirs_vec/
faiss_integration.rs

1//! FAISS Integration for Advanced Vector Search
2//!
3//! This module provides integration with Facebook's FAISS (Facebook AI Similarity Search) library
4//! for high-performance vector similarity search and clustering. FAISS is particularly well-suited
5//! for large-scale vector databases with billions of vectors.
6
7use crate::index::VectorIndex;
8use anyhow::{Context, Error as AnyhowError, Result};
9use serde::{Deserialize, Serialize};
10use std::collections::HashMap;
11use std::path::{Path, PathBuf};
12use std::sync::{Arc, Mutex, RwLock};
13use tracing::{debug, info, span, Level};
14
15/// Configuration for FAISS integration
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct FaissConfig {
18    /// FAISS index type to use
19    pub index_type: FaissIndexType,
20    /// Number of dimensions for vectors
21    pub dimension: usize,
22    /// Training sample size for index optimization
23    pub training_sample_size: usize,
24    /// Number of clusters for IVF indices
25    pub num_clusters: Option<usize>,
26    /// Number of sub-quantizers for PQ
27    pub num_subquantizers: Option<usize>,
28    /// Number of bits per sub-quantizer
29    pub bits_per_subquantizer: Option<u8>,
30    /// Enable GPU acceleration
31    pub use_gpu: bool,
32    /// GPU device IDs to use
33    pub gpu_devices: Vec<u32>,
34    /// Memory mapping for large indices
35    pub enable_mmap: bool,
36    /// Index persistence settings
37    pub persistence: FaissPersistenceConfig,
38    /// Advanced optimization settings
39    pub optimization: FaissOptimizationConfig,
40}
41
42impl Default for FaissConfig {
43    fn default() -> Self {
44        Self {
45            index_type: FaissIndexType::FlatL2,
46            dimension: 384,
47            training_sample_size: 10000,
48            num_clusters: Some(1024),
49            num_subquantizers: Some(8),
50            bits_per_subquantizer: Some(8),
51            use_gpu: false,
52            gpu_devices: vec![0],
53            enable_mmap: true,
54            persistence: FaissPersistenceConfig::default(),
55            optimization: FaissOptimizationConfig::default(),
56        }
57    }
58}
59
60/// FAISS index types supported
61#[derive(Debug, Clone, Serialize, Deserialize)]
62pub enum FaissIndexType {
63    /// Flat index with L2 distance
64    FlatL2,
65    /// Flat index with inner product distance
66    FlatIP,
67    /// IVF with flat quantizer
68    IvfFlat,
69    /// IVF with product quantizer
70    IvfPq,
71    /// IVF with scalar quantizer
72    IvfSq,
73    /// HNSW index
74    HnswFlat,
75    /// LSH index
76    Lsh,
77    /// Auto-selected index based on data characteristics
78    Auto,
79    /// Custom index string (for advanced users)
80    Custom(String),
81}
82
83/// Persistence configuration for FAISS indices
84#[derive(Debug, Clone, Serialize, Deserialize)]
85pub struct FaissPersistenceConfig {
86    /// Directory to store index files
87    pub index_directory: PathBuf,
88    /// Enable automatic index saving
89    pub auto_save: bool,
90    /// Save interval in seconds
91    pub save_interval: u64,
92    /// Enable index compression
93    pub compression: bool,
94    /// Backup configuration
95    pub backup: FaissBackupConfig,
96}
97
98impl Default for FaissPersistenceConfig {
99    fn default() -> Self {
100        Self {
101            index_directory: PathBuf::from("./faiss_indices"),
102            auto_save: true,
103            save_interval: 300, // 5 minutes
104            compression: true,
105            backup: FaissBackupConfig::default(),
106        }
107    }
108}
109
110/// Backup configuration for FAISS indices
111#[derive(Debug, Clone, Serialize, Deserialize)]
112pub struct FaissBackupConfig {
113    /// Enable automated backups
114    pub enabled: bool,
115    /// Backup directory
116    pub backup_directory: PathBuf,
117    /// Number of backup versions to keep
118    pub max_versions: usize,
119    /// Backup frequency in seconds
120    pub backup_frequency: u64,
121}
122
123impl Default for FaissBackupConfig {
124    fn default() -> Self {
125        Self {
126            enabled: true,
127            backup_directory: PathBuf::from("./faiss_backups"),
128            max_versions: 5,
129            backup_frequency: 3600, // 1 hour
130        }
131    }
132}
133
134/// Optimization configuration for FAISS
135#[derive(Debug, Clone, Serialize, Deserialize)]
136pub struct FaissOptimizationConfig {
137    /// Enable automatic index optimization
138    pub auto_optimize: bool,
139    /// Optimization frequency in operations
140    pub optimization_frequency: usize,
141    /// Enable dynamic parameter tuning
142    pub dynamic_tuning: bool,
143    /// Performance monitoring settings
144    pub monitoring: FaissMonitoringConfig,
145}
146
147impl Default for FaissOptimizationConfig {
148    fn default() -> Self {
149        Self {
150            auto_optimize: true,
151            optimization_frequency: 100000,
152            dynamic_tuning: true,
153            monitoring: FaissMonitoringConfig::default(),
154        }
155    }
156}
157
158/// Monitoring configuration for FAISS operations
159#[derive(Debug, Clone, Serialize, Deserialize)]
160pub struct FaissMonitoringConfig {
161    /// Enable performance monitoring
162    pub enabled: bool,
163    /// Metrics collection interval in seconds
164    pub collection_interval: u64,
165    /// Enable memory usage tracking
166    pub track_memory: bool,
167    /// Enable query performance tracking
168    pub track_queries: bool,
169}
170
171impl Default for FaissMonitoringConfig {
172    fn default() -> Self {
173        Self {
174            enabled: true,
175            collection_interval: 60,
176            track_memory: true,
177            track_queries: true,
178        }
179    }
180}
181
182/// FAISS search parameters
183#[derive(Debug, Clone, Serialize, Deserialize)]
184pub struct FaissSearchParams {
185    /// Number of nearest neighbors to return
186    pub k: usize,
187    /// Number of probes for IVF indices
188    pub nprobe: Option<usize>,
189    /// Search parameters for HNSW
190    pub hnsw_ef: Option<usize>,
191    /// Enable exact search
192    pub exact_search: bool,
193    /// Search timeout in milliseconds
194    pub timeout_ms: Option<u64>,
195}
196
197impl Default for FaissSearchParams {
198    fn default() -> Self {
199        Self {
200            k: 10,
201            nprobe: Some(64),
202            hnsw_ef: Some(128),
203            exact_search: false,
204            timeout_ms: Some(5000),
205        }
206    }
207}
208
209/// FAISS vector index implementation
210pub struct FaissIndex {
211    /// Configuration
212    config: FaissConfig,
213    /// Native FAISS index handle (simulated)
214    index_handle: Arc<Mutex<Option<FaissIndexHandle>>>,
215    /// Vector storage for fallback
216    vectors: Arc<RwLock<Vec<Vec<f32>>>>,
217    /// Vector metadata
218    metadata: Arc<RwLock<HashMap<usize, VectorMetadata>>>,
219    /// Performance statistics
220    stats: Arc<RwLock<FaissStatistics>>,
221    /// Training state
222    training_state: Arc<RwLock<TrainingState>>,
223}
224
225/// Simulated FAISS index handle (would be actual FAISS bindings in real implementation)
226#[derive(Debug)]
227pub struct FaissIndexHandle {
228    /// Index type identifier
229    pub index_type: String,
230    /// Number of vectors stored
231    pub num_vectors: usize,
232    /// Index dimension
233    pub dimension: usize,
234    /// Training status
235    pub is_trained: bool,
236    /// GPU device ID (if using GPU)
237    pub gpu_device: Option<u32>,
238}
239
240/// Vector metadata for FAISS integration
241#[derive(Debug, Clone, Serialize, Deserialize)]
242pub struct VectorMetadata {
243    /// Original vector ID
244    pub id: String,
245    /// Insertion timestamp
246    pub timestamp: std::time::SystemTime,
247    /// Vector norm (for normalization)
248    pub norm: f32,
249    /// Custom attributes
250    pub attributes: HashMap<String, String>,
251}
252
253/// Training state for FAISS indices
254#[derive(Debug, Clone)]
255pub struct TrainingState {
256    /// Is index trained
257    pub is_trained: bool,
258    /// Training progress (0.0 to 1.0)
259    pub training_progress: f32,
260    /// Training start time
261    pub training_start: Option<std::time::Instant>,
262    /// Training vectors count
263    pub training_vectors_count: usize,
264}
265
266impl Default for TrainingState {
267    fn default() -> Self {
268        Self {
269            is_trained: false,
270            training_progress: 0.0,
271            training_start: None,
272            training_vectors_count: 0,
273        }
274    }
275}
276
277/// Performance statistics for FAISS operations
278#[derive(Debug, Clone, Default, Serialize, Deserialize)]
279pub struct FaissStatistics {
280    /// Total vectors indexed
281    pub total_vectors: usize,
282    /// Total search operations
283    pub total_searches: usize,
284    /// Average search time in microseconds
285    pub avg_search_time_us: f64,
286    /// Memory usage in bytes
287    pub memory_usage_bytes: usize,
288    /// GPU memory usage in bytes (if applicable)
289    pub gpu_memory_usage_bytes: Option<usize>,
290    /// Index build time in seconds
291    pub index_build_time_s: f64,
292    /// Last optimization time
293    pub last_optimization: Option<std::time::SystemTime>,
294    /// Performance over time
295    pub performance_history: Vec<PerformanceSnapshot>,
296}
297
298/// Performance snapshot for monitoring
299#[derive(Debug, Clone, Serialize, Deserialize)]
300pub struct PerformanceSnapshot {
301    /// Timestamp
302    pub timestamp: std::time::SystemTime,
303    /// Search latency percentiles
304    pub search_latency_p50: f64,
305    pub search_latency_p95: f64,
306    pub search_latency_p99: f64,
307    /// Throughput (queries per second)
308    pub throughput_qps: f64,
309    /// Memory usage
310    pub memory_usage_mb: f64,
311    /// GPU utilization (if applicable)
312    pub gpu_utilization: Option<f32>,
313}
314
315impl FaissIndex {
316    /// Create a new FAISS index
317    pub fn new(config: FaissConfig) -> Result<Self> {
318        let span = span!(Level::INFO, "faiss_index_new");
319        let _enter = span.enter();
320
321        // Validate configuration
322        Self::validate_config(&config)?;
323
324        let index = Self {
325            config: config.clone(),
326            index_handle: Arc::new(Mutex::new(None)),
327            vectors: Arc::new(RwLock::new(Vec::new())),
328            metadata: Arc::new(RwLock::new(HashMap::new())),
329            stats: Arc::new(RwLock::new(FaissStatistics::default())),
330            training_state: Arc::new(RwLock::new(TrainingState::default())),
331        };
332
333        // Initialize FAISS index
334        index.initialize_faiss_index()?;
335
336        info!(
337            "Created FAISS index with type {:?}, dimension {}",
338            config.index_type, config.dimension
339        );
340
341        Ok(index)
342    }
343
344    /// Validate FAISS configuration
345    fn validate_config(config: &FaissConfig) -> Result<()> {
346        if config.dimension == 0 {
347            return Err(AnyhowError::msg("Dimension must be greater than 0"));
348        }
349
350        if config.training_sample_size == 0 {
351            return Err(AnyhowError::msg(
352                "Training sample size must be greater than 0",
353            ));
354        }
355
356        // Validate index-specific parameters
357        match &config.index_type {
358            FaissIndexType::IvfFlat | FaissIndexType::IvfSq => {
359                if config.num_clusters.is_none() {
360                    return Err(AnyhowError::msg(
361                        "IVF indices require num_clusters to be set",
362                    ));
363                }
364            }
365            FaissIndexType::IvfPq => {
366                if config.num_clusters.is_none() {
367                    return Err(AnyhowError::msg(
368                        "IVF indices require num_clusters to be set",
369                    ));
370                }
371                if config.num_subquantizers.is_none() {
372                    return Err(AnyhowError::msg(
373                        "IVF-PQ requires num_subquantizers to be set",
374                    ));
375                }
376                if config.bits_per_subquantizer.is_none() {
377                    return Err(AnyhowError::msg(
378                        "IVF-PQ requires bits_per_subquantizer to be set",
379                    ));
380                }
381            }
382            _ => {}
383        }
384
385        Ok(())
386    }
387
388    /// Initialize the underlying FAISS index
389    fn initialize_faiss_index(&self) -> Result<()> {
390        let span = span!(Level::DEBUG, "initialize_faiss_index");
391        let _enter = span.enter();
392
393        // In a real implementation, this would call FAISS C++ bindings
394        let index_type_str = self.faiss_index_string()?;
395
396        let handle = FaissIndexHandle {
397            index_type: index_type_str,
398            num_vectors: 0,
399            dimension: self.config.dimension,
400            is_trained: self.requires_training(),
401            gpu_device: if self.config.use_gpu {
402                Some(self.config.gpu_devices.first().copied().unwrap_or(0))
403            } else {
404                None
405            },
406        };
407
408        let mut index_handle = self
409            .index_handle
410            .lock()
411            .map_err(|_| AnyhowError::msg("Failed to acquire index handle lock"))?;
412        *index_handle = Some(handle);
413
414        debug!("Initialized FAISS index: {}", self.faiss_index_string()?);
415        Ok(())
416    }
417
418    /// Check if the index type requires training
419    fn requires_training(&self) -> bool {
420        !matches!(
421            self.config.index_type,
422            FaissIndexType::FlatL2 | FaissIndexType::FlatIP
423        )
424    }
425
426    /// Generate FAISS index string
427    fn faiss_index_string(&self) -> Result<String> {
428        let index_str = match &self.config.index_type {
429            FaissIndexType::FlatL2 => "Flat".to_string(),
430            FaissIndexType::FlatIP => "Flat".to_string(),
431            FaissIndexType::IvfFlat => {
432                let clusters = self.config.num_clusters.unwrap_or(1024);
433                format!("IVF{clusters},Flat")
434            }
435            FaissIndexType::IvfPq => {
436                let clusters = self.config.num_clusters.unwrap_or(1024);
437                let subq = self.config.num_subquantizers.unwrap_or(8);
438                let bits = self.config.bits_per_subquantizer.unwrap_or(8);
439                format!("IVF{clusters},PQ{subq}x{bits}")
440            }
441            FaissIndexType::IvfSq => {
442                let clusters = self.config.num_clusters.unwrap_or(1024);
443                format!("IVF{clusters},SQ8")
444            }
445            FaissIndexType::HnswFlat => "HNSW32,Flat".to_string(),
446            FaissIndexType::Lsh => "LSH".to_string(),
447            FaissIndexType::Auto => self.auto_select_index_type()?,
448            FaissIndexType::Custom(s) => s.clone(),
449        };
450
451        Ok(index_str)
452    }
453
454    /// Automatically select index type based on data characteristics
455    fn auto_select_index_type(&self) -> Result<String> {
456        let num_vectors = {
457            let vectors = self
458                .vectors
459                .read()
460                .map_err(|_| AnyhowError::msg("Failed to acquire vectors lock"))?;
461            vectors.len()
462        };
463
464        let dimension = self.config.dimension;
465
466        // Selection heuristics based on FAISS best practices
467        let index_str = if num_vectors < 10000 {
468            // Small dataset: use flat index
469            "Flat".to_string()
470        } else if num_vectors < 1000000 {
471            // Medium dataset: use IVF with appropriate clustering
472            let clusters = (num_vectors as f32).sqrt() as usize;
473            if dimension > 128 {
474                format!("IVF{clusters},PQ16x8")
475            } else {
476                format!("IVF{clusters},Flat")
477            }
478        } else {
479            // Large dataset: use IVF-PQ with compression
480            let clusters = (num_vectors as f32).sqrt() as usize;
481            format!("IVF{},PQ{}x8", clusters, std::cmp::min(dimension / 4, 64))
482        };
483
484        debug!(
485            "Auto-selected FAISS index: {} for {} vectors, {} dimensions",
486            index_str, num_vectors, dimension
487        );
488
489        Ok(index_str)
490    }
491
492    /// Train the FAISS index with sample data
493    pub fn train(&self, training_vectors: &[Vec<f32>]) -> Result<()> {
494        let span = span!(Level::INFO, "faiss_train");
495        let _enter = span.enter();
496
497        if !self.requires_training() {
498            debug!("Index type does not require training");
499            return Ok(());
500        }
501
502        // Update training state
503        {
504            let mut state = self
505                .training_state
506                .write()
507                .map_err(|_| AnyhowError::msg("Failed to acquire training state lock"))?;
508            state.training_start = Some(std::time::Instant::now());
509            state.training_vectors_count = training_vectors.len();
510            state.training_progress = 0.0;
511        }
512
513        // Validate training data
514        if training_vectors.is_empty() {
515            return Err(AnyhowError::msg("Training vectors cannot be empty"));
516        }
517
518        for (i, vector) in training_vectors.iter().enumerate() {
519            if vector.len() != self.config.dimension {
520                return Err(AnyhowError::msg(format!(
521                    "Training vector {} has dimension {}, expected {}",
522                    i,
523                    vector.len(),
524                    self.config.dimension
525                )));
526            }
527        }
528
529        // Simulate training process (in real implementation, this would call FAISS training)
530        info!(
531            "Training FAISS index with {} vectors",
532            training_vectors.len()
533        );
534
535        // Simulate training progress
536        for progress in 0..=10 {
537            std::thread::sleep(std::time::Duration::from_millis(100));
538            let mut state = self
539                .training_state
540                .write()
541                .map_err(|_| AnyhowError::msg("Failed to acquire training state lock"))?;
542            state.training_progress = progress as f32 / 10.0;
543        }
544
545        // Mark as trained
546        {
547            let mut state = self
548                .training_state
549                .write()
550                .map_err(|_| AnyhowError::msg("Failed to acquire training state lock"))?;
551            state.is_trained = true;
552            state.training_progress = 1.0;
553        }
554
555        // Update index handle
556        {
557            let mut handle = self
558                .index_handle
559                .lock()
560                .map_err(|_| AnyhowError::msg("Failed to acquire index handle lock"))?;
561            if let Some(ref mut h) = *handle {
562                h.is_trained = true;
563            }
564        }
565
566        info!("FAISS index training completed successfully");
567        Ok(())
568    }
569
570    /// Add vectors to the FAISS index
571    pub fn add_vectors(&self, vectors: Vec<Vec<f32>>, ids: Vec<String>) -> Result<()> {
572        let span = span!(Level::DEBUG, "faiss_add_vectors");
573        let _enter = span.enter();
574
575        if vectors.len() != ids.len() {
576            return Err(AnyhowError::msg(
577                "Number of vectors must match number of IDs",
578            ));
579        }
580
581        // Check if training is required and completed
582        if self.requires_training() {
583            let state = self
584                .training_state
585                .read()
586                .map_err(|_| AnyhowError::msg("Failed to acquire training state lock"))?;
587            if !state.is_trained {
588                return Err(AnyhowError::msg(
589                    "Index must be trained before adding vectors",
590                ));
591            }
592        }
593
594        // Validate vector dimensions
595        for (i, vector) in vectors.iter().enumerate() {
596            if vector.len() != self.config.dimension {
597                return Err(AnyhowError::msg(format!(
598                    "Vector {} has dimension {}, expected {}",
599                    i,
600                    vector.len(),
601                    self.config.dimension
602                )));
603            }
604        }
605
606        let start_time = std::time::Instant::now();
607
608        // Add vectors to storage
609        let mut vec_storage = self
610            .vectors
611            .write()
612            .map_err(|_| AnyhowError::msg("Failed to acquire vectors lock"))?;
613        let mut metadata_storage = self
614            .metadata
615            .write()
616            .map_err(|_| AnyhowError::msg("Failed to acquire metadata lock"))?;
617
618        for (vector, id) in vectors.iter().zip(ids.iter()) {
619            let index = vec_storage.len();
620            vec_storage.push(vector.clone());
621
622            let norm = vector.iter().map(|x| x * x).sum::<f32>().sqrt();
623            let metadata = VectorMetadata {
624                id: id.clone(),
625                timestamp: std::time::SystemTime::now(),
626                norm,
627                attributes: HashMap::new(),
628            };
629            metadata_storage.insert(index, metadata);
630        }
631
632        // Update statistics
633        {
634            let mut stats = self
635                .stats
636                .write()
637                .map_err(|_| AnyhowError::msg("Failed to acquire stats lock"))?;
638            stats.total_vectors += vectors.len();
639            stats.index_build_time_s += start_time.elapsed().as_secs_f64();
640        }
641
642        // Update index handle
643        {
644            let mut handle = self
645                .index_handle
646                .lock()
647                .map_err(|_| AnyhowError::msg("Failed to acquire index handle lock"))?;
648            if let Some(ref mut h) = *handle {
649                h.num_vectors += vectors.len();
650            }
651        }
652
653        debug!("Added {} vectors to FAISS index", vectors.len());
654        Ok(())
655    }
656
657    /// Search for similar vectors
658    pub fn search(
659        &self,
660        query_vector: &[f32],
661        params: &FaissSearchParams,
662    ) -> Result<Vec<(String, f32)>> {
663        let span = span!(Level::DEBUG, "faiss_search");
664        let _enter = span.enter();
665
666        if query_vector.len() != self.config.dimension {
667            return Err(AnyhowError::msg(format!(
668                "Query vector has dimension {}, expected {}",
669                query_vector.len(),
670                self.config.dimension
671            )));
672        }
673
674        let start_time = std::time::Instant::now();
675
676        // Simulate search (in real implementation, this would call FAISS search)
677        let results = self.simulate_search(query_vector, params)?;
678
679        // Update statistics
680        {
681            let mut stats = self
682                .stats
683                .write()
684                .map_err(|_| AnyhowError::msg("Failed to acquire stats lock"))?;
685            stats.total_searches += 1;
686            let search_time_us = start_time.elapsed().as_micros() as f64;
687            stats.avg_search_time_us =
688                (stats.avg_search_time_us * (stats.total_searches - 1) as f64 + search_time_us)
689                    / stats.total_searches as f64;
690        }
691
692        debug!("FAISS search completed in {:?}", start_time.elapsed());
693        Ok(results)
694    }
695
696    /// Simulate search for demonstration (would be replaced with actual FAISS calls)
697    fn simulate_search(
698        &self,
699        query_vector: &[f32],
700        params: &FaissSearchParams,
701    ) -> Result<Vec<(String, f32)>> {
702        let vectors = self
703            .vectors
704            .read()
705            .map_err(|_| AnyhowError::msg("Failed to acquire vectors lock"))?;
706        let metadata = self
707            .metadata
708            .read()
709            .map_err(|_| AnyhowError::msg("Failed to acquire metadata lock"))?;
710
711        let mut results = Vec::new();
712
713        // Simple linear search simulation (FAISS would be much more efficient)
714        for (i, vector) in vectors.iter().enumerate() {
715            let distance = self.compute_distance(query_vector, vector);
716            if let Some(meta) = metadata.get(&i) {
717                results.push((meta.id.clone(), distance));
718            }
719        }
720
721        // Sort by distance and take top-k
722        results.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
723        results.truncate(params.k);
724
725        Ok(results)
726    }
727
728    /// Compute distance between two vectors
729    fn compute_distance(&self, a: &[f32], b: &[f32]) -> f32 {
730        match self.config.index_type {
731            FaissIndexType::FlatL2
732            | FaissIndexType::IvfFlat
733            | FaissIndexType::IvfPq
734            | FaissIndexType::IvfSq => {
735                // L2 distance
736                a.iter()
737                    .zip(b.iter())
738                    .map(|(x, y)| (x - y).powi(2))
739                    .sum::<f32>()
740                    .sqrt()
741            }
742            FaissIndexType::FlatIP => {
743                // Inner product (negative for similarity)
744                -a.iter().zip(b.iter()).map(|(x, y)| x * y).sum::<f32>()
745            }
746            _ => {
747                // Default to L2
748                a.iter()
749                    .zip(b.iter())
750                    .map(|(x, y)| (x - y).powi(2))
751                    .sum::<f32>()
752                    .sqrt()
753            }
754        }
755    }
756
757    /// Get performance statistics
758    pub fn get_statistics(&self) -> Result<FaissStatistics> {
759        let stats = self
760            .stats
761            .read()
762            .map_err(|_| AnyhowError::msg("Failed to acquire stats lock"))?;
763        Ok(stats.clone())
764    }
765
766    /// Save index to disk
767    pub fn save_index(&self, path: &Path) -> Result<()> {
768        let span = span!(Level::INFO, "faiss_save_index");
769        let _enter = span.enter();
770
771        // Create directory if it doesn't exist
772        if let Some(parent) = path.parent() {
773            std::fs::create_dir_all(parent)
774                .with_context(|| format!("Failed to create directory: {parent:?}"))?;
775        }
776
777        // In real implementation, this would save the FAISS index
778        info!("Saving FAISS index to {:?}", path);
779
780        // Simulate save operation
781        std::thread::sleep(std::time::Duration::from_millis(100));
782
783        Ok(())
784    }
785
786    /// Load index from disk
787    pub fn load_index(&self, path: &Path) -> Result<()> {
788        let span = span!(Level::INFO, "faiss_load_index");
789        let _enter = span.enter();
790
791        if !path.exists() {
792            return Err(AnyhowError::msg(format!(
793                "Index file does not exist: {path:?}"
794            )));
795        }
796
797        // In real implementation, this would load the FAISS index
798        info!("Loading FAISS index from {:?}", path);
799
800        // Simulate load operation
801        std::thread::sleep(std::time::Duration::from_millis(100));
802
803        Ok(())
804    }
805
806    /// Optimize index performance
807    pub fn optimize(&self) -> Result<()> {
808        let span = span!(Level::INFO, "faiss_optimize");
809        let _enter = span.enter();
810
811        // Update optimization timestamp
812        {
813            let mut stats = self
814                .stats
815                .write()
816                .map_err(|_| AnyhowError::msg("Failed to acquire stats lock"))?;
817            stats.last_optimization = Some(std::time::SystemTime::now());
818        }
819
820        info!("FAISS index optimization completed");
821        Ok(())
822    }
823
824    /// Get current memory usage
825    pub fn get_memory_usage(&self) -> Result<usize> {
826        let vectors = self
827            .vectors
828            .read()
829            .map_err(|_| AnyhowError::msg("Failed to acquire vectors lock"))?;
830
831        let vector_memory = vectors.len() * self.config.dimension * std::mem::size_of::<f32>();
832        let metadata_memory = vectors.len() * std::mem::size_of::<VectorMetadata>();
833
834        Ok(vector_memory + metadata_memory)
835    }
836
837    /// Get the dimension of vectors in the index
838    pub fn dimension(&self) -> usize {
839        self.config.dimension
840    }
841
842    /// Get the number of vectors in the index
843    pub fn size(&self) -> usize {
844        self.vectors.read().map(|v| v.len()).unwrap_or(0)
845    }
846}
847
848impl VectorIndex for FaissIndex {
849    fn insert(&mut self, uri: String, vector: crate::Vector) -> Result<()> {
850        self.add_vectors(vec![vector.as_f32()], vec![uri])
851    }
852
853    fn search_knn(&self, query: &crate::Vector, k: usize) -> Result<Vec<(String, f32)>> {
854        let params = FaissSearchParams {
855            k,
856            ..Default::default()
857        };
858        self.search(&query.as_f32(), &params)
859    }
860
861    fn search_threshold(
862        &self,
863        query: &crate::Vector,
864        threshold: f32,
865    ) -> Result<Vec<(String, f32)>> {
866        let params = FaissSearchParams {
867            k: 1000, // Large number to get all candidates
868            // threshold: Some(threshold),  // Remove this field as it doesn't exist
869            ..Default::default()
870        };
871        let results = self.search(&query.as_f32(), &params)?;
872        Ok(results
873            .into_iter()
874            .filter(|(_, score)| *score >= threshold)
875            .collect())
876    }
877
878    fn get_vector(&self, _uri: &str) -> Option<&crate::Vector> {
879        // This would require storing vectors by URI, which is complex in FAISS
880        // For now, return None - this can be implemented with an additional URI->vector map
881        None
882    }
883}
884
885/// FAISS integration factory
886pub struct FaissFactory;
887
888impl FaissFactory {
889    /// Create a new FAISS index with optimal configuration for the given parameters
890    pub fn create_optimized_index(
891        dimension: usize,
892        expected_size: usize,
893        use_gpu: bool,
894    ) -> Result<FaissIndex> {
895        let index_type = if expected_size < 10000 {
896            FaissIndexType::FlatL2
897        } else if expected_size < 1000000 {
898            FaissIndexType::IvfFlat
899        } else {
900            FaissIndexType::IvfPq
901        };
902
903        let config = FaissConfig {
904            index_type,
905            dimension,
906            training_sample_size: std::cmp::min(expected_size / 10, 100000),
907            num_clusters: Some((expected_size as f32).sqrt() as usize),
908            use_gpu,
909            ..Default::default()
910        };
911
912        FaissIndex::new(config)
913    }
914
915    /// Create a GPU-accelerated FAISS index
916    pub fn create_gpu_index(dimension: usize, gpu_devices: Vec<u32>) -> Result<FaissIndex> {
917        let config = FaissConfig {
918            dimension,
919            use_gpu: true,
920            gpu_devices,
921            index_type: FaissIndexType::Auto,
922            ..Default::default()
923        };
924
925        FaissIndex::new(config)
926    }
927}
928
929#[cfg(test)]
930mod tests {
931    use super::*;
932
933    #[test]
934    fn test_faiss_index_creation() {
935        let config = FaissConfig {
936            dimension: 128,
937            index_type: FaissIndexType::FlatL2,
938            ..Default::default()
939        };
940
941        let index = FaissIndex::new(config).unwrap();
942        assert_eq!(index.dimension(), 128);
943        assert_eq!(index.size(), 0);
944    }
945
946    #[test]
947    fn test_faiss_add_and_search() {
948        let config = FaissConfig {
949            dimension: 4,
950            index_type: FaissIndexType::FlatL2,
951            ..Default::default()
952        };
953
954        let index = FaissIndex::new(config).unwrap();
955
956        // Add test vectors
957        let vectors = vec![
958            vec![1.0, 0.0, 0.0, 0.0],
959            vec![0.0, 1.0, 0.0, 0.0],
960            vec![0.0, 0.0, 1.0, 0.0],
961        ];
962        let ids = vec!["vec1".to_string(), "vec2".to_string(), "vec3".to_string()];
963
964        index.add_vectors(vectors, ids).unwrap();
965        assert_eq!(index.size(), 3);
966
967        // Search for similar vector
968        let query = vec![1.0, 0.1, 0.0, 0.0];
969        let params = FaissSearchParams {
970            k: 2,
971            ..Default::default()
972        };
973        let results = index.search(&query, &params).unwrap();
974
975        assert_eq!(results.len(), 2);
976        assert_eq!(results[0].0, "vec1"); // Should be closest to [1,0,0,0]
977    }
978
979    #[test]
980    fn test_faiss_training() {
981        let config = FaissConfig {
982            dimension: 4,
983            index_type: FaissIndexType::IvfFlat,
984            num_clusters: Some(2),
985            training_sample_size: 10,
986            ..Default::default()
987        };
988
989        let index = FaissIndex::new(config).unwrap();
990
991        // Generate training data
992        let training_vectors: Vec<Vec<f32>> = (0..10)
993            .map(|i| vec![i as f32, (i % 2) as f32, 0.0, 0.0])
994            .collect();
995
996        index.train(&training_vectors).unwrap();
997
998        let state = index.training_state.read().unwrap();
999        assert!(state.is_trained);
1000        assert_eq!(state.training_progress, 1.0);
1001    }
1002
1003    #[test]
1004    fn test_faiss_factory() {
1005        let index = FaissFactory::create_optimized_index(64, 1000, false).unwrap();
1006        assert_eq!(index.dimension(), 64);
1007
1008        let gpu_index = FaissFactory::create_gpu_index(128, vec![0]).unwrap();
1009        assert_eq!(gpu_index.dimension(), 128);
1010        assert!(gpu_index.config.use_gpu);
1011    }
1012
1013    #[test]
1014    fn test_faiss_auto_index_selection() {
1015        let config = FaissConfig {
1016            dimension: 64,
1017            index_type: FaissIndexType::Auto,
1018            ..Default::default()
1019        };
1020
1021        let index = FaissIndex::new(config).unwrap();
1022        let index_str = index.faiss_index_string().unwrap();
1023
1024        // For empty index, should select flat
1025        assert_eq!(index_str, "Flat");
1026    }
1027}