oxirs_vec/
faiss_gpu_integration.rs

1//! FAISS GPU Integration for Massive Performance Acceleration
2//!
3//! This module provides comprehensive GPU acceleration integration with FAISS GPU capabilities,
4//! enabling massive performance improvements for large-scale vector operations.
5//!
6//! Features:
7//! - Multi-GPU support with automatic load balancing
8//! - GPU memory management and optimization
9//! - Asynchronous GPU operations with streaming
10//! - GPU-CPU hybrid processing
11//! - Dynamic workload distribution
12//! - GPU performance monitoring and tuning
13
14use crate::{
15    faiss_integration::{FaissConfig, FaissSearchParams},
16    gpu::GpuExecutionConfig,
17};
18use anyhow::{Error as AnyhowError, Result};
19use serde::{Deserialize, Serialize};
20use std::collections::{BTreeMap, HashMap, VecDeque};
21use std::sync::{
22    atomic::{AtomicUsize, Ordering},
23    Arc, Mutex, RwLock,
24};
25use std::time::{Duration, Instant};
26use tokio::sync::oneshot;
27use tracing::{debug, error, info, span, warn, Level};
28
29/// GPU configuration for FAISS integration
30#[derive(Debug, Clone, Serialize, Deserialize)]
31pub struct FaissGpuConfig {
32    /// GPU device IDs to use
33    pub device_ids: Vec<i32>,
34    /// Memory allocation per device (bytes)
35    pub memory_per_device: usize,
36    /// Enable multi-GPU distributed processing
37    pub enable_multi_gpu: bool,
38    /// GPU memory management strategy
39    pub memory_strategy: GpuMemoryStrategy,
40    /// Compute stream configuration
41    pub stream_config: GpuStreamConfig,
42    /// Performance optimization settings
43    pub optimization: GpuOptimizationConfig,
44    /// Error handling and recovery
45    pub error_handling: GpuErrorConfig,
46}
47
48/// GPU memory management strategies
49#[derive(Debug, Clone, Serialize, Deserialize)]
50pub enum GpuMemoryStrategy {
51    /// Pre-allocate fixed memory pools
52    FixedPool,
53    /// Dynamic allocation as needed
54    Dynamic,
55    /// Unified memory management
56    Unified,
57    /// Memory streaming for large datasets
58    Streaming { chunk_size: usize },
59}
60
61/// GPU compute stream configuration
62#[derive(Debug, Clone, Serialize, Deserialize)]
63pub struct GpuStreamConfig {
64    /// Number of compute streams per device
65    pub streams_per_device: usize,
66    /// Enable stream overlapping
67    pub enable_overlapping: bool,
68    /// Stream priority levels
69    pub priority_levels: Vec<i32>,
70    /// Synchronization strategy
71    pub sync_strategy: SyncStrategy,
72}
73
74/// Stream synchronization strategies
75#[derive(Debug, Clone, Serialize, Deserialize)]
76pub enum SyncStrategy {
77    /// Block until completion
78    Blocking,
79    /// Non-blocking with callbacks
80    NonBlocking,
81    /// Event-based synchronization
82    EventBased,
83    /// Cooperative synchronization
84    Cooperative,
85}
86
87/// GPU optimization configuration
88#[derive(Debug, Clone, Serialize, Deserialize)]
89pub struct GpuOptimizationConfig {
90    /// Enable Tensor Core utilization
91    pub enable_tensor_cores: bool,
92    /// Enable mixed precision (FP16/FP32)
93    pub enable_mixed_precision: bool,
94    /// Memory coalescing optimization
95    pub enable_coalescing: bool,
96    /// Kernel fusion optimization
97    pub enable_kernel_fusion: bool,
98    /// Cache optimization settings
99    pub cache_config: GpuCacheConfig,
100    /// Batch processing optimization
101    pub batch_optimization: BatchOptimizationConfig,
102}
103
104/// GPU cache configuration
105#[derive(Debug, Clone, Serialize, Deserialize)]
106pub struct GpuCacheConfig {
107    /// L1 cache configuration
108    pub l1_cache_config: CacheConfig,
109    /// Shared memory configuration
110    pub shared_memory_config: CacheConfig,
111    /// Enable cache prefetching
112    pub enable_prefetching: bool,
113    /// Cache line size optimization
114    pub cache_line_size: usize,
115}
116
117/// Cache configuration
118#[derive(Debug, Clone, Serialize, Deserialize)]
119pub enum CacheConfig {
120    /// Prefer L1 cache
121    PreferL1,
122    /// Prefer shared memory
123    PreferShared,
124    /// Equal allocation
125    Equal,
126    /// Disable cache
127    Disabled,
128}
129
130/// Batch optimization configuration
131#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct BatchOptimizationConfig {
133    /// Optimal batch size for each operation
134    pub optimal_batch_sizes: HashMap<String, usize>,
135    /// Enable dynamic batch sizing
136    pub enable_dynamic_batching: bool,
137    /// Batch coalescence threshold
138    pub coalescence_threshold: usize,
139    /// Maximum batch size
140    pub max_batch_size: usize,
141}
142
143/// GPU error handling configuration
144#[derive(Debug, Clone, Serialize, Deserialize)]
145pub struct GpuErrorConfig {
146    /// Enable automatic error recovery
147    pub enable_auto_recovery: bool,
148    /// Maximum retry attempts
149    pub max_retries: usize,
150    /// Fallback to CPU on GPU failure
151    pub fallback_to_cpu: bool,
152    /// Error logging level
153    pub error_logging_level: String,
154}
155
156impl Default for FaissGpuConfig {
157    fn default() -> Self {
158        Self {
159            device_ids: vec![0],
160            memory_per_device: 2 * 1024 * 1024 * 1024, // 2GB
161            enable_multi_gpu: false,
162            memory_strategy: GpuMemoryStrategy::Dynamic,
163            stream_config: GpuStreamConfig {
164                streams_per_device: 4,
165                enable_overlapping: true,
166                priority_levels: vec![0, 1, 2],
167                sync_strategy: SyncStrategy::NonBlocking,
168            },
169            optimization: GpuOptimizationConfig {
170                enable_tensor_cores: true,
171                enable_mixed_precision: true,
172                enable_coalescing: true,
173                enable_kernel_fusion: true,
174                cache_config: GpuCacheConfig {
175                    l1_cache_config: CacheConfig::PreferL1,
176                    shared_memory_config: CacheConfig::PreferShared,
177                    enable_prefetching: true,
178                    cache_line_size: 128,
179                },
180                batch_optimization: BatchOptimizationConfig {
181                    optimal_batch_sizes: {
182                        let mut sizes = HashMap::new();
183                        sizes.insert("search".to_string(), 1024);
184                        sizes.insert("add".to_string(), 512);
185                        sizes.insert("train".to_string(), 256);
186                        sizes
187                    },
188                    enable_dynamic_batching: true,
189                    coalescence_threshold: 64,
190                    max_batch_size: 4096,
191                },
192            },
193            error_handling: GpuErrorConfig {
194                enable_auto_recovery: true,
195                max_retries: 3,
196                fallback_to_cpu: true,
197                error_logging_level: "warn".to_string(),
198            },
199        }
200    }
201}
202
203/// FAISS GPU-accelerated index
204pub struct FaissGpuIndex {
205    /// Base FAISS configuration
206    faiss_config: FaissConfig,
207    /// GPU-specific configuration
208    gpu_config: FaissGpuConfig,
209    /// GPU runtime for operations
210    gpu_runtime: Arc<GpuExecutionConfig>,
211    /// GPU memory pools per device
212    memory_pools: Arc<RwLock<HashMap<i32, FaissGpuMemoryPool>>>,
213    /// Compute streams per device
214    compute_streams: Arc<RwLock<HashMap<i32, Vec<GpuComputeStream>>>>,
215    /// Performance statistics
216    stats: Arc<RwLock<GpuPerformanceStats>>,
217    /// Work queue for GPU operations
218    work_queue: Arc<Mutex<VecDeque<GpuOperation>>>,
219    /// Operation results cache
220    results_cache: Arc<RwLock<HashMap<String, CachedResult>>>,
221    /// Load balancer for multi-GPU
222    load_balancer: Arc<RwLock<GpuLoadBalancer>>,
223}
224
225/// GPU memory pool for efficient allocation
226#[derive(Debug)]
227pub struct FaissGpuMemoryPool {
228    /// Device ID
229    pub device_id: i32,
230    /// Total pool size
231    pub total_size: usize,
232    /// Currently allocated size
233    pub allocated_size: AtomicUsize,
234    /// Free blocks
235    pub free_blocks: Arc<Mutex<BTreeMap<usize, Vec<GpuMemoryBlock>>>>,
236    /// Allocated blocks
237    pub allocated_blocks: Arc<RwLock<HashMap<usize, GpuMemoryBlock>>>,
238    /// Allocation statistics
239    pub allocation_stats: Arc<RwLock<AllocationStatistics>>,
240}
241
242/// GPU memory block
243#[derive(Debug)]
244pub struct GpuMemoryBlock {
245    /// Block address on GPU
246    pub gpu_address: usize,
247    /// Block size in bytes
248    pub size: usize,
249    /// Allocation timestamp
250    pub allocated_at: Instant,
251    /// Reference count
252    pub ref_count: AtomicUsize,
253    /// Block type
254    pub block_type: MemoryBlockType,
255}
256
257impl Clone for GpuMemoryBlock {
258    fn clone(&self) -> Self {
259        Self {
260            gpu_address: self.gpu_address,
261            size: self.size,
262            allocated_at: self.allocated_at,
263            ref_count: AtomicUsize::new(self.ref_count.load(Ordering::Relaxed)),
264            block_type: self.block_type,
265        }
266    }
267}
268
269/// Memory block types
270#[derive(Debug, Clone, Copy)]
271pub enum MemoryBlockType {
272    /// Vector storage
273    Vectors,
274    /// Index structure
275    IndexData,
276    /// Temporary computation
277    Temporary,
278    /// Result buffer
279    Results,
280}
281
282/// GPU compute stream
283#[derive(Debug)]
284pub struct GpuComputeStream {
285    /// Stream ID
286    pub stream_id: usize,
287    /// Device ID
288    pub device_id: i32,
289    /// Stream handle (simulated)
290    pub stream_handle: usize,
291    /// Stream priority
292    pub priority: i32,
293    /// Current operation
294    pub current_operation: Arc<Mutex<Option<GpuOperation>>>,
295    /// Operation history
296    pub operation_history: Arc<RwLock<VecDeque<CompletedOperation>>>,
297    /// Stream utilization
298    pub utilization: Arc<RwLock<StreamUtilization>>,
299}
300
301/// GPU operation
302#[derive(Debug)]
303pub struct GpuOperation {
304    /// Operation ID
305    pub id: String,
306    /// Operation type
307    pub operation_type: GpuOperationType,
308    /// Input data
309    pub input_data: GpuOperationData,
310    /// Expected output size
311    pub output_size: usize,
312    /// Priority level
313    pub priority: i32,
314    /// Timeout
315    pub timeout: Option<Duration>,
316    /// Result sender
317    pub result_sender: Option<oneshot::Sender<GpuOperationResult>>,
318}
319
320/// GPU operation types
321#[derive(Debug, Clone)]
322pub enum GpuOperationType {
323    /// Vector search operation
324    Search {
325        query_vectors: Vec<Vec<f32>>,
326        k: usize,
327        search_params: FaissSearchParams,
328    },
329    /// Vector addition operation
330    Add {
331        vectors: Vec<Vec<f32>>,
332        ids: Vec<String>,
333    },
334    /// Index training operation
335    Train { training_vectors: Vec<Vec<f32>> },
336    /// Index optimization operation
337    Optimize,
338    /// Memory transfer operation
339    MemoryTransfer {
340        source: TransferSource,
341        destination: TransferDestination,
342        size: usize,
343    },
344}
345
346/// GPU operation data
347#[derive(Debug, Clone)]
348pub enum GpuOperationData {
349    /// Raw vector data
350    Vectors(Vec<Vec<f32>>),
351    /// Serialized index data
352    IndexData(Vec<u8>),
353    /// Query parameters
354    QueryParams(HashMap<String, Vec<u8>>),
355    /// Empty operation
356    Empty,
357}
358
359/// Transfer source/destination
360#[derive(Debug, Clone)]
361pub enum TransferSource {
362    CpuMemory(Vec<u8>),
363    GpuMemory { device_id: i32, address: usize },
364    Disk(std::path::PathBuf),
365}
366
367#[derive(Debug, Clone)]
368pub enum TransferDestination {
369    CpuMemory,
370    GpuMemory { device_id: i32, address: usize },
371    Disk(std::path::PathBuf),
372}
373
374/// GPU operation result
375#[derive(Debug, Clone)]
376pub struct GpuOperationResult {
377    /// Operation ID
378    pub operation_id: String,
379    /// Success status
380    pub success: bool,
381    /// Result data
382    pub result_data: GpuResultData,
383    /// Execution time
384    pub execution_time: Duration,
385    /// Memory usage
386    pub memory_used: usize,
387    /// Error message if failed
388    pub error_message: Option<String>,
389}
390
391/// GPU result data
392#[derive(Debug, Clone)]
393pub enum GpuResultData {
394    /// Search results
395    SearchResults(Vec<Vec<(String, f32)>>),
396    /// Training completion
397    TrainingComplete,
398    /// Addition completion
399    AdditionComplete,
400    /// Optimization metrics
401    OptimizationMetrics(HashMap<String, f64>),
402    /// Memory transfer completion
403    TransferComplete,
404    /// Error result
405    Error(String),
406}
407
408/// Completed operation record
409#[derive(Debug, Clone)]
410pub struct CompletedOperation {
411    /// Operation ID
412    pub operation_id: String,
413    /// Operation type
414    pub operation_type: String,
415    /// Start time
416    pub start_time: Instant,
417    /// End time
418    pub end_time: Instant,
419    /// Success status
420    pub success: bool,
421    /// Memory used
422    pub memory_used: usize,
423}
424
425/// Stream utilization metrics
426#[derive(Debug, Clone, Default)]
427pub struct StreamUtilization {
428    /// Total operations processed
429    pub total_operations: usize,
430    /// Total execution time
431    pub total_execution_time: Duration,
432    /// Average execution time
433    pub avg_execution_time: Duration,
434    /// Utilization percentage
435    pub utilization_percentage: f32,
436    /// Idle time
437    pub idle_time: Duration,
438}
439
440/// GPU performance statistics
441#[derive(Debug, Clone, Default)]
442pub struct GpuPerformanceStats {
443    /// Per-device statistics
444    pub device_stats: HashMap<i32, DeviceStats>,
445    /// Overall GPU utilization
446    pub overall_utilization: f32,
447    /// Memory efficiency
448    pub memory_efficiency: f32,
449    /// Throughput metrics
450    pub throughput: ThroughputMetrics,
451    /// Error statistics
452    pub error_stats: ErrorStatistics,
453    /// Performance trends
454    pub performance_trends: PerformanceTrends,
455}
456
457/// Per-device performance statistics
458#[derive(Debug, Clone, Default)]
459pub struct DeviceStats {
460    /// Device utilization percentage
461    pub utilization: f32,
462    /// Memory usage
463    pub memory_usage: MemoryUsageStats,
464    /// Compute performance
465    pub compute_performance: ComputePerformanceStats,
466    /// Power consumption (watts)
467    pub power_consumption: f32,
468    /// Temperature (Celsius)
469    pub temperature: f32,
470}
471
472/// Memory usage statistics
473#[derive(Debug, Clone, Default)]
474pub struct MemoryUsageStats {
475    /// Total memory
476    pub total_memory: usize,
477    /// Used memory
478    pub used_memory: usize,
479    /// Free memory
480    pub free_memory: usize,
481    /// Peak usage
482    pub peak_usage: usize,
483    /// Fragmentation percentage
484    pub fragmentation: f32,
485}
486
487/// Compute performance statistics
488#[derive(Debug, Clone, Default)]
489pub struct ComputePerformanceStats {
490    /// FLOPS (floating point operations per second)
491    pub flops: f64,
492    /// Memory bandwidth utilization
493    pub memory_bandwidth_utilization: f32,
494    /// Kernel efficiency
495    pub kernel_efficiency: f32,
496    /// Occupancy percentage
497    pub occupancy: f32,
498}
499
500/// Throughput metrics
501#[derive(Debug, Clone, Default)]
502pub struct ThroughputMetrics {
503    /// Vectors processed per second
504    pub vectors_per_second: f64,
505    /// Operations per second
506    pub operations_per_second: f64,
507    /// Data transfer rate (MB/s)
508    pub transfer_rate_mbps: f64,
509    /// Search queries per second
510    pub search_qps: f64,
511}
512
513/// Error statistics
514#[derive(Debug, Clone, Default)]
515pub struct ErrorStatistics {
516    /// Total errors
517    pub total_errors: usize,
518    /// Recoverable errors
519    pub recoverable_errors: usize,
520    /// Fatal errors
521    pub fatal_errors: usize,
522    /// Error rate (errors per operation)
523    pub error_rate: f32,
524    /// Recovery success rate
525    pub recovery_rate: f32,
526}
527
528/// Performance trends
529#[derive(Debug, Clone, Default)]
530pub struct PerformanceTrends {
531    /// Utilization trend over time
532    pub utilization_trend: Vec<(Instant, f32)>,
533    /// Throughput trend over time
534    pub throughput_trend: Vec<(Instant, f64)>,
535    /// Memory usage trend
536    pub memory_trend: Vec<(Instant, usize)>,
537    /// Error rate trend
538    pub error_trend: Vec<(Instant, f32)>,
539}
540
541/// Allocation statistics
542#[derive(Debug, Clone, Default)]
543pub struct AllocationStatistics {
544    /// Total allocations
545    pub total_allocations: usize,
546    /// Total deallocations
547    pub total_deallocations: usize,
548    /// Peak memory usage
549    pub peak_usage: usize,
550    /// Average allocation size
551    pub avg_allocation_size: usize,
552    /// Fragmentation events
553    pub fragmentation_events: usize,
554    /// Out of memory events
555    pub oom_events: usize,
556}
557
558/// Cached result for performance optimization
559#[derive(Debug)]
560pub struct CachedResult {
561    /// Result data
562    pub data: GpuResultData,
563    /// Cache timestamp
564    pub timestamp: Instant,
565    /// Hit count
566    pub hit_count: AtomicUsize,
567    /// Result size
568    pub size: usize,
569}
570
571impl Clone for CachedResult {
572    fn clone(&self) -> Self {
573        Self {
574            data: self.data.clone(),
575            timestamp: self.timestamp,
576            hit_count: AtomicUsize::new(self.hit_count.load(Ordering::Acquire)),
577            size: self.size,
578        }
579    }
580}
581
582/// GPU load balancer for multi-GPU operations
583#[derive(Debug)]
584pub struct GpuLoadBalancer {
585    /// Device utilization tracking
586    pub device_utilization: HashMap<i32, f32>,
587    /// Current workload distribution
588    pub workload_distribution: HashMap<i32, usize>,
589    /// Load balancing strategy
590    pub strategy: LoadBalancingStrategy,
591    /// Performance history for decisions
592    pub performance_history: HashMap<i32, VecDeque<PerformanceSnapshot>>,
593}
594
595/// Load balancing strategies
596#[derive(Debug, Clone)]
597pub enum LoadBalancingStrategy {
598    /// Round-robin distribution
599    RoundRobin,
600    /// Load-based distribution
601    LoadBased,
602    /// Performance-based distribution
603    PerformanceBased,
604    /// Memory-aware distribution
605    MemoryAware,
606    /// Hybrid strategy
607    Hybrid,
608}
609
610/// Performance snapshot for load balancing decisions
611#[derive(Debug, Clone)]
612pub struct PerformanceSnapshot {
613    /// Timestamp
614    pub timestamp: Instant,
615    /// Utilization percentage
616    pub utilization: f32,
617    /// Memory usage percentage
618    pub memory_usage: f32,
619    /// Operations per second
620    pub ops_per_second: f64,
621    /// Average latency
622    pub avg_latency: Duration,
623}
624
625impl FaissGpuIndex {
626    /// Create a new GPU-accelerated FAISS index
627    pub async fn new(faiss_config: FaissConfig, gpu_config: FaissGpuConfig) -> Result<Self> {
628        let span = span!(Level::INFO, "faiss_gpu_index_new");
629        let _enter = span.enter();
630
631        // Convert FaissGpuConfig to GpuConfig for the accelerator
632        let _base_gpu_config = crate::gpu::GpuConfig {
633            device_id: gpu_config.device_ids.first().copied().unwrap_or(0),
634            enable_mixed_precision: true,
635            enable_tensor_cores: true,
636            batch_size: 1024,
637            memory_pool_size: gpu_config.memory_per_device,
638            stream_count: gpu_config.stream_config.streams_per_device,
639            enable_peer_access: gpu_config.enable_multi_gpu,
640            enable_unified_memory: matches!(gpu_config.memory_strategy, GpuMemoryStrategy::Unified),
641            enable_async_execution: true,
642            enable_multi_gpu: gpu_config.enable_multi_gpu,
643            preferred_gpu_ids: gpu_config.device_ids.clone(),
644            dynamic_batch_sizing: true,
645            enable_memory_compression: false,
646            kernel_cache_size: 1024 * 1024,
647            optimization_level: crate::gpu::OptimizationLevel::Performance,
648            precision_mode: crate::gpu::PrecisionMode::Mixed,
649        };
650
651        // Initialize GPU execution configuration
652        let gpu_runtime = Arc::new(GpuExecutionConfig::default());
653
654        // Initialize memory pools for each device
655        let mut memory_pools = HashMap::new();
656        for &device_id in &gpu_config.device_ids {
657            let pool = FaissGpuMemoryPool::new(device_id, gpu_config.memory_per_device)?;
658            memory_pools.insert(device_id, pool);
659        }
660
661        // Initialize compute streams
662        let mut compute_streams = HashMap::new();
663        for &device_id in &gpu_config.device_ids {
664            let streams = Self::create_compute_streams(device_id, &gpu_config.stream_config)?;
665            compute_streams.insert(device_id, streams);
666        }
667
668        // Initialize load balancer
669        let load_balancer =
670            GpuLoadBalancer::new(&gpu_config.device_ids, LoadBalancingStrategy::Hybrid);
671
672        let device_count = gpu_config.device_ids.len();
673        let index = Self {
674            faiss_config,
675            gpu_config,
676            gpu_runtime,
677            memory_pools: Arc::new(RwLock::new(memory_pools)),
678            compute_streams: Arc::new(RwLock::new(compute_streams)),
679            stats: Arc::new(RwLock::new(GpuPerformanceStats::default())),
680            work_queue: Arc::new(Mutex::new(VecDeque::new())),
681            results_cache: Arc::new(RwLock::new(HashMap::new())),
682            load_balancer: Arc::new(RwLock::new(load_balancer)),
683        };
684
685        // Start background worker tasks
686        index.start_background_workers().await?;
687
688        info!(
689            "Created GPU-accelerated FAISS index with {} devices",
690            device_count
691        );
692        Ok(index)
693    }
694
695    /// Create compute streams for a device
696    fn create_compute_streams(
697        device_id: i32,
698        stream_config: &GpuStreamConfig,
699    ) -> Result<Vec<GpuComputeStream>> {
700        let mut streams = Vec::new();
701
702        for i in 0..stream_config.streams_per_device {
703            let priority = stream_config
704                .priority_levels
705                .get(i % stream_config.priority_levels.len())
706                .copied()
707                .unwrap_or(0);
708
709            let stream = GpuComputeStream {
710                stream_id: i,
711                device_id,
712                stream_handle: device_id as usize * 1000 + i, // Simulated handle
713                priority,
714                current_operation: Arc::new(Mutex::new(None)),
715                operation_history: Arc::new(RwLock::new(VecDeque::new())),
716                utilization: Arc::new(RwLock::new(StreamUtilization::default())),
717            };
718
719            streams.push(stream);
720        }
721
722        Ok(streams)
723    }
724
725    /// Start background worker tasks
726    async fn start_background_workers(&self) -> Result<()> {
727        let span = span!(Level::DEBUG, "start_background_workers");
728        let _enter = span.enter();
729
730        // Start operation processor
731        self.start_operation_processor().await?;
732
733        // Start performance monitor
734        self.start_performance_monitor().await?;
735
736        // Start memory manager
737        self.start_memory_manager().await?;
738
739        // Start load balancer
740        if self.gpu_config.enable_multi_gpu {
741            self.start_load_balancer().await?;
742        }
743
744        debug!("Started background worker tasks");
745        Ok(())
746    }
747
748    /// Start operation processor task
749    async fn start_operation_processor(&self) -> Result<()> {
750        let work_queue = Arc::clone(&self.work_queue);
751        let compute_streams = Arc::clone(&self.compute_streams);
752        let stats = Arc::clone(&self.stats);
753        let gpu_config = self.gpu_config.clone();
754
755        tokio::spawn(async move {
756            loop {
757                // Process pending operations
758                if let Some(operation) = {
759                    let mut queue = work_queue.lock().expect("lock poisoned");
760                    queue.pop_front()
761                } {
762                    if let Err(e) = Self::process_gpu_operation(
763                        operation,
764                        &compute_streams,
765                        &stats,
766                        &gpu_config,
767                    )
768                    .await
769                    {
770                        error!("Failed to process GPU operation: {}", e);
771                    }
772                }
773
774                // Sleep briefly to avoid busy waiting
775                tokio::time::sleep(tokio::time::Duration::from_millis(1)).await;
776            }
777        });
778
779        Ok(())
780    }
781
782    /// Process a single GPU operation
783    async fn process_gpu_operation(
784        mut operation: GpuOperation,
785        compute_streams: &Arc<RwLock<HashMap<i32, Vec<GpuComputeStream>>>>,
786        stats: &Arc<RwLock<GpuPerformanceStats>>,
787        gpu_config: &FaissGpuConfig,
788    ) -> Result<()> {
789        let start_time = Instant::now();
790
791        // Select optimal device and stream
792        let (device_id, stream_id) =
793            Self::select_optimal_stream(compute_streams, &operation).await?;
794
795        // Extract result_sender before executing operation
796        let result_sender = operation.result_sender.take();
797
798        // Execute operation
799        let result =
800            Self::execute_operation_on_device(operation, device_id, stream_id, gpu_config).await?;
801
802        // Send result back if callback provided
803        if let Some(sender) = result_sender {
804            let _ = sender.send(result.clone());
805        }
806
807        // Update statistics
808        Self::update_operation_stats(stats, &result, start_time.elapsed()).await?;
809
810        Ok(())
811    }
812
813    /// Select optimal device and stream for operation
814    async fn select_optimal_stream(
815        compute_streams: &Arc<RwLock<HashMap<i32, Vec<GpuComputeStream>>>>,
816        _operation: &GpuOperation,
817    ) -> Result<(i32, usize)> {
818        let streams = compute_streams.read().expect("lock poisoned");
819
820        // Simple strategy: find device with lowest utilization
821        let mut best_device = 0;
822        let mut best_stream = 0;
823        let mut lowest_utilization = f32::MAX;
824
825        for (&device_id, device_streams) in streams.iter() {
826            for (stream_id, stream) in device_streams.iter().enumerate() {
827                let utilization = stream
828                    .utilization
829                    .read()
830                    .expect("lock poisoned")
831                    .utilization_percentage;
832                if utilization < lowest_utilization {
833                    lowest_utilization = utilization;
834                    best_device = device_id;
835                    best_stream = stream_id;
836                }
837            }
838        }
839
840        Ok((best_device, best_stream))
841    }
842
843    /// Execute operation on specific device
844    async fn execute_operation_on_device(
845        operation: GpuOperation,
846        _device_id: i32,
847        _stream_id: usize,
848        _gpu_config: &FaissGpuConfig,
849    ) -> Result<GpuOperationResult> {
850        let start_time = Instant::now();
851
852        // Simulate GPU operation execution
853        let result_data = match &operation.operation_type {
854            GpuOperationType::Search {
855                query_vectors, k, ..
856            } => {
857                // Simulate GPU-accelerated search
858                tokio::time::sleep(tokio::time::Duration::from_millis(10)).await;
859
860                let mut results = Vec::new();
861                for _query in query_vectors {
862                    let mut query_results = Vec::new();
863                    for i in 0..*k {
864                        query_results.push((format!("gpu_result_{i}"), 0.95 - (i as f32 * 0.05)));
865                    }
866                    results.push(query_results);
867                }
868
869                GpuResultData::SearchResults(results)
870            }
871            GpuOperationType::Add { vectors: _, .. } => {
872                // Simulate GPU-accelerated vector addition
873                tokio::time::sleep(tokio::time::Duration::from_millis(5)).await;
874                GpuResultData::AdditionComplete
875            }
876            GpuOperationType::Train { .. } => {
877                // Simulate GPU-accelerated training
878                tokio::time::sleep(tokio::time::Duration::from_millis(100)).await;
879                GpuResultData::TrainingComplete
880            }
881            GpuOperationType::Optimize => {
882                // Simulate GPU optimization
883                tokio::time::sleep(tokio::time::Duration::from_millis(20)).await;
884                let mut metrics = HashMap::new();
885                metrics.insert("optimization_improvement".to_string(), 15.0);
886                metrics.insert("memory_efficiency".to_string(), 92.0);
887                GpuResultData::OptimizationMetrics(metrics)
888            }
889            GpuOperationType::MemoryTransfer { size, .. } => {
890                // Simulate memory transfer
891                let transfer_time = *size as f64 / (10.0 * 1024.0 * 1024.0 * 1024.0); // 10 GB/s
892                tokio::time::sleep(tokio::time::Duration::from_secs_f64(transfer_time)).await;
893                GpuResultData::TransferComplete
894            }
895        };
896
897        Ok(GpuOperationResult {
898            operation_id: operation.id,
899            success: true,
900            result_data,
901            execution_time: start_time.elapsed(),
902            memory_used: 1024 * 1024, // Simulated 1MB
903            error_message: None,
904        })
905    }
906
907    /// Update operation statistics
908    async fn update_operation_stats(
909        stats: &Arc<RwLock<GpuPerformanceStats>>,
910        result: &GpuOperationResult,
911        execution_time: Duration,
912    ) -> Result<()> {
913        let mut stats = stats.write().expect("lock poisoned");
914
915        // Update throughput metrics
916        stats.throughput.operations_per_second += 1.0 / execution_time.as_secs_f64();
917
918        // Update error statistics if needed
919        if !result.success {
920            stats.error_stats.total_errors += 1;
921        }
922
923        Ok(())
924    }
925
926    /// Start performance monitoring task
927    async fn start_performance_monitor(&self) -> Result<()> {
928        let stats = Arc::clone(&self.stats);
929        let device_ids = self.gpu_config.device_ids.clone();
930
931        tokio::spawn(async move {
932            let mut interval = tokio::time::interval(tokio::time::Duration::from_secs(1));
933
934            loop {
935                interval.tick().await;
936
937                // Collect performance metrics from all devices
938                if let Err(e) = Self::collect_performance_metrics(&stats, &device_ids).await {
939                    warn!("Failed to collect performance metrics: {}", e);
940                }
941            }
942        });
943
944        Ok(())
945    }
946
947    /// Collect performance metrics from devices
948    async fn collect_performance_metrics(
949        stats: &Arc<RwLock<GpuPerformanceStats>>,
950        device_ids: &[i32],
951    ) -> Result<()> {
952        let mut stats = stats.write().expect("lock poisoned");
953
954        for &device_id in device_ids {
955            // Simulate GPU metrics collection
956            let device_stats = DeviceStats {
957                utilization: 75.0 + (device_id as f32 * 5.0) % 25.0, // Simulated
958                memory_usage: MemoryUsageStats {
959                    total_memory: 8 * 1024 * 1024 * 1024, // 8GB
960                    used_memory: 6 * 1024 * 1024 * 1024,  // 6GB
961                    free_memory: 2 * 1024 * 1024 * 1024,  // 2GB
962                    peak_usage: 7 * 1024 * 1024 * 1024,   // 7GB
963                    fragmentation: 5.0,
964                },
965                compute_performance: ComputePerformanceStats {
966                    flops: 15.5e12, // 15.5 TFLOPS
967                    memory_bandwidth_utilization: 80.0,
968                    kernel_efficiency: 85.0,
969                    occupancy: 75.0,
970                },
971                power_consumption: 250.0, // Watts
972                temperature: 70.0,        // Celsius
973            };
974
975            stats.device_stats.insert(device_id, device_stats);
976        }
977
978        // Calculate overall utilization
979        stats.overall_utilization = stats
980            .device_stats
981            .values()
982            .map(|s| s.utilization)
983            .sum::<f32>()
984            / stats.device_stats.len() as f32;
985
986        Ok(())
987    }
988
989    /// Start memory management task
990    async fn start_memory_manager(&self) -> Result<()> {
991        let memory_pools = Arc::clone(&self.memory_pools);
992        let gpu_config = self.gpu_config.clone();
993
994        tokio::spawn(async move {
995            let mut interval = tokio::time::interval(tokio::time::Duration::from_secs(5));
996
997            loop {
998                interval.tick().await;
999
1000                // Perform memory cleanup and optimization
1001                if let Err(e) = Self::manage_gpu_memory(&memory_pools, &gpu_config).await {
1002                    warn!("Failed to manage GPU memory: {}", e);
1003                }
1004            }
1005        });
1006
1007        Ok(())
1008    }
1009
1010    /// Manage GPU memory pools
1011    async fn manage_gpu_memory(
1012        memory_pools: &Arc<RwLock<HashMap<i32, FaissGpuMemoryPool>>>,
1013        _gpu_config: &FaissGpuConfig,
1014    ) -> Result<()> {
1015        let pools = memory_pools.read().expect("lock poisoned");
1016
1017        for (device_id, pool) in pools.iter() {
1018            // Check for memory fragmentation
1019            let fragmentation = pool.calculate_fragmentation();
1020            if fragmentation > 20.0 {
1021                debug!(
1022                    "High fragmentation detected on device {}: {:.1}%",
1023                    device_id, fragmentation
1024                );
1025                // Trigger defragmentation if needed
1026            }
1027
1028            // Check for memory leaks
1029            let allocated_blocks = pool.allocated_blocks.read().expect("lock poisoned");
1030            let now = Instant::now();
1031            for (_, block) in allocated_blocks.iter() {
1032                if now.duration_since(block.allocated_at) > Duration::from_secs(3600) {
1033                    warn!(
1034                        "Potential memory leak detected on device {}: block allocated {} ago",
1035                        device_id,
1036                        humantime::format_duration(now.duration_since(block.allocated_at))
1037                    );
1038                }
1039            }
1040        }
1041
1042        Ok(())
1043    }
1044
1045    /// Start load balancer task
1046    async fn start_load_balancer(&self) -> Result<()> {
1047        let load_balancer = Arc::clone(&self.load_balancer);
1048        let stats = Arc::clone(&self.stats);
1049
1050        tokio::spawn(async move {
1051            let mut interval = tokio::time::interval(tokio::time::Duration::from_secs(2));
1052
1053            loop {
1054                interval.tick().await;
1055
1056                // Update load balancing decisions
1057                if let Err(e) = Self::update_load_balancing(&load_balancer, &stats).await {
1058                    warn!("Failed to update load balancing: {}", e);
1059                }
1060            }
1061        });
1062
1063        Ok(())
1064    }
1065
1066    /// Update load balancing strategy
1067    async fn update_load_balancing(
1068        load_balancer: &Arc<RwLock<GpuLoadBalancer>>,
1069        stats: &Arc<RwLock<GpuPerformanceStats>>,
1070    ) -> Result<()> {
1071        let stats = stats.read().expect("lock poisoned");
1072        let mut balancer = load_balancer.write().expect("lock poisoned");
1073
1074        // Update device utilization from stats
1075        for (&device_id, device_stats) in &stats.device_stats {
1076            balancer
1077                .device_utilization
1078                .insert(device_id, device_stats.utilization);
1079
1080            // Add performance snapshot
1081            let snapshot = PerformanceSnapshot {
1082                timestamp: Instant::now(),
1083                utilization: device_stats.utilization,
1084                memory_usage: device_stats.memory_usage.used_memory as f32
1085                    / device_stats.memory_usage.total_memory as f32
1086                    * 100.0,
1087                ops_per_second: 1000.0, // Simulated
1088                avg_latency: Duration::from_micros(250),
1089            };
1090
1091            balancer
1092                .performance_history
1093                .entry(device_id)
1094                .or_default()
1095                .push_back(snapshot);
1096
1097            // Keep only recent history
1098            if balancer.performance_history[&device_id].len() > 100 {
1099                balancer
1100                    .performance_history
1101                    .get_mut(&device_id)
1102                    .expect("device_id should exist in performance_history")
1103                    .pop_front();
1104            }
1105        }
1106
1107        Ok(())
1108    }
1109
1110    /// Perform GPU-accelerated search
1111    pub async fn search_gpu(
1112        &self,
1113        query_vectors: Vec<Vec<f32>>,
1114        k: usize,
1115        search_params: FaissSearchParams,
1116    ) -> Result<Vec<Vec<(String, f32)>>> {
1117        let span = span!(Level::DEBUG, "search_gpu");
1118        let _enter = span.enter();
1119
1120        // Create GPU operation
1121        let (result_sender, result_receiver) = oneshot::channel();
1122        let operation = GpuOperation {
1123            id: uuid::Uuid::new_v4().to_string(),
1124            operation_type: GpuOperationType::Search {
1125                query_vectors: query_vectors.clone(),
1126                k,
1127                search_params,
1128            },
1129            input_data: GpuOperationData::Vectors(query_vectors),
1130            output_size: k * std::mem::size_of::<(String, f32)>(),
1131            priority: 1,
1132            timeout: Some(Duration::from_secs(30)),
1133            result_sender: Some(result_sender),
1134        };
1135
1136        // Queue operation
1137        {
1138            let mut queue = self.work_queue.lock().expect("lock poisoned");
1139            queue.push_back(operation);
1140        }
1141
1142        // Wait for result
1143        let result = result_receiver
1144            .await
1145            .map_err(|_| AnyhowError::msg("GPU operation timeout"))?;
1146
1147        if !result.success {
1148            return Err(AnyhowError::msg(
1149                result
1150                    .error_message
1151                    .unwrap_or_else(|| "GPU operation failed".to_string()),
1152            ));
1153        }
1154
1155        match result.result_data {
1156            GpuResultData::SearchResults(results) => Ok(results),
1157            _ => Err(AnyhowError::msg("Unexpected result type")),
1158        }
1159    }
1160
1161    /// Add vectors with GPU acceleration
1162    pub async fn add_vectors_gpu(&self, vectors: Vec<Vec<f32>>, ids: Vec<String>) -> Result<()> {
1163        let span = span!(Level::DEBUG, "add_vectors_gpu");
1164        let _enter = span.enter();
1165
1166        let (result_sender, result_receiver) = oneshot::channel();
1167        let operation = GpuOperation {
1168            id: uuid::Uuid::new_v4().to_string(),
1169            operation_type: GpuOperationType::Add {
1170                vectors: vectors.clone(),
1171                ids,
1172            },
1173            input_data: GpuOperationData::Vectors(vectors),
1174            output_size: 0,
1175            priority: 2,
1176            timeout: Some(Duration::from_secs(60)),
1177            result_sender: Some(result_sender),
1178        };
1179
1180        {
1181            let mut queue = self.work_queue.lock().expect("lock poisoned");
1182            queue.push_back(operation);
1183        }
1184
1185        let result = result_receiver
1186            .await
1187            .map_err(|_| AnyhowError::msg("GPU operation timeout"))?;
1188
1189        if !result.success {
1190            return Err(AnyhowError::msg(
1191                result
1192                    .error_message
1193                    .unwrap_or_else(|| "GPU operation failed".to_string()),
1194            ));
1195        }
1196
1197        Ok(())
1198    }
1199
1200    /// Get GPU performance statistics
1201    pub fn get_gpu_stats(&self) -> Result<GpuPerformanceStats> {
1202        let stats = self.stats.read().expect("lock poisoned");
1203        Ok(stats.clone())
1204    }
1205
1206    /// Optimize GPU performance
1207    pub async fn optimize_gpu_performance(&self) -> Result<HashMap<String, f64>> {
1208        let span = span!(Level::INFO, "optimize_gpu_performance");
1209        let _enter = span.enter();
1210
1211        let (result_sender, result_receiver) = oneshot::channel();
1212        let operation = GpuOperation {
1213            id: uuid::Uuid::new_v4().to_string(),
1214            operation_type: GpuOperationType::Optimize,
1215            input_data: GpuOperationData::Empty,
1216            output_size: 0,
1217            priority: 0, // High priority
1218            timeout: Some(Duration::from_secs(120)),
1219            result_sender: Some(result_sender),
1220        };
1221
1222        {
1223            let mut queue = self.work_queue.lock().expect("lock poisoned");
1224            queue.push_back(operation);
1225        }
1226
1227        let result = result_receiver
1228            .await
1229            .map_err(|_| AnyhowError::msg("GPU optimization timeout"))?;
1230
1231        if !result.success {
1232            return Err(AnyhowError::msg("GPU optimization failed"));
1233        }
1234
1235        match result.result_data {
1236            GpuResultData::OptimizationMetrics(metrics) => Ok(metrics),
1237            _ => Err(AnyhowError::msg("Unexpected result type")),
1238        }
1239    }
1240}
1241
1242impl FaissGpuMemoryPool {
1243    /// Create a new GPU memory pool
1244    pub fn new(device_id: i32, total_size: usize) -> Result<Self> {
1245        Ok(Self {
1246            device_id,
1247            total_size,
1248            allocated_size: AtomicUsize::new(0),
1249            free_blocks: Arc::new(Mutex::new(BTreeMap::new())),
1250            allocated_blocks: Arc::new(RwLock::new(HashMap::new())),
1251            allocation_stats: Arc::new(RwLock::new(AllocationStatistics::default())),
1252        })
1253    }
1254
1255    /// Allocate memory block
1256    pub fn allocate(&self, size: usize, block_type: MemoryBlockType) -> Result<GpuMemoryBlock> {
1257        let aligned_size = (size + 255) & !255; // 256-byte alignment
1258
1259        if self.allocated_size.load(Ordering::Relaxed) + aligned_size > self.total_size {
1260            return Err(AnyhowError::msg("Out of GPU memory"));
1261        }
1262
1263        let block = GpuMemoryBlock {
1264            gpu_address: self.allocated_size.load(Ordering::Relaxed), // Simulated address
1265            size: aligned_size,
1266            allocated_at: Instant::now(),
1267            ref_count: AtomicUsize::new(1),
1268            block_type,
1269        };
1270
1271        self.allocated_size
1272            .fetch_add(aligned_size, Ordering::Relaxed);
1273
1274        // Update statistics
1275        {
1276            let mut stats = self.allocation_stats.write().expect("lock poisoned");
1277            stats.total_allocations += 1;
1278            let current_usage = self.allocated_size.load(Ordering::Relaxed);
1279            if current_usage > stats.peak_usage {
1280                stats.peak_usage = current_usage;
1281            }
1282        }
1283
1284        Ok(block)
1285    }
1286
1287    /// Deallocate memory block
1288    pub fn deallocate(&self, block: &GpuMemoryBlock) -> Result<()> {
1289        self.allocated_size.fetch_sub(block.size, Ordering::Relaxed);
1290
1291        {
1292            let mut stats = self.allocation_stats.write().expect("lock poisoned");
1293            stats.total_deallocations += 1;
1294        }
1295
1296        Ok(())
1297    }
1298
1299    /// Calculate memory fragmentation percentage
1300    pub fn calculate_fragmentation(&self) -> f32 {
1301        // Simplified fragmentation calculation
1302        let allocated = self.allocated_size.load(Ordering::Relaxed);
1303        let free_blocks = self.free_blocks.lock().expect("lock poisoned");
1304        let num_free_blocks = free_blocks.len();
1305
1306        if allocated == 0 {
1307            return 0.0;
1308        }
1309
1310        (num_free_blocks as f32 / (allocated / 1024) as f32) * 100.0
1311    }
1312}
1313
1314impl GpuLoadBalancer {
1315    /// Create a new GPU load balancer
1316    pub fn new(device_ids: &[i32], strategy: LoadBalancingStrategy) -> Self {
1317        let mut device_utilization = HashMap::new();
1318        let mut workload_distribution = HashMap::new();
1319        let mut performance_history = HashMap::new();
1320
1321        for &device_id in device_ids {
1322            device_utilization.insert(device_id, 0.0);
1323            workload_distribution.insert(device_id, 0);
1324            performance_history.insert(device_id, VecDeque::new());
1325        }
1326
1327        Self {
1328            device_utilization,
1329            workload_distribution,
1330            strategy,
1331            performance_history,
1332        }
1333    }
1334
1335    /// Select optimal device for operation
1336    pub fn select_device(&self, operation: &GpuOperation) -> i32 {
1337        match self.strategy {
1338            LoadBalancingStrategy::RoundRobin => self.select_round_robin(),
1339            LoadBalancingStrategy::LoadBased => self.select_load_based(),
1340            LoadBalancingStrategy::PerformanceBased => self.select_performance_based(),
1341            LoadBalancingStrategy::MemoryAware => self.select_memory_aware(),
1342            LoadBalancingStrategy::Hybrid => self.select_hybrid(operation),
1343        }
1344    }
1345
1346    fn select_round_robin(&self) -> i32 {
1347        // Simple round-robin selection
1348        let total_workload: usize = self.workload_distribution.values().sum();
1349        let device_count = self.device_utilization.len();
1350        let target_device_index = total_workload % device_count;
1351
1352        *self
1353            .device_utilization
1354            .keys()
1355            .nth(target_device_index)
1356            .unwrap_or(&0)
1357    }
1358
1359    fn select_load_based(&self) -> i32 {
1360        // Select device with lowest utilization
1361        self.device_utilization
1362            .iter()
1363            .min_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1364            .map(|(&device_id, _)| device_id)
1365            .unwrap_or(0)
1366    }
1367
1368    fn select_performance_based(&self) -> i32 {
1369        // Select device with best recent performance
1370        let mut best_device = 0;
1371        let mut best_score = f64::MIN;
1372
1373        for (&device_id, history) in &self.performance_history {
1374            if let Some(recent_snapshot) = history.back() {
1375                let score = recent_snapshot.ops_per_second
1376                    / (recent_snapshot.avg_latency.as_secs_f64() + 1e-6);
1377                if score > best_score {
1378                    best_score = score;
1379                    best_device = device_id;
1380                }
1381            }
1382        }
1383
1384        best_device
1385    }
1386
1387    fn select_memory_aware(&self) -> i32 {
1388        // Select device with most available memory (simplified)
1389        self.device_utilization
1390            .iter()
1391            .min_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1392            .map(|(&device_id, _)| device_id)
1393            .unwrap_or(0)
1394    }
1395
1396    fn select_hybrid(&self, operation: &GpuOperation) -> i32 {
1397        // Combine multiple factors for selection
1398        match &operation.operation_type {
1399            GpuOperationType::Search { .. } => self.select_performance_based(),
1400            GpuOperationType::Add { .. } => self.select_memory_aware(),
1401            GpuOperationType::Train { .. } => self.select_load_based(),
1402            _ => self.select_round_robin(),
1403        }
1404    }
1405}
1406
1407#[cfg(test)]
1408mod tests {
1409    use super::*;
1410
1411    #[tokio::test]
1412    async fn test_faiss_gpu_index_creation() {
1413        let faiss_config = FaissConfig::default();
1414        let gpu_config = FaissGpuConfig::default();
1415
1416        let result = FaissGpuIndex::new(faiss_config, gpu_config).await;
1417        assert!(result.is_ok());
1418    }
1419
1420    #[test]
1421    fn test_gpu_memory_pool() {
1422        let pool = FaissGpuMemoryPool::new(0, 1024 * 1024).unwrap(); // 1MB pool
1423
1424        let block = pool.allocate(1024, MemoryBlockType::Vectors).unwrap();
1425        assert_eq!(block.size, 1024);
1426
1427        pool.deallocate(&block).unwrap();
1428        assert_eq!(pool.allocated_size.load(Ordering::Relaxed), 0);
1429    }
1430
1431    #[test]
1432    fn test_gpu_load_balancer() {
1433        let device_ids = vec![0, 1, 2];
1434        let balancer = GpuLoadBalancer::new(&device_ids, LoadBalancingStrategy::RoundRobin);
1435
1436        assert_eq!(balancer.device_utilization.len(), 3);
1437
1438        let operation = GpuOperation {
1439            id: "test".to_string(),
1440            operation_type: GpuOperationType::Optimize,
1441            input_data: GpuOperationData::Empty,
1442            output_size: 0,
1443            priority: 0,
1444            timeout: None,
1445            result_sender: None,
1446        };
1447
1448        let selected_device = balancer.select_device(&operation);
1449        assert!(device_ids.contains(&selected_device));
1450    }
1451}