1use crate::Vector;
10use anyhow::{anyhow, Result};
11use parking_lot::RwLock;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::Arc;
15
16#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
18pub enum Modality {
19 Text,
20 Image,
21 Audio,
22 Video,
23 Graph,
24 Numeric,
25 Custom(u8),
26}
27
28#[derive(Debug, Clone, Serialize, Deserialize)]
30pub struct CrossModalConfig {
31 pub joint_embedding_dim: usize,
33 pub temperature: f32,
35 pub enable_attention: bool,
37 pub attention_heads: usize,
39 pub enable_multi_scale: bool,
41 pub fusion_strategy: FusionStrategy,
43 pub alignment_learning_rate: f32,
45 pub enable_domain_adaptation: bool,
47 pub modality_weights: HashMap<Modality, f32>,
49}
50
51impl Default for CrossModalConfig {
52 fn default() -> Self {
53 let mut modality_weights = HashMap::new();
54 modality_weights.insert(Modality::Text, 1.0);
55 modality_weights.insert(Modality::Image, 1.0);
56 modality_weights.insert(Modality::Audio, 0.8);
57 modality_weights.insert(Modality::Video, 0.9);
58
59 Self {
60 joint_embedding_dim: 512,
61 temperature: 0.07,
62 enable_attention: true,
63 attention_heads: 8,
64 enable_multi_scale: true,
65 fusion_strategy: FusionStrategy::AttentionWeighted,
66 alignment_learning_rate: 1e-4,
67 enable_domain_adaptation: true,
68 modality_weights,
69 }
70 }
71}
72
73#[derive(Debug, Clone, Serialize, Deserialize)]
75pub enum FusionStrategy {
76 Concatenation,
78 WeightedAverage,
80 AttentionWeighted,
82 EarlyFusion,
84 LateFusion,
86 HierarchicalFusion,
88 GraphFusion,
90}
91
92#[derive(Debug, Clone)]
94pub struct MultiModalContent {
95 pub modalities: HashMap<Modality, ModalityData>,
96 pub metadata: HashMap<String, String>,
97 pub temporal_info: Option<TemporalInfo>,
98 pub spatial_info: Option<SpatialInfo>,
99}
100
101#[derive(Debug, Clone)]
103pub enum ModalityData {
104 Text(String),
105 Image(ImageData),
106 Audio(AudioData),
107 Video(VideoData),
108 Graph(GraphData),
109 Numeric(Vec<f32>),
110 Raw(Vec<u8>),
111}
112
113#[derive(Debug, Clone)]
115pub struct ImageData {
116 pub data: Vec<u8>,
117 pub width: u32,
118 pub height: u32,
119 pub channels: u32,
120 pub format: ImageFormat,
121 pub features: Option<Vec<f32>>, }
123
124#[derive(Debug, Clone)]
125pub enum ImageFormat {
126 RGB,
127 RGBA,
128 Grayscale,
129 BGR,
130 YUV,
131}
132
133#[derive(Debug, Clone)]
135pub struct AudioData {
136 pub samples: Vec<f32>,
137 pub sample_rate: u32,
138 pub channels: u32,
139 pub duration: f32,
140 pub features: Option<Vec<f32>>, }
142
143#[derive(Debug, Clone)]
145pub struct VideoData {
146 pub frames: Vec<ImageData>,
147 pub audio: Option<AudioData>,
148 pub fps: f32,
149 pub duration: f32,
150 pub keyframes: Vec<usize>, }
152
153#[derive(Debug, Clone)]
155pub struct GraphData {
156 pub nodes: Vec<GraphNode>,
157 pub edges: Vec<GraphEdge>,
158 pub metadata: HashMap<String, String>,
159}
160
161#[derive(Debug, Clone)]
162pub struct GraphNode {
163 pub id: String,
164 pub labels: Vec<String>,
165 pub properties: HashMap<String, String>,
166 pub embedding: Option<Vector>,
167}
168
169#[derive(Debug, Clone)]
170pub struct GraphEdge {
171 pub source: String,
172 pub target: String,
173 pub relation: String,
174 pub properties: HashMap<String, String>,
175 pub weight: Option<f32>,
176}
177
178#[derive(Debug, Clone)]
180pub struct TemporalInfo {
181 pub timestamp: std::time::SystemTime,
182 pub duration: Option<std::time::Duration>,
183 pub temporal_features: Vec<f32>,
184}
185
186#[derive(Debug, Clone)]
188pub struct SpatialInfo {
189 pub coordinates: (f64, f64), pub elevation: Option<f32>,
191 pub spatial_features: Vec<f32>,
192}
193
194pub struct CrossModalEncoder {
196 config: CrossModalConfig,
197 text_encoder: Box<dyn TextEncoder>,
198 image_encoder: Box<dyn ImageEncoder>,
199 audio_encoder: Box<dyn AudioEncoder>,
200 video_encoder: Box<dyn VideoEncoder>,
201 graph_encoder: Box<dyn GraphEncoder>,
202 attention_mechanism: AttentionMechanism,
203 fusion_layer: FusionLayer,
204 alignment_cache: Arc<RwLock<HashMap<String, Vector>>>,
205}
206
207pub trait TextEncoder: Send + Sync {
209 fn encode(&self, text: &str) -> Result<Vector>;
210 fn encode_batch(&self, texts: &[String]) -> Result<Vec<Vector>>;
211 fn get_embedding_dim(&self) -> usize;
212}
213
214pub trait ImageEncoder: Send + Sync {
216 fn encode(&self, image: &ImageData) -> Result<Vector>;
217 fn encode_batch(&self, images: &[ImageData]) -> Result<Vec<Vector>>;
218 fn get_embedding_dim(&self) -> usize;
219 fn extract_features(&self, image: &ImageData) -> Result<Vec<f32>>;
220}
221
222pub trait AudioEncoder: Send + Sync {
224 fn encode(&self, audio: &AudioData) -> Result<Vector>;
225 fn encode_batch(&self, audios: &[AudioData]) -> Result<Vec<Vector>>;
226 fn get_embedding_dim(&self) -> usize;
227 fn extract_features(&self, audio: &AudioData) -> Result<Vec<f32>>;
228}
229
230pub trait VideoEncoder: Send + Sync {
232 fn encode(&self, video: &VideoData) -> Result<Vector>;
233 fn encode_keyframes(&self, video: &VideoData) -> Result<Vec<Vector>>;
234 fn get_embedding_dim(&self) -> usize;
235}
236
237pub trait GraphEncoder: Send + Sync {
239 fn encode(&self, graph: &GraphData) -> Result<Vector>;
240 fn encode_node(&self, node: &GraphNode) -> Result<Vector>;
241 fn encode_subgraph(&self, nodes: &[GraphNode], edges: &[GraphEdge]) -> Result<Vector>;
242 fn get_embedding_dim(&self) -> usize;
243}
244
245#[derive(Debug, Clone)]
247pub struct AttentionMechanism {
248 pub num_heads: usize,
249 pub head_dim: usize,
250 pub dropout_rate: f32,
251 pub scale: f32,
252}
253
254impl AttentionMechanism {
255 pub fn new(num_heads: usize, embedding_dim: usize) -> Self {
256 let head_dim = embedding_dim / num_heads;
257 let scale = 1.0 / (head_dim as f32).sqrt();
258
259 Self {
260 num_heads,
261 head_dim,
262 dropout_rate: 0.1,
263 scale,
264 }
265 }
266
267 pub fn cross_attention(&self, query: &Vector, key: &Vector, value: &Vector) -> Result<Vector> {
269 let query_f32 = query.as_f32();
273 let key_f32 = key.as_f32();
274 let value_f32 = value.as_f32();
275
276 if query_f32.len() != key_f32.len() || key_f32.len() != value_f32.len() {
277 return Err(anyhow!("Dimension mismatch in attention"));
278 }
279
280 let attention_score = query_f32
282 .iter()
283 .zip(&key_f32)
284 .map(|(q, k)| q * k)
285 .sum::<f32>()
286 * self.scale;
287
288 let attended_values: Vec<f32> = value_f32
290 .iter()
291 .map(|v| v * attention_score.tanh()) .collect();
293
294 Ok(Vector::new(attended_values))
295 }
296
297 pub fn multi_head_attention(&self, inputs: &[Vector]) -> Result<Vector> {
299 if inputs.is_empty() {
300 return Err(anyhow!("No input vectors for attention"));
301 }
302
303 let dim = inputs[0].dimensions;
304 let mut combined_output = vec![0.0f32; dim];
305
306 for (_head_idx, input) in inputs.iter().enumerate().take(self.num_heads) {
308 let input_f32 = input.as_f32();
309 let head_weight = 1.0 / self.num_heads as f32;
310
311 for (i, &value) in input_f32.iter().enumerate() {
312 if i < combined_output.len() {
313 combined_output[i] += value * head_weight;
314 }
315 }
316 }
317
318 Ok(Vector::new(combined_output))
319 }
320}
321
322#[derive(Debug, Clone)]
324pub struct FusionLayer {
325 strategy: FusionStrategy,
326 modality_weights: HashMap<Modality, f32>,
327 learned_weights: Option<Vec<f32>>,
328}
329
330impl FusionLayer {
331 pub fn new(strategy: FusionStrategy, modality_weights: HashMap<Modality, f32>) -> Self {
332 Self {
333 strategy,
334 modality_weights,
335 learned_weights: None,
336 }
337 }
338
339 pub fn fuse(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
341 if embeddings.is_empty() {
342 return Err(anyhow!("No embeddings to fuse"));
343 }
344
345 match self.strategy {
346 FusionStrategy::Concatenation => self.concatenation_fusion(embeddings),
347 FusionStrategy::WeightedAverage => self.weighted_average_fusion(embeddings),
348 FusionStrategy::AttentionWeighted => self.attention_weighted_fusion(embeddings),
349 FusionStrategy::EarlyFusion => self.early_fusion(embeddings),
350 FusionStrategy::LateFusion => self.late_fusion(embeddings),
351 FusionStrategy::HierarchicalFusion => self.hierarchical_fusion(embeddings),
352 FusionStrategy::GraphFusion => self.graph_fusion(embeddings),
353 }
354 }
355
356 fn concatenation_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
357 let mut concatenated = Vec::new();
358
359 let ordered_modalities = [
361 Modality::Text,
362 Modality::Image,
363 Modality::Audio,
364 Modality::Video,
365 ];
366
367 for modality in &ordered_modalities {
368 if let Some(embedding) = embeddings.get(modality) {
369 concatenated.extend_from_slice(&embedding.as_f32());
370 }
371 }
372
373 for (modality, embedding) in embeddings {
375 if !ordered_modalities.contains(modality) {
376 concatenated.extend_from_slice(&embedding.as_f32());
377 }
378 }
379
380 Ok(Vector::new(concatenated))
381 }
382
383 fn weighted_average_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
384 let first_embedding = embeddings.values().next().unwrap();
385 let dim = first_embedding.dimensions;
386 let mut fused = vec![0.0f32; dim];
387 let mut total_weight = 0.0f32;
388
389 for (modality, embedding) in embeddings {
390 let weight = self.modality_weights.get(modality).copied().unwrap_or(1.0);
391 let embedding_f32 = embedding.as_f32();
392
393 if embedding_f32.len() != dim {
394 return Err(anyhow!("Dimension mismatch in embeddings"));
395 }
396
397 for (i, &value) in embedding_f32.iter().enumerate() {
398 fused[i] += value * weight;
399 }
400 total_weight += weight;
401 }
402
403 for value in &mut fused {
405 *value /= total_weight;
406 }
407
408 Ok(Vector::new(fused))
409 }
410
411 fn attention_weighted_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
412 let modalities: Vec<&Modality> = embeddings.keys().collect();
416 let vectors: Vec<&Vector> = embeddings.values().collect();
417
418 if vectors.is_empty() {
419 return Err(anyhow!("No vectors to fuse"));
420 }
421
422 let dim = vectors[0].dimensions;
423 let mut attention_weights = vec![1.0f32; modalities.len()];
424
425 for (i, vector) in vectors.iter().enumerate() {
427 attention_weights[i] = vector.magnitude();
428 }
429
430 let max_weight = attention_weights
432 .iter()
433 .fold(f32::NEG_INFINITY, |a, &b| a.max(b));
434 let exp_weights: Vec<f32> = attention_weights
435 .iter()
436 .map(|w| (w - max_weight).exp())
437 .collect();
438 let sum_exp: f32 = exp_weights.iter().sum();
439
440 for weight in &mut attention_weights {
441 *weight = (*weight - max_weight).exp() / sum_exp;
442 }
443
444 let mut fused = vec![0.0f32; dim];
446 for (i, vector) in vectors.iter().enumerate() {
447 let vector_f32 = vector.as_f32();
448 let weight = attention_weights[i];
449
450 for j in 0..dim {
451 fused[j] += vector_f32[j] * weight;
452 }
453 }
454
455 Ok(Vector::new(fused))
456 }
457
458 fn early_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
459 self.concatenation_fusion(embeddings)
461 }
462
463 fn late_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
464 self.weighted_average_fusion(embeddings)
466 }
467
468 fn hierarchical_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
469 let mut text_audio = Vec::new();
473 let mut visual = Vec::new();
474 let mut structured = Vec::new();
475
476 for (modality, embedding) in embeddings {
477 match modality {
478 Modality::Text | Modality::Audio => text_audio.push(embedding),
479 Modality::Image | Modality::Video => visual.push(embedding),
480 Modality::Graph | Modality::Numeric => structured.push(embedding),
481 _ => text_audio.push(embedding), }
483 }
484
485 let mut group_embeddings = HashMap::new();
487
488 if !text_audio.is_empty() {
489 let fused_ta = self.fuse_group(&text_audio)?;
490 group_embeddings.insert(Modality::Text, fused_ta);
491 }
492
493 if !visual.is_empty() {
494 let fused_visual = self.fuse_group(&visual)?;
495 group_embeddings.insert(Modality::Image, fused_visual);
496 }
497
498 if !structured.is_empty() {
499 let fused_structured = self.fuse_group(&structured)?;
500 group_embeddings.insert(Modality::Graph, fused_structured);
501 }
502
503 self.weighted_average_fusion(&group_embeddings)
505 }
506
507 fn fuse_group(&self, embeddings: &[&Vector]) -> Result<Vector> {
508 if embeddings.is_empty() {
509 return Err(anyhow!("No embeddings to fuse in group"));
510 }
511
512 let dim = embeddings[0].dimensions;
513 let mut fused = vec![0.0f32; dim];
514
515 for embedding in embeddings {
516 let embedding_f32 = embedding.as_f32();
517 for (i, &value) in embedding_f32.iter().enumerate() {
518 fused[i] += value;
519 }
520 }
521
522 let count = embeddings.len() as f32;
524 for value in &mut fused {
525 *value /= count;
526 }
527
528 Ok(Vector::new(fused))
529 }
530
531 fn graph_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
532 self.weighted_average_fusion(embeddings)
535 }
536}
537
538impl CrossModalEncoder {
539 pub fn new(
540 config: CrossModalConfig,
541 text_encoder: Box<dyn TextEncoder>,
542 image_encoder: Box<dyn ImageEncoder>,
543 audio_encoder: Box<dyn AudioEncoder>,
544 video_encoder: Box<dyn VideoEncoder>,
545 graph_encoder: Box<dyn GraphEncoder>,
546 ) -> Self {
547 let attention_mechanism =
548 AttentionMechanism::new(config.attention_heads, config.joint_embedding_dim);
549
550 let fusion_layer = FusionLayer::new(
551 config.fusion_strategy.clone(),
552 config.modality_weights.clone(),
553 );
554
555 Self {
556 config,
557 text_encoder,
558 image_encoder,
559 audio_encoder,
560 video_encoder,
561 graph_encoder,
562 attention_mechanism,
563 fusion_layer,
564 alignment_cache: Arc::new(RwLock::new(HashMap::new())),
565 }
566 }
567
568 pub fn encode(&self, content: &MultiModalContent) -> Result<Vector> {
570 let mut modality_embeddings = HashMap::new();
571
572 for (modality, data) in &content.modalities {
574 let embedding = match (modality, data) {
575 (Modality::Text, ModalityData::Text(text)) => self.text_encoder.encode(text)?,
576 (Modality::Image, ModalityData::Image(image)) => {
577 self.image_encoder.encode(image)?
578 }
579 (Modality::Audio, ModalityData::Audio(audio)) => {
580 self.audio_encoder.encode(audio)?
581 }
582 (Modality::Video, ModalityData::Video(video)) => {
583 self.video_encoder.encode(video)?
584 }
585 (Modality::Graph, ModalityData::Graph(graph)) => {
586 self.graph_encoder.encode(graph)?
587 }
588 (Modality::Numeric, ModalityData::Numeric(values)) => {
589 let mut padded_values = values.clone();
591 if padded_values.len() < self.config.joint_embedding_dim {
592 padded_values.resize(self.config.joint_embedding_dim, 0.0);
594 } else if padded_values.len() > self.config.joint_embedding_dim {
595 padded_values.truncate(self.config.joint_embedding_dim);
597 }
598 Vector::new(padded_values)
599 }
600 _ => return Err(anyhow!("Modality-data type mismatch")),
601 };
602
603 modality_embeddings.insert(*modality, embedding);
604 }
605
606 if self.config.enable_attention && modality_embeddings.len() > 1 {
608 modality_embeddings = self.apply_cross_modal_attention(modality_embeddings)?;
609 }
610
611 let fused_embedding = self.fusion_layer.fuse(&modality_embeddings)?;
613
614 let joint_embedding = self.project_to_joint_space(&fused_embedding)?;
616
617 Ok(joint_embedding)
618 }
619
620 fn apply_cross_modal_attention(
622 &self,
623 mut embeddings: HashMap<Modality, Vector>,
624 ) -> Result<HashMap<Modality, Vector>> {
625 let modalities: Vec<Modality> = embeddings.keys().copied().collect();
626
627 for i in 0..modalities.len() {
629 for j in 0..modalities.len() {
630 if i != j {
631 let query_modality = modalities[i];
632 let key_modality = modalities[j];
633
634 if let (Some(query), Some(key)) = (
635 embeddings.get(&query_modality).cloned(),
636 embeddings.get(&key_modality).cloned(),
637 ) {
638 let attended = self
640 .attention_mechanism
641 .cross_attention(&query, &key, &key)?;
642
643 if let Some(original) = embeddings.get_mut(&query_modality) {
645 *original = self.combine_attended(original, &attended)?;
646 }
647 }
648 }
649 }
650 }
651
652 Ok(embeddings)
653 }
654
655 fn combine_attended(&self, original: &Vector, attended: &Vector) -> Result<Vector> {
657 let alpha = 0.5; let original_f32 = original.as_f32();
659 let attended_f32 = attended.as_f32();
660
661 if original_f32.len() != attended_f32.len() {
662 return Err(anyhow!("Dimension mismatch in attention combination"));
663 }
664
665 let combined: Vec<f32> = original_f32
666 .iter()
667 .zip(&attended_f32)
668 .map(|(o, a)| (1.0 - alpha) * o + alpha * a)
669 .collect();
670
671 Ok(Vector::new(combined))
672 }
673
674 fn project_to_joint_space(&self, embedding: &Vector) -> Result<Vector> {
676 let embedding_f32 = embedding.as_f32();
677
678 if embedding_f32.len() == self.config.joint_embedding_dim {
680 return Ok(embedding.clone());
681 }
682
683 let mut projected = vec![0.0f32; self.config.joint_embedding_dim];
685 let copy_len = embedding_f32.len().min(self.config.joint_embedding_dim);
686
687 projected[..copy_len].copy_from_slice(&embedding_f32[..copy_len]);
688
689 if embedding_f32.len() > self.config.joint_embedding_dim {
691 let original_norm = embedding.magnitude();
692 let projected_vector = Vector::new(projected.clone());
693 let projected_norm = projected_vector.magnitude();
694
695 if projected_norm > 0.0 {
696 let scale = original_norm / projected_norm;
697 projected = projected_vector.scale(scale).as_f32();
698 }
699 }
700
701 Ok(Vector::new(projected))
702 }
703
704 pub fn cross_modal_similarity(
706 &self,
707 content1: &MultiModalContent,
708 content2: &MultiModalContent,
709 ) -> Result<f32> {
710 let embedding1 = self.encode(content1)?;
711 let embedding2 = self.encode(content2)?;
712
713 embedding1.cosine_similarity(&embedding2)
714 }
715
716 pub fn find_cross_modal_matches(
718 &self,
719 query_content: &MultiModalContent,
720 candidates: &[MultiModalContent],
721 top_k: usize,
722 ) -> Result<Vec<(usize, f32)>> {
723 let query_embedding = self.encode(query_content)?;
724 let mut similarities = Vec::new();
725
726 for (idx, candidate) in candidates.iter().enumerate() {
727 let candidate_embedding = self.encode(candidate)?;
728 let similarity = query_embedding.cosine_similarity(&candidate_embedding)?;
729 similarities.push((idx, similarity));
730 }
731
732 similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
734 similarities.truncate(top_k);
735
736 Ok(similarities)
737 }
738
739 pub fn align_modalities(
741 &mut self,
742 paired_data: &[(MultiModalContent, MultiModalContent)],
743 ) -> Result<()> {
744 for (content1, content2) in paired_data {
748 let embedding1 = self.encode(content1)?;
749 let embedding2 = self.encode(content2)?;
750
751 let similarity = embedding1.cosine_similarity(&embedding2)?;
753 let target_similarity = 1.0; let _loss = (similarity - target_similarity).powi(2);
756
757 let cache_key1 = self.generate_cache_key(content1);
760 let cache_key2 = self.generate_cache_key(content2);
761
762 let mut cache = self.alignment_cache.write();
763 cache.insert(cache_key1, embedding1);
764 cache.insert(cache_key2, embedding2);
765 }
766
767 Ok(())
768 }
769
770 fn generate_cache_key(&self, content: &MultiModalContent) -> String {
771 use std::collections::hash_map::DefaultHasher;
773 use std::hash::{Hash, Hasher};
774
775 let mut hasher = DefaultHasher::new();
776
777 for (modality, data) in &content.modalities {
778 modality.hash(&mut hasher);
779 match data {
780 ModalityData::Text(text) => text.hash(&mut hasher),
781 ModalityData::Numeric(values) => {
782 for &value in values {
783 value.to_bits().hash(&mut hasher);
784 }
785 }
786 _ => {
787 std::mem::discriminant(data).hash(&mut hasher);
789 }
790 }
791 }
792
793 format!("multimodal_{:x}", hasher.finish())
794 }
795
796 pub fn get_alignment_stats(&self) -> (usize, f32) {
798 let cache = self.alignment_cache.read();
799 let cache_size = cache.len();
800 let avg_similarity = 0.85; (cache_size, avg_similarity)
803 }
804}
805
806pub struct MockTextEncoder {
808 embedding_dim: usize,
809}
810
811impl MockTextEncoder {
812 pub fn new(embedding_dim: usize) -> Self {
813 Self { embedding_dim }
814 }
815}
816
817impl TextEncoder for MockTextEncoder {
818 fn encode(&self, text: &str) -> Result<Vector> {
819 use std::collections::hash_map::DefaultHasher;
821 use std::hash::{Hash, Hasher};
822
823 let mut hasher = DefaultHasher::new();
824 text.hash(&mut hasher);
825 let hash = hasher.finish();
826
827 let mut values = Vec::with_capacity(self.embedding_dim);
828 let mut seed = hash;
829
830 for _ in 0..self.embedding_dim {
831 seed = seed.wrapping_mul(1103515245).wrapping_add(12345);
832 let normalized = (seed as f32) / (u64::MAX as f32);
833 values.push((normalized - 0.5) * 2.0);
834 }
835
836 Ok(Vector::new(values))
837 }
838
839 fn encode_batch(&self, texts: &[String]) -> Result<Vec<Vector>> {
840 texts.iter().map(|text| self.encode(text)).collect()
841 }
842
843 fn get_embedding_dim(&self) -> usize {
844 self.embedding_dim
845 }
846}
847
848pub struct MockImageEncoder {
850 embedding_dim: usize,
851}
852pub struct MockAudioEncoder {
853 embedding_dim: usize,
854}
855pub struct MockVideoEncoder {
856 embedding_dim: usize,
857}
858pub struct MockGraphEncoder {
859 embedding_dim: usize,
860}
861
862impl MockImageEncoder {
863 pub fn new(embedding_dim: usize) -> Self {
864 Self { embedding_dim }
865 }
866}
867
868impl MockAudioEncoder {
869 pub fn new(embedding_dim: usize) -> Self {
870 Self { embedding_dim }
871 }
872}
873
874impl MockVideoEncoder {
875 pub fn new(embedding_dim: usize) -> Self {
876 Self { embedding_dim }
877 }
878}
879
880impl MockGraphEncoder {
881 pub fn new(embedding_dim: usize) -> Self {
882 Self { embedding_dim }
883 }
884}
885
886impl ImageEncoder for MockImageEncoder {
887 fn encode(&self, _image: &ImageData) -> Result<Vector> {
888 Ok(Vector::new(vec![0.0; self.embedding_dim]))
889 }
890
891 fn encode_batch(&self, images: &[ImageData]) -> Result<Vec<Vector>> {
892 Ok(vec![
893 Vector::new(vec![0.0; self.embedding_dim]);
894 images.len()
895 ])
896 }
897
898 fn get_embedding_dim(&self) -> usize {
899 self.embedding_dim
900 }
901
902 fn extract_features(&self, _image: &ImageData) -> Result<Vec<f32>> {
903 Ok(vec![0.0; 1000]) }
905}
906
907impl AudioEncoder for MockAudioEncoder {
908 fn encode(&self, _audio: &AudioData) -> Result<Vector> {
909 Ok(Vector::new(vec![0.0; self.embedding_dim]))
910 }
911
912 fn encode_batch(&self, audios: &[AudioData]) -> Result<Vec<Vector>> {
913 Ok(vec![
914 Vector::new(vec![0.0; self.embedding_dim]);
915 audios.len()
916 ])
917 }
918
919 fn get_embedding_dim(&self) -> usize {
920 self.embedding_dim
921 }
922
923 fn extract_features(&self, _audio: &AudioData) -> Result<Vec<f32>> {
924 Ok(vec![0.0; 128]) }
926}
927
928impl VideoEncoder for MockVideoEncoder {
929 fn encode(&self, _video: &VideoData) -> Result<Vector> {
930 Ok(Vector::new(vec![0.0; self.embedding_dim]))
931 }
932
933 fn encode_keyframes(&self, video: &VideoData) -> Result<Vec<Vector>> {
934 Ok(vec![
935 Vector::new(vec![0.0; self.embedding_dim]);
936 video.keyframes.len()
937 ])
938 }
939
940 fn get_embedding_dim(&self) -> usize {
941 self.embedding_dim
942 }
943}
944
945impl GraphEncoder for MockGraphEncoder {
946 fn encode(&self, _graph: &GraphData) -> Result<Vector> {
947 Ok(Vector::new(vec![0.0; self.embedding_dim]))
948 }
949
950 fn encode_node(&self, _node: &GraphNode) -> Result<Vector> {
951 Ok(Vector::new(vec![0.0; self.embedding_dim]))
952 }
953
954 fn encode_subgraph(&self, _nodes: &[GraphNode], _edges: &[GraphEdge]) -> Result<Vector> {
955 Ok(Vector::new(vec![0.0; self.embedding_dim]))
956 }
957
958 fn get_embedding_dim(&self) -> usize {
959 self.embedding_dim
960 }
961}
962
963#[cfg(test)]
964mod tests {
965 use super::*;
966
967 #[test]
968 fn test_cross_modal_encoder_creation() {
969 let config = CrossModalConfig::default();
970 let text_encoder = Box::new(MockTextEncoder::new(512));
971 let image_encoder = Box::new(MockImageEncoder::new(512));
972 let audio_encoder = Box::new(MockAudioEncoder::new(512));
973 let video_encoder = Box::new(MockVideoEncoder::new(512));
974 let graph_encoder = Box::new(MockGraphEncoder::new(512));
975
976 let encoder = CrossModalEncoder::new(
977 config,
978 text_encoder,
979 image_encoder,
980 audio_encoder,
981 video_encoder,
982 graph_encoder,
983 );
984
985 assert_eq!(encoder.config.joint_embedding_dim, 512);
986 }
987
988 #[test]
989 fn test_multi_modal_content_encoding() {
990 let config = CrossModalConfig::default();
991 let encoder = create_test_encoder(config);
992
993 let mut content = MultiModalContent {
994 modalities: HashMap::new(),
995 metadata: HashMap::new(),
996 temporal_info: None,
997 spatial_info: None,
998 };
999
1000 content.modalities.insert(
1001 Modality::Text,
1002 ModalityData::Text("Hello world".to_string()),
1003 );
1004 content.modalities.insert(
1005 Modality::Numeric,
1006 ModalityData::Numeric(vec![1.0, 2.0, 3.0]),
1007 );
1008
1009 let embedding = encoder.encode(&content).unwrap();
1010 assert_eq!(embedding.dimensions, 512);
1011 }
1012
1013 #[test]
1014 fn test_fusion_strategies() {
1015 let config = CrossModalConfig::default();
1016 let fusion_layer =
1017 FusionLayer::new(FusionStrategy::WeightedAverage, config.modality_weights);
1018
1019 let mut embeddings = HashMap::new();
1020 embeddings.insert(Modality::Text, Vector::new(vec![1.0, 0.0, 0.0]));
1021 embeddings.insert(Modality::Image, Vector::new(vec![0.0, 1.0, 0.0]));
1022
1023 let fused = fusion_layer.fuse(&embeddings).unwrap();
1024 assert_eq!(fused.dimensions, 3);
1025 }
1026
1027 fn create_test_encoder(config: CrossModalConfig) -> CrossModalEncoder {
1028 let text_encoder = Box::new(MockTextEncoder::new(512));
1029 let image_encoder = Box::new(MockImageEncoder::new(512));
1030 let audio_encoder = Box::new(MockAudioEncoder::new(512));
1031 let video_encoder = Box::new(MockVideoEncoder::new(512));
1032 let graph_encoder = Box::new(MockGraphEncoder::new(512));
1033
1034 CrossModalEncoder::new(
1035 config,
1036 text_encoder,
1037 image_encoder,
1038 audio_encoder,
1039 video_encoder,
1040 graph_encoder,
1041 )
1042 }
1043}