oxirs_vec/
cross_modal_embeddings.rs

1//! Cross-modal embeddings for multi-modal vector search
2//!
3//! This module provides CLIP-style cross-modal embeddings that can handle:
4//! - Text-image alignment
5//! - Multi-modal fusion
6//! - Cross-modal attention mechanisms
7//! - Joint embedding spaces
8
9use crate::Vector;
10use anyhow::{anyhow, Result};
11use parking_lot::RwLock;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::Arc;
15
16/// Modality types supported by the cross-modal system
17#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
18pub enum Modality {
19    Text,
20    Image,
21    Audio,
22    Video,
23    Graph,
24    Numeric,
25    Custom(u8),
26}
27
28/// Configuration for cross-modal embeddings
29#[derive(Debug, Clone, Serialize, Deserialize)]
30pub struct CrossModalConfig {
31    /// Dimension of the joint embedding space
32    pub joint_embedding_dim: usize,
33    /// Temperature parameter for contrastive learning
34    pub temperature: f32,
35    /// Enable attention mechanisms
36    pub enable_attention: bool,
37    /// Attention head count
38    pub attention_heads: usize,
39    /// Enable multi-scale features
40    pub enable_multi_scale: bool,
41    /// Fusion strategy for combining modalities
42    pub fusion_strategy: FusionStrategy,
43    /// Alignment learning rate
44    pub alignment_learning_rate: f32,
45    /// Enable domain adaptation
46    pub enable_domain_adaptation: bool,
47    /// Modality weights for fusion
48    pub modality_weights: HashMap<Modality, f32>,
49}
50
51impl Default for CrossModalConfig {
52    fn default() -> Self {
53        let mut modality_weights = HashMap::new();
54        modality_weights.insert(Modality::Text, 1.0);
55        modality_weights.insert(Modality::Image, 1.0);
56        modality_weights.insert(Modality::Audio, 0.8);
57        modality_weights.insert(Modality::Video, 0.9);
58
59        Self {
60            joint_embedding_dim: 512,
61            temperature: 0.07,
62            enable_attention: true,
63            attention_heads: 8,
64            enable_multi_scale: true,
65            fusion_strategy: FusionStrategy::AttentionWeighted,
66            alignment_learning_rate: 1e-4,
67            enable_domain_adaptation: true,
68            modality_weights,
69        }
70    }
71}
72
73/// Fusion strategies for combining multiple modalities
74#[derive(Debug, Clone, Serialize, Deserialize)]
75pub enum FusionStrategy {
76    /// Simple concatenation of embeddings
77    Concatenation,
78    /// Weighted average of embeddings
79    WeightedAverage,
80    /// Attention-weighted fusion
81    AttentionWeighted,
82    /// Early fusion before encoding
83    EarlyFusion,
84    /// Late fusion after encoding
85    LateFusion,
86    /// Hierarchical fusion with multiple stages
87    HierarchicalFusion,
88    /// Graph-based fusion using cross-modal graphs
89    GraphFusion,
90}
91
92/// Multi-modal content that can contain multiple types of data
93#[derive(Debug, Clone)]
94pub struct MultiModalContent {
95    pub modalities: HashMap<Modality, ModalityData>,
96    pub metadata: HashMap<String, String>,
97    pub temporal_info: Option<TemporalInfo>,
98    pub spatial_info: Option<SpatialInfo>,
99}
100
101/// Data for a specific modality
102#[derive(Debug, Clone)]
103pub enum ModalityData {
104    Text(String),
105    Image(ImageData),
106    Audio(AudioData),
107    Video(VideoData),
108    Graph(GraphData),
109    Numeric(Vec<f32>),
110    Raw(Vec<u8>),
111}
112
113/// Image data representation
114#[derive(Debug, Clone)]
115pub struct ImageData {
116    pub data: Vec<u8>,
117    pub width: u32,
118    pub height: u32,
119    pub channels: u32,
120    pub format: ImageFormat,
121    pub features: Option<Vec<f32>>, // Pre-extracted features
122}
123
124#[derive(Debug, Clone)]
125pub enum ImageFormat {
126    RGB,
127    RGBA,
128    Grayscale,
129    BGR,
130    YUV,
131}
132
133/// Audio data representation
134#[derive(Debug, Clone)]
135pub struct AudioData {
136    pub samples: Vec<f32>,
137    pub sample_rate: u32,
138    pub channels: u32,
139    pub duration: f32,
140    pub features: Option<Vec<f32>>, // MFCC, spectral features, etc.
141}
142
143/// Video data representation
144#[derive(Debug, Clone)]
145pub struct VideoData {
146    pub frames: Vec<ImageData>,
147    pub audio: Option<AudioData>,
148    pub fps: f32,
149    pub duration: f32,
150    pub keyframes: Vec<usize>, // Indices of keyframes
151}
152
153/// Graph data representation for knowledge graphs
154#[derive(Debug, Clone)]
155pub struct GraphData {
156    pub nodes: Vec<GraphNode>,
157    pub edges: Vec<GraphEdge>,
158    pub metadata: HashMap<String, String>,
159}
160
161#[derive(Debug, Clone)]
162pub struct GraphNode {
163    pub id: String,
164    pub labels: Vec<String>,
165    pub properties: HashMap<String, String>,
166    pub embedding: Option<Vector>,
167}
168
169#[derive(Debug, Clone)]
170pub struct GraphEdge {
171    pub source: String,
172    pub target: String,
173    pub relation: String,
174    pub properties: HashMap<String, String>,
175    pub weight: Option<f32>,
176}
177
178/// Temporal information for time-series data
179#[derive(Debug, Clone)]
180pub struct TemporalInfo {
181    pub timestamp: std::time::SystemTime,
182    pub duration: Option<std::time::Duration>,
183    pub temporal_features: Vec<f32>,
184}
185
186/// Spatial information for location-aware embeddings
187#[derive(Debug, Clone)]
188pub struct SpatialInfo {
189    pub coordinates: (f64, f64), // latitude, longitude
190    pub elevation: Option<f32>,
191    pub spatial_features: Vec<f32>,
192}
193
194/// Cross-modal embedding encoder that handles multiple modalities
195pub struct CrossModalEncoder {
196    config: CrossModalConfig,
197    text_encoder: Box<dyn TextEncoder>,
198    image_encoder: Box<dyn ImageEncoder>,
199    audio_encoder: Box<dyn AudioEncoder>,
200    video_encoder: Box<dyn VideoEncoder>,
201    graph_encoder: Box<dyn GraphEncoder>,
202    attention_mechanism: AttentionMechanism,
203    fusion_layer: FusionLayer,
204    alignment_cache: Arc<RwLock<HashMap<String, Vector>>>,
205}
206
207/// Text encoder trait for cross-modal systems
208pub trait TextEncoder: Send + Sync {
209    fn encode(&self, text: &str) -> Result<Vector>;
210    fn encode_batch(&self, texts: &[String]) -> Result<Vec<Vector>>;
211    fn get_embedding_dim(&self) -> usize;
212}
213
214/// Image encoder trait for cross-modal systems
215pub trait ImageEncoder: Send + Sync {
216    fn encode(&self, image: &ImageData) -> Result<Vector>;
217    fn encode_batch(&self, images: &[ImageData]) -> Result<Vec<Vector>>;
218    fn get_embedding_dim(&self) -> usize;
219    fn extract_features(&self, image: &ImageData) -> Result<Vec<f32>>;
220}
221
222/// Audio encoder trait for cross-modal systems
223pub trait AudioEncoder: Send + Sync {
224    fn encode(&self, audio: &AudioData) -> Result<Vector>;
225    fn encode_batch(&self, audios: &[AudioData]) -> Result<Vec<Vector>>;
226    fn get_embedding_dim(&self) -> usize;
227    fn extract_features(&self, audio: &AudioData) -> Result<Vec<f32>>;
228}
229
230/// Video encoder trait for cross-modal systems
231pub trait VideoEncoder: Send + Sync {
232    fn encode(&self, video: &VideoData) -> Result<Vector>;
233    fn encode_keyframes(&self, video: &VideoData) -> Result<Vec<Vector>>;
234    fn get_embedding_dim(&self) -> usize;
235}
236
237/// Graph encoder trait for knowledge graph embeddings
238pub trait GraphEncoder: Send + Sync {
239    fn encode(&self, graph: &GraphData) -> Result<Vector>;
240    fn encode_node(&self, node: &GraphNode) -> Result<Vector>;
241    fn encode_subgraph(&self, nodes: &[GraphNode], edges: &[GraphEdge]) -> Result<Vector>;
242    fn get_embedding_dim(&self) -> usize;
243}
244
245/// Attention mechanism for cross-modal alignment
246#[derive(Debug, Clone)]
247pub struct AttentionMechanism {
248    pub num_heads: usize,
249    pub head_dim: usize,
250    pub dropout_rate: f32,
251    pub scale: f32,
252}
253
254impl AttentionMechanism {
255    pub fn new(num_heads: usize, embedding_dim: usize) -> Self {
256        let head_dim = embedding_dim / num_heads;
257        let scale = 1.0 / (head_dim as f32).sqrt();
258
259        Self {
260            num_heads,
261            head_dim,
262            dropout_rate: 0.1,
263            scale,
264        }
265    }
266
267    /// Compute cross-modal attention between two modalities
268    pub fn cross_attention(&self, query: &Vector, key: &Vector, value: &Vector) -> Result<Vector> {
269        // Simplified cross-attention implementation
270        // In practice, this would use matrix operations and multiple heads
271
272        let query_f32 = query.as_f32();
273        let key_f32 = key.as_f32();
274        let value_f32 = value.as_f32();
275
276        if query_f32.len() != key_f32.len() || key_f32.len() != value_f32.len() {
277            return Err(anyhow!("Dimension mismatch in attention"));
278        }
279
280        // Compute attention scores (simplified dot-product attention)
281        let attention_score = query_f32
282            .iter()
283            .zip(&key_f32)
284            .map(|(q, k)| q * k)
285            .sum::<f32>()
286            * self.scale;
287
288        // Apply attention to values
289        let attended_values: Vec<f32> = value_f32
290            .iter()
291            .map(|v| v * attention_score.tanh()) // Apply softmax-like normalization
292            .collect();
293
294        Ok(Vector::new(attended_values))
295    }
296
297    /// Multi-head attention for richer representations
298    pub fn multi_head_attention(&self, inputs: &[Vector]) -> Result<Vector> {
299        if inputs.is_empty() {
300            return Err(anyhow!("No input vectors for attention"));
301        }
302
303        let dim = inputs[0].dimensions;
304        let mut combined_output = vec![0.0f32; dim];
305
306        // Simulate multi-head processing
307        for (_head_idx, input) in inputs.iter().enumerate().take(self.num_heads) {
308            let input_f32 = input.as_f32();
309            let head_weight = 1.0 / self.num_heads as f32;
310
311            for (i, &value) in input_f32.iter().enumerate() {
312                if i < combined_output.len() {
313                    combined_output[i] += value * head_weight;
314                }
315            }
316        }
317
318        Ok(Vector::new(combined_output))
319    }
320}
321
322/// Fusion layer for combining multiple modalities
323#[derive(Debug, Clone)]
324pub struct FusionLayer {
325    strategy: FusionStrategy,
326    modality_weights: HashMap<Modality, f32>,
327    learned_weights: Option<Vec<f32>>,
328}
329
330impl FusionLayer {
331    pub fn new(strategy: FusionStrategy, modality_weights: HashMap<Modality, f32>) -> Self {
332        Self {
333            strategy,
334            modality_weights,
335            learned_weights: None,
336        }
337    }
338
339    /// Fuse embeddings from multiple modalities
340    pub fn fuse(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
341        if embeddings.is_empty() {
342            return Err(anyhow!("No embeddings to fuse"));
343        }
344
345        match self.strategy {
346            FusionStrategy::Concatenation => self.concatenation_fusion(embeddings),
347            FusionStrategy::WeightedAverage => self.weighted_average_fusion(embeddings),
348            FusionStrategy::AttentionWeighted => self.attention_weighted_fusion(embeddings),
349            FusionStrategy::EarlyFusion => self.early_fusion(embeddings),
350            FusionStrategy::LateFusion => self.late_fusion(embeddings),
351            FusionStrategy::HierarchicalFusion => self.hierarchical_fusion(embeddings),
352            FusionStrategy::GraphFusion => self.graph_fusion(embeddings),
353        }
354    }
355
356    fn concatenation_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
357        let mut concatenated = Vec::new();
358
359        // Maintain consistent ordering
360        let ordered_modalities = [
361            Modality::Text,
362            Modality::Image,
363            Modality::Audio,
364            Modality::Video,
365        ];
366
367        for modality in &ordered_modalities {
368            if let Some(embedding) = embeddings.get(modality) {
369                concatenated.extend_from_slice(&embedding.as_f32());
370            }
371        }
372
373        // Add any custom modalities
374        for (modality, embedding) in embeddings {
375            if !ordered_modalities.contains(modality) {
376                concatenated.extend_from_slice(&embedding.as_f32());
377            }
378        }
379
380        Ok(Vector::new(concatenated))
381    }
382
383    fn weighted_average_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
384        let first_embedding = embeddings.values().next().unwrap();
385        let dim = first_embedding.dimensions;
386        let mut fused = vec![0.0f32; dim];
387        let mut total_weight = 0.0f32;
388
389        for (modality, embedding) in embeddings {
390            let weight = self.modality_weights.get(modality).copied().unwrap_or(1.0);
391            let embedding_f32 = embedding.as_f32();
392
393            if embedding_f32.len() != dim {
394                return Err(anyhow!("Dimension mismatch in embeddings"));
395            }
396
397            for (i, &value) in embedding_f32.iter().enumerate() {
398                fused[i] += value * weight;
399            }
400            total_weight += weight;
401        }
402
403        // Normalize by total weight
404        for value in &mut fused {
405            *value /= total_weight;
406        }
407
408        Ok(Vector::new(fused))
409    }
410
411    fn attention_weighted_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
412        // Simplified attention-based fusion
413        // In practice, this would use learned attention weights
414
415        let modalities: Vec<&Modality> = embeddings.keys().collect();
416        let vectors: Vec<&Vector> = embeddings.values().collect();
417
418        if vectors.is_empty() {
419            return Err(anyhow!("No vectors to fuse"));
420        }
421
422        let dim = vectors[0].dimensions;
423        let mut attention_weights = vec![1.0f32; modalities.len()];
424
425        // Compute simple attention weights based on vector norms
426        for (i, vector) in vectors.iter().enumerate() {
427            attention_weights[i] = vector.magnitude();
428        }
429
430        // Softmax normalization
431        let max_weight = attention_weights
432            .iter()
433            .fold(f32::NEG_INFINITY, |a, &b| a.max(b));
434        let exp_weights: Vec<f32> = attention_weights
435            .iter()
436            .map(|w| (w - max_weight).exp())
437            .collect();
438        let sum_exp: f32 = exp_weights.iter().sum();
439
440        for weight in &mut attention_weights {
441            *weight = (*weight - max_weight).exp() / sum_exp;
442        }
443
444        // Apply attention weights
445        let mut fused = vec![0.0f32; dim];
446        for (i, vector) in vectors.iter().enumerate() {
447            let vector_f32 = vector.as_f32();
448            let weight = attention_weights[i];
449
450            for j in 0..dim {
451                fused[j] += vector_f32[j] * weight;
452            }
453        }
454
455        Ok(Vector::new(fused))
456    }
457
458    fn early_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
459        // Early fusion: combine at feature level before final encoding
460        self.concatenation_fusion(embeddings)
461    }
462
463    fn late_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
464        // Late fusion: combine already encoded features
465        self.weighted_average_fusion(embeddings)
466    }
467
468    fn hierarchical_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
469        // Hierarchical fusion: multi-stage combination
470
471        // Stage 1: Group similar modalities
472        let mut text_audio = Vec::new();
473        let mut visual = Vec::new();
474        let mut structured = Vec::new();
475
476        for (modality, embedding) in embeddings {
477            match modality {
478                Modality::Text | Modality::Audio => text_audio.push(embedding),
479                Modality::Image | Modality::Video => visual.push(embedding),
480                Modality::Graph | Modality::Numeric => structured.push(embedding),
481                _ => text_audio.push(embedding), // Default to text-audio group
482            }
483        }
484
485        // Stage 2: Fuse within groups
486        let mut group_embeddings = HashMap::new();
487
488        if !text_audio.is_empty() {
489            let fused_ta = self.fuse_group(&text_audio)?;
490            group_embeddings.insert(Modality::Text, fused_ta);
491        }
492
493        if !visual.is_empty() {
494            let fused_visual = self.fuse_group(&visual)?;
495            group_embeddings.insert(Modality::Image, fused_visual);
496        }
497
498        if !structured.is_empty() {
499            let fused_structured = self.fuse_group(&structured)?;
500            group_embeddings.insert(Modality::Graph, fused_structured);
501        }
502
503        // Stage 3: Final fusion
504        self.weighted_average_fusion(&group_embeddings)
505    }
506
507    fn fuse_group(&self, embeddings: &[&Vector]) -> Result<Vector> {
508        if embeddings.is_empty() {
509            return Err(anyhow!("No embeddings to fuse in group"));
510        }
511
512        let dim = embeddings[0].dimensions;
513        let mut fused = vec![0.0f32; dim];
514
515        for embedding in embeddings {
516            let embedding_f32 = embedding.as_f32();
517            for (i, &value) in embedding_f32.iter().enumerate() {
518                fused[i] += value;
519            }
520        }
521
522        // Average
523        let count = embeddings.len() as f32;
524        for value in &mut fused {
525            *value /= count;
526        }
527
528        Ok(Vector::new(fused))
529    }
530
531    fn graph_fusion(&self, embeddings: &HashMap<Modality, Vector>) -> Result<Vector> {
532        // Graph-based fusion using modality relationships
533        // For now, use weighted average based on modality connectivity
534        self.weighted_average_fusion(embeddings)
535    }
536}
537
538impl CrossModalEncoder {
539    pub fn new(
540        config: CrossModalConfig,
541        text_encoder: Box<dyn TextEncoder>,
542        image_encoder: Box<dyn ImageEncoder>,
543        audio_encoder: Box<dyn AudioEncoder>,
544        video_encoder: Box<dyn VideoEncoder>,
545        graph_encoder: Box<dyn GraphEncoder>,
546    ) -> Self {
547        let attention_mechanism =
548            AttentionMechanism::new(config.attention_heads, config.joint_embedding_dim);
549
550        let fusion_layer = FusionLayer::new(
551            config.fusion_strategy.clone(),
552            config.modality_weights.clone(),
553        );
554
555        Self {
556            config,
557            text_encoder,
558            image_encoder,
559            audio_encoder,
560            video_encoder,
561            graph_encoder,
562            attention_mechanism,
563            fusion_layer,
564            alignment_cache: Arc::new(RwLock::new(HashMap::new())),
565        }
566    }
567
568    /// Encode multi-modal content into a joint embedding space
569    pub fn encode(&self, content: &MultiModalContent) -> Result<Vector> {
570        let mut modality_embeddings = HashMap::new();
571
572        // Encode each modality present in the content
573        for (modality, data) in &content.modalities {
574            let embedding = match (modality, data) {
575                (Modality::Text, ModalityData::Text(text)) => self.text_encoder.encode(text)?,
576                (Modality::Image, ModalityData::Image(image)) => {
577                    self.image_encoder.encode(image)?
578                }
579                (Modality::Audio, ModalityData::Audio(audio)) => {
580                    self.audio_encoder.encode(audio)?
581                }
582                (Modality::Video, ModalityData::Video(video)) => {
583                    self.video_encoder.encode(video)?
584                }
585                (Modality::Graph, ModalityData::Graph(graph)) => {
586                    self.graph_encoder.encode(graph)?
587                }
588                (Modality::Numeric, ModalityData::Numeric(values)) => {
589                    // Ensure numeric vectors match joint embedding dimension
590                    let mut padded_values = values.clone();
591                    if padded_values.len() < self.config.joint_embedding_dim {
592                        // Pad with zeros to match embedding dimension
593                        padded_values.resize(self.config.joint_embedding_dim, 0.0);
594                    } else if padded_values.len() > self.config.joint_embedding_dim {
595                        // Truncate to match embedding dimension
596                        padded_values.truncate(self.config.joint_embedding_dim);
597                    }
598                    Vector::new(padded_values)
599                }
600                _ => return Err(anyhow!("Modality-data type mismatch")),
601            };
602
603            modality_embeddings.insert(*modality, embedding);
604        }
605
606        // Apply cross-modal attention if enabled
607        if self.config.enable_attention && modality_embeddings.len() > 1 {
608            modality_embeddings = self.apply_cross_modal_attention(modality_embeddings)?;
609        }
610
611        // Fuse all modality embeddings
612        let fused_embedding = self.fusion_layer.fuse(&modality_embeddings)?;
613
614        // Project to joint embedding space if needed
615        let joint_embedding = self.project_to_joint_space(&fused_embedding)?;
616
617        Ok(joint_embedding)
618    }
619
620    /// Apply cross-modal attention between modalities
621    fn apply_cross_modal_attention(
622        &self,
623        mut embeddings: HashMap<Modality, Vector>,
624    ) -> Result<HashMap<Modality, Vector>> {
625        let modalities: Vec<Modality> = embeddings.keys().copied().collect();
626
627        // Apply attention between all pairs of modalities
628        for i in 0..modalities.len() {
629            for j in 0..modalities.len() {
630                if i != j {
631                    let query_modality = modalities[i];
632                    let key_modality = modalities[j];
633
634                    if let (Some(query), Some(key)) = (
635                        embeddings.get(&query_modality).cloned(),
636                        embeddings.get(&key_modality).cloned(),
637                    ) {
638                        // Use key as both key and value for simplicity
639                        let attended = self
640                            .attention_mechanism
641                            .cross_attention(&query, &key, &key)?;
642
643                        // Update the query embedding with attention
644                        if let Some(original) = embeddings.get_mut(&query_modality) {
645                            *original = self.combine_attended(original, &attended)?;
646                        }
647                    }
648                }
649            }
650        }
651
652        Ok(embeddings)
653    }
654
655    /// Combine original and attended embeddings
656    fn combine_attended(&self, original: &Vector, attended: &Vector) -> Result<Vector> {
657        let alpha = 0.5; // Attention weight
658        let original_f32 = original.as_f32();
659        let attended_f32 = attended.as_f32();
660
661        if original_f32.len() != attended_f32.len() {
662            return Err(anyhow!("Dimension mismatch in attention combination"));
663        }
664
665        let combined: Vec<f32> = original_f32
666            .iter()
667            .zip(&attended_f32)
668            .map(|(o, a)| (1.0 - alpha) * o + alpha * a)
669            .collect();
670
671        Ok(Vector::new(combined))
672    }
673
674    /// Project embedding to joint embedding space
675    fn project_to_joint_space(&self, embedding: &Vector) -> Result<Vector> {
676        let embedding_f32 = embedding.as_f32();
677
678        // If already the right dimension, return as-is
679        if embedding_f32.len() == self.config.joint_embedding_dim {
680            return Ok(embedding.clone());
681        }
682
683        // Simple projection: truncate or pad
684        let mut projected = vec![0.0f32; self.config.joint_embedding_dim];
685        let copy_len = embedding_f32.len().min(self.config.joint_embedding_dim);
686
687        projected[..copy_len].copy_from_slice(&embedding_f32[..copy_len]);
688
689        // If we had to truncate, normalize to maintain magnitude
690        if embedding_f32.len() > self.config.joint_embedding_dim {
691            let original_norm = embedding.magnitude();
692            let projected_vector = Vector::new(projected.clone());
693            let projected_norm = projected_vector.magnitude();
694
695            if projected_norm > 0.0 {
696                let scale = original_norm / projected_norm;
697                projected = projected_vector.scale(scale).as_f32();
698            }
699        }
700
701        Ok(Vector::new(projected))
702    }
703
704    /// Calculate cross-modal similarity between two multi-modal contents
705    pub fn cross_modal_similarity(
706        &self,
707        content1: &MultiModalContent,
708        content2: &MultiModalContent,
709    ) -> Result<f32> {
710        let embedding1 = self.encode(content1)?;
711        let embedding2 = self.encode(content2)?;
712
713        embedding1.cosine_similarity(&embedding2)
714    }
715
716    /// Find cross-modal matches (e.g., images that match text descriptions)
717    pub fn find_cross_modal_matches(
718        &self,
719        query_content: &MultiModalContent,
720        candidates: &[MultiModalContent],
721        top_k: usize,
722    ) -> Result<Vec<(usize, f32)>> {
723        let query_embedding = self.encode(query_content)?;
724        let mut similarities = Vec::new();
725
726        for (idx, candidate) in candidates.iter().enumerate() {
727            let candidate_embedding = self.encode(candidate)?;
728            let similarity = query_embedding.cosine_similarity(&candidate_embedding)?;
729            similarities.push((idx, similarity));
730        }
731
732        // Sort by similarity (descending) and take top k
733        similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
734        similarities.truncate(top_k);
735
736        Ok(similarities)
737    }
738
739    /// Align embeddings across modalities using contrastive learning
740    pub fn align_modalities(
741        &mut self,
742        paired_data: &[(MultiModalContent, MultiModalContent)],
743    ) -> Result<()> {
744        // Simplified alignment training
745        // In practice, this would involve gradient-based optimization
746
747        for (content1, content2) in paired_data {
748            let embedding1 = self.encode(content1)?;
749            let embedding2 = self.encode(content2)?;
750
751            // Calculate alignment loss (contrastive)
752            let similarity = embedding1.cosine_similarity(&embedding2)?;
753            let target_similarity = 1.0; // Paired data should be similar
754
755            let _loss = (similarity - target_similarity).powi(2);
756
757            // In a real implementation, this would update model parameters
758            // For now, we just cache the aligned embeddings
759            let cache_key1 = self.generate_cache_key(content1);
760            let cache_key2 = self.generate_cache_key(content2);
761
762            let mut cache = self.alignment_cache.write();
763            cache.insert(cache_key1, embedding1);
764            cache.insert(cache_key2, embedding2);
765        }
766
767        Ok(())
768    }
769
770    fn generate_cache_key(&self, content: &MultiModalContent) -> String {
771        // Generate a simple hash-based key for the content
772        use std::collections::hash_map::DefaultHasher;
773        use std::hash::{Hash, Hasher};
774
775        let mut hasher = DefaultHasher::new();
776
777        for (modality, data) in &content.modalities {
778            modality.hash(&mut hasher);
779            match data {
780                ModalityData::Text(text) => text.hash(&mut hasher),
781                ModalityData::Numeric(values) => {
782                    for &value in values {
783                        value.to_bits().hash(&mut hasher);
784                    }
785                }
786                _ => {
787                    // For complex data types, use a simplified hash
788                    std::mem::discriminant(data).hash(&mut hasher);
789                }
790            }
791        }
792
793        format!("multimodal_{:x}", hasher.finish())
794    }
795
796    /// Get alignment statistics
797    pub fn get_alignment_stats(&self) -> (usize, f32) {
798        let cache = self.alignment_cache.read();
799        let cache_size = cache.len();
800        let avg_similarity = 0.85; // Placeholder - would calculate from actual alignments
801
802        (cache_size, avg_similarity)
803    }
804}
805
806/// Simple implementations of encoder traits for testing
807pub struct MockTextEncoder {
808    embedding_dim: usize,
809}
810
811impl MockTextEncoder {
812    pub fn new(embedding_dim: usize) -> Self {
813        Self { embedding_dim }
814    }
815}
816
817impl TextEncoder for MockTextEncoder {
818    fn encode(&self, text: &str) -> Result<Vector> {
819        // Simple hash-based encoding for testing
820        use std::collections::hash_map::DefaultHasher;
821        use std::hash::{Hash, Hasher};
822
823        let mut hasher = DefaultHasher::new();
824        text.hash(&mut hasher);
825        let hash = hasher.finish();
826
827        let mut values = Vec::with_capacity(self.embedding_dim);
828        let mut seed = hash;
829
830        for _ in 0..self.embedding_dim {
831            seed = seed.wrapping_mul(1103515245).wrapping_add(12345);
832            let normalized = (seed as f32) / (u64::MAX as f32);
833            values.push((normalized - 0.5) * 2.0);
834        }
835
836        Ok(Vector::new(values))
837    }
838
839    fn encode_batch(&self, texts: &[String]) -> Result<Vec<Vector>> {
840        texts.iter().map(|text| self.encode(text)).collect()
841    }
842
843    fn get_embedding_dim(&self) -> usize {
844        self.embedding_dim
845    }
846}
847
848/// Similar mock implementations for other modalities
849pub struct MockImageEncoder {
850    embedding_dim: usize,
851}
852pub struct MockAudioEncoder {
853    embedding_dim: usize,
854}
855pub struct MockVideoEncoder {
856    embedding_dim: usize,
857}
858pub struct MockGraphEncoder {
859    embedding_dim: usize,
860}
861
862impl MockImageEncoder {
863    pub fn new(embedding_dim: usize) -> Self {
864        Self { embedding_dim }
865    }
866}
867
868impl MockAudioEncoder {
869    pub fn new(embedding_dim: usize) -> Self {
870        Self { embedding_dim }
871    }
872}
873
874impl MockVideoEncoder {
875    pub fn new(embedding_dim: usize) -> Self {
876        Self { embedding_dim }
877    }
878}
879
880impl MockGraphEncoder {
881    pub fn new(embedding_dim: usize) -> Self {
882        Self { embedding_dim }
883    }
884}
885
886impl ImageEncoder for MockImageEncoder {
887    fn encode(&self, _image: &ImageData) -> Result<Vector> {
888        Ok(Vector::new(vec![0.0; self.embedding_dim]))
889    }
890
891    fn encode_batch(&self, images: &[ImageData]) -> Result<Vec<Vector>> {
892        Ok(vec![
893            Vector::new(vec![0.0; self.embedding_dim]);
894            images.len()
895        ])
896    }
897
898    fn get_embedding_dim(&self) -> usize {
899        self.embedding_dim
900    }
901
902    fn extract_features(&self, _image: &ImageData) -> Result<Vec<f32>> {
903        Ok(vec![0.0; 1000]) // Mock CNN features
904    }
905}
906
907impl AudioEncoder for MockAudioEncoder {
908    fn encode(&self, _audio: &AudioData) -> Result<Vector> {
909        Ok(Vector::new(vec![0.0; self.embedding_dim]))
910    }
911
912    fn encode_batch(&self, audios: &[AudioData]) -> Result<Vec<Vector>> {
913        Ok(vec![
914            Vector::new(vec![0.0; self.embedding_dim]);
915            audios.len()
916        ])
917    }
918
919    fn get_embedding_dim(&self) -> usize {
920        self.embedding_dim
921    }
922
923    fn extract_features(&self, _audio: &AudioData) -> Result<Vec<f32>> {
924        Ok(vec![0.0; 128]) // Mock MFCC features
925    }
926}
927
928impl VideoEncoder for MockVideoEncoder {
929    fn encode(&self, _video: &VideoData) -> Result<Vector> {
930        Ok(Vector::new(vec![0.0; self.embedding_dim]))
931    }
932
933    fn encode_keyframes(&self, video: &VideoData) -> Result<Vec<Vector>> {
934        Ok(vec![
935            Vector::new(vec![0.0; self.embedding_dim]);
936            video.keyframes.len()
937        ])
938    }
939
940    fn get_embedding_dim(&self) -> usize {
941        self.embedding_dim
942    }
943}
944
945impl GraphEncoder for MockGraphEncoder {
946    fn encode(&self, _graph: &GraphData) -> Result<Vector> {
947        Ok(Vector::new(vec![0.0; self.embedding_dim]))
948    }
949
950    fn encode_node(&self, _node: &GraphNode) -> Result<Vector> {
951        Ok(Vector::new(vec![0.0; self.embedding_dim]))
952    }
953
954    fn encode_subgraph(&self, _nodes: &[GraphNode], _edges: &[GraphEdge]) -> Result<Vector> {
955        Ok(Vector::new(vec![0.0; self.embedding_dim]))
956    }
957
958    fn get_embedding_dim(&self) -> usize {
959        self.embedding_dim
960    }
961}
962
963#[cfg(test)]
964mod tests {
965    use super::*;
966
967    #[test]
968    fn test_cross_modal_encoder_creation() {
969        let config = CrossModalConfig::default();
970        let text_encoder = Box::new(MockTextEncoder::new(512));
971        let image_encoder = Box::new(MockImageEncoder::new(512));
972        let audio_encoder = Box::new(MockAudioEncoder::new(512));
973        let video_encoder = Box::new(MockVideoEncoder::new(512));
974        let graph_encoder = Box::new(MockGraphEncoder::new(512));
975
976        let encoder = CrossModalEncoder::new(
977            config,
978            text_encoder,
979            image_encoder,
980            audio_encoder,
981            video_encoder,
982            graph_encoder,
983        );
984
985        assert_eq!(encoder.config.joint_embedding_dim, 512);
986    }
987
988    #[test]
989    fn test_multi_modal_content_encoding() {
990        let config = CrossModalConfig::default();
991        let encoder = create_test_encoder(config);
992
993        let mut content = MultiModalContent {
994            modalities: HashMap::new(),
995            metadata: HashMap::new(),
996            temporal_info: None,
997            spatial_info: None,
998        };
999
1000        content.modalities.insert(
1001            Modality::Text,
1002            ModalityData::Text("Hello world".to_string()),
1003        );
1004        content.modalities.insert(
1005            Modality::Numeric,
1006            ModalityData::Numeric(vec![1.0, 2.0, 3.0]),
1007        );
1008
1009        let embedding = encoder.encode(&content).unwrap();
1010        assert_eq!(embedding.dimensions, 512);
1011    }
1012
1013    #[test]
1014    fn test_fusion_strategies() {
1015        let config = CrossModalConfig::default();
1016        let fusion_layer =
1017            FusionLayer::new(FusionStrategy::WeightedAverage, config.modality_weights);
1018
1019        let mut embeddings = HashMap::new();
1020        embeddings.insert(Modality::Text, Vector::new(vec![1.0, 0.0, 0.0]));
1021        embeddings.insert(Modality::Image, Vector::new(vec![0.0, 1.0, 0.0]));
1022
1023        let fused = fusion_layer.fuse(&embeddings).unwrap();
1024        assert_eq!(fused.dimensions, 3);
1025    }
1026
1027    fn create_test_encoder(config: CrossModalConfig) -> CrossModalEncoder {
1028        let text_encoder = Box::new(MockTextEncoder::new(512));
1029        let image_encoder = Box::new(MockImageEncoder::new(512));
1030        let audio_encoder = Box::new(MockAudioEncoder::new(512));
1031        let video_encoder = Box::new(MockVideoEncoder::new(512));
1032        let graph_encoder = Box::new(MockGraphEncoder::new(512));
1033
1034        CrossModalEncoder::new(
1035            config,
1036            text_encoder,
1037            image_encoder,
1038            audio_encoder,
1039            video_encoder,
1040            graph_encoder,
1041        )
1042    }
1043}