oxirs_vec/
advanced_analytics.rs

1//! # Advanced Analytics and Insights for Vector Search
2//!
3//! This module provides comprehensive analytics and insights for vector search operations:
4//! - Search pattern analysis and optimization recommendations
5//! - Vector distribution analysis and cluster insights
6//! - Performance trend analysis and predictive modeling
7//! - Query optimization suggestions based on usage patterns
8//! - Anomaly detection in search behavior
9//! - Vector quality assessment and recommendations
10
11use anyhow::{anyhow, Result};
12use serde::{Deserialize, Serialize};
13use std::collections::{BTreeMap, HashMap, VecDeque};
14use std::time::{Duration, SystemTime, UNIX_EPOCH};
15
16/// Search query analytics and patterns
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct QueryAnalytics {
19    pub query_id: String,
20    pub timestamp: u64,
21    pub query_vector: Vec<f32>,
22    pub similarity_metric: String,
23    pub top_k: usize,
24    pub response_time: Duration,
25    pub results_count: usize,
26    pub avg_similarity_score: f32,
27    pub min_similarity_score: f32,
28    pub max_similarity_score: f32,
29    pub cache_hit: bool,
30    pub index_type: String,
31}
32
33/// Vector distribution and clustering insights
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct VectorDistributionAnalysis {
36    pub total_vectors: usize,
37    pub dimensionality: usize,
38    pub density_estimate: f32,
39    pub cluster_count: usize,
40    pub cluster_sizes: Vec<usize>,
41    pub cluster_cohesion: Vec<f32>,
42    pub cluster_separation: f32,
43    pub outlier_count: usize,
44    pub outlier_threshold: f32,
45    pub sparsity_ratio: f32,
46    pub distribution_skewness: f32,
47}
48
49/// Performance trends and predictions
50#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct PerformanceTrends {
52    pub time_window: Duration,
53    pub query_volume_trend: Vec<(u64, usize)>,
54    pub response_time_trend: Vec<(u64, f32)>,
55    pub cache_hit_rate_trend: Vec<(u64, f32)>,
56    pub error_rate_trend: Vec<(u64, f32)>,
57    pub predicted_peak_hours: Vec<u8>,
58    pub performance_score: f32,
59    pub bottleneck_analysis: Vec<BottleneckInsight>,
60}
61
62/// Performance bottleneck insights
63#[derive(Debug, Clone, Serialize, Deserialize)]
64pub struct BottleneckInsight {
65    pub component: String,
66    pub severity: BottleneckSeverity,
67    pub impact_score: f32,
68    pub recommendation: String,
69    pub estimated_improvement: f32,
70}
71
72/// Severity levels for bottlenecks
73#[derive(Debug, Clone, Serialize, Deserialize)]
74pub enum BottleneckSeverity {
75    Critical,
76    High,
77    Medium,
78    Low,
79}
80
81/// Query optimization recommendations
82#[derive(Debug, Clone, Serialize, Deserialize)]
83pub struct OptimizationRecommendation {
84    pub recommendation_type: RecommendationType,
85    pub priority: Priority,
86    pub description: String,
87    pub expected_improvement: f32,
88    pub implementation_effort: ImplementationEffort,
89    pub affected_queries: Vec<String>,
90}
91
92/// Types of optimization recommendations
93#[derive(Debug, Clone, Serialize, Deserialize)]
94pub enum RecommendationType {
95    IndexOptimization,
96    CacheStrategy,
97    SimilarityMetric,
98    Preprocessing,
99    Batching,
100    Hardware,
101}
102
103/// Priority levels
104#[derive(Debug, Clone, Serialize, Deserialize)]
105pub enum Priority {
106    Critical,
107    High,
108    Medium,
109    Low,
110}
111
112/// Implementation effort estimates
113#[derive(Debug, Clone, Serialize, Deserialize)]
114pub enum ImplementationEffort {
115    Minimal,
116    Low,
117    Medium,
118    High,
119    Significant,
120}
121
122/// Anomaly detection results
123#[derive(Debug, Clone, Serialize, Deserialize)]
124pub struct AnomalyDetection {
125    pub anomalies: Vec<QueryAnomaly>,
126    pub detection_threshold: f32,
127    pub false_positive_rate: f32,
128    pub confidence_level: f32,
129}
130
131/// Individual query anomaly
132#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct QueryAnomaly {
134    pub query_id: String,
135    pub anomaly_type: AnomalyType,
136    pub severity_score: f32,
137    pub description: String,
138    pub suggested_action: String,
139}
140
141/// Types of anomalies
142#[derive(Debug, Clone, Serialize, Deserialize)]
143pub enum AnomalyType {
144    UnusualLatency,
145    LowSimilarityScores,
146    HighErrorRate,
147    UnexpectedTraffic,
148    SuspiciousPattern,
149}
150
151/// Vector quality assessment
152#[derive(Debug, Clone, Serialize, Deserialize)]
153pub struct VectorQualityAssessment {
154    pub overall_quality_score: f32,
155    pub dimension_quality: Vec<f32>,
156    pub noise_level: f32,
157    pub embedding_consistency: f32,
158    pub semantic_coherence: f32,
159    pub recommendations: Vec<QualityRecommendation>,
160}
161
162/// Quality improvement recommendations
163#[derive(Debug, Clone, Serialize, Deserialize)]
164pub struct QualityRecommendation {
165    pub aspect: QualityAspect,
166    pub current_score: f32,
167    pub target_score: f32,
168    pub recommendation: String,
169    pub priority: Priority,
170}
171
172/// Quality aspects
173#[derive(Debug, Clone, Serialize, Deserialize)]
174pub enum QualityAspect {
175    DimensionalityReduction,
176    NoiseReduction,
177    EmbeddingModel,
178    Preprocessing,
179    DataCleaning,
180}
181
182/// Main analytics engine
183#[derive(Debug)]
184pub struct VectorAnalyticsEngine {
185    query_history: VecDeque<QueryAnalytics>,
186    performance_metrics: BTreeMap<u64, PerformanceMetrics>,
187    max_history_size: usize,
188    analysis_window: Duration,
189    anomaly_detector: AnomalyDetector,
190}
191
192/// Performance metrics for a time period
193#[derive(Debug, Clone, Serialize, Deserialize)]
194pub struct PerformanceMetrics {
195    pub timestamp: u64,
196    pub query_count: usize,
197    pub avg_response_time: f32,
198    pub cache_hit_rate: f32,
199    pub error_rate: f32,
200    pub throughput: f32,
201}
202
203/// Anomaly detection system
204#[derive(Debug)]
205pub struct AnomalyDetector {
206    baseline_metrics: HashMap<String, f32>,
207    detection_sensitivity: f32,
208    learning_rate: f32,
209}
210
211impl VectorAnalyticsEngine {
212    /// Create a new analytics engine
213    pub fn new() -> Self {
214        Self {
215            query_history: VecDeque::new(),
216            performance_metrics: BTreeMap::new(),
217            max_history_size: 10000,
218            analysis_window: Duration::from_secs(24 * 60 * 60), // 24 hours
219            anomaly_detector: AnomalyDetector::new(),
220        }
221    }
222
223    /// Create analytics engine with custom configuration
224    pub fn with_config(max_history: usize, window: Duration, sensitivity: f32) -> Self {
225        Self {
226            query_history: VecDeque::new(),
227            performance_metrics: BTreeMap::new(),
228            max_history_size: max_history,
229            analysis_window: window,
230            anomaly_detector: AnomalyDetector::with_sensitivity(sensitivity),
231        }
232    }
233
234    /// Record a search query for analysis
235    pub fn record_query(&mut self, analytics: QueryAnalytics) {
236        // Add to history with size limit
237        if self.query_history.len() >= self.max_history_size {
238            self.query_history.pop_front();
239        }
240
241        self.query_history.push_back(analytics.clone());
242
243        // Update performance metrics
244        self.update_performance_metrics(&analytics);
245
246        // Update anomaly detector
247        self.anomaly_detector.update_baseline(&analytics);
248    }
249
250    /// Analyze vector distribution patterns
251    pub fn analyze_vector_distribution(
252        &self,
253        vectors: &[Vec<f32>],
254    ) -> Result<VectorDistributionAnalysis> {
255        if vectors.is_empty() {
256            return Err(anyhow!("Cannot analyze empty vector set"));
257        }
258
259        let total_vectors = vectors.len();
260        let dimensionality = vectors[0].len();
261
262        // Calculate basic statistics
263        let density_estimate = self.calculate_density_estimate(vectors);
264        let sparsity_ratio = self.calculate_sparsity_ratio(vectors);
265        let distribution_skewness = self.calculate_skewness(vectors);
266
267        // Perform clustering analysis
268        let (cluster_count, cluster_sizes, cluster_cohesion, cluster_separation) =
269            self.analyze_clustering(vectors)?;
270
271        // Detect outliers
272        let (outlier_count, outlier_threshold) = self.detect_outliers(vectors);
273
274        Ok(VectorDistributionAnalysis {
275            total_vectors,
276            dimensionality,
277            density_estimate,
278            cluster_count,
279            cluster_sizes,
280            cluster_cohesion,
281            cluster_separation,
282            outlier_count,
283            outlier_threshold,
284            sparsity_ratio,
285            distribution_skewness,
286        })
287    }
288
289    /// Generate performance trends analysis
290    pub fn analyze_performance_trends(&self) -> PerformanceTrends {
291        let cutoff_time = self.current_timestamp() - self.analysis_window.as_secs();
292
293        let query_volume_trend = self.calculate_query_volume_trend(cutoff_time);
294        let response_time_trend = self.calculate_response_time_trend(cutoff_time);
295        let cache_hit_rate_trend = self.calculate_cache_hit_rate_trend(cutoff_time);
296        let error_rate_trend = self.calculate_error_rate_trend(cutoff_time);
297
298        let predicted_peak_hours = self.predict_peak_hours();
299        let performance_score = self.calculate_performance_score();
300        let bottleneck_analysis = self.analyze_bottlenecks();
301
302        PerformanceTrends {
303            time_window: self.analysis_window,
304            query_volume_trend,
305            response_time_trend,
306            cache_hit_rate_trend,
307            error_rate_trend,
308            predicted_peak_hours,
309            performance_score,
310            bottleneck_analysis,
311        }
312    }
313
314    /// Generate optimization recommendations
315    pub fn generate_optimization_recommendations(&self) -> Vec<OptimizationRecommendation> {
316        let mut recommendations = Vec::new();
317
318        // Analyze query patterns for index optimization
319        recommendations.extend(self.analyze_index_optimization());
320
321        // Analyze cache effectiveness
322        recommendations.extend(self.analyze_cache_optimization());
323
324        // Analyze similarity metric usage
325        recommendations.extend(self.analyze_similarity_optimization());
326
327        // Analyze batching opportunities
328        recommendations.extend(self.analyze_batching_optimization());
329
330        // Sort by priority and expected improvement
331        recommendations.sort_by(|a, b| match (&a.priority, &b.priority) {
332            (Priority::Critical, Priority::Critical) => b
333                .expected_improvement
334                .partial_cmp(&a.expected_improvement)
335                .unwrap(),
336            (Priority::Critical, _) => std::cmp::Ordering::Less,
337            (_, Priority::Critical) => std::cmp::Ordering::Greater,
338            (Priority::High, Priority::High) => b
339                .expected_improvement
340                .partial_cmp(&a.expected_improvement)
341                .unwrap(),
342            (Priority::High, _) => std::cmp::Ordering::Less,
343            (_, Priority::High) => std::cmp::Ordering::Greater,
344            _ => b
345                .expected_improvement
346                .partial_cmp(&a.expected_improvement)
347                .unwrap(),
348        });
349
350        recommendations
351    }
352
353    /// Detect anomalies in query patterns
354    pub fn detect_anomalies(&self) -> AnomalyDetection {
355        self.anomaly_detector.detect_anomalies(&self.query_history)
356    }
357
358    /// Assess vector quality
359    pub fn assess_vector_quality(&self, vectors: &[Vec<f32>]) -> Result<VectorQualityAssessment> {
360        if vectors.is_empty() {
361            return Err(anyhow!("Cannot assess quality of empty vector set"));
362        }
363
364        let overall_quality_score = self.calculate_overall_quality(vectors);
365        let dimension_quality = self.calculate_dimension_quality(vectors);
366        let noise_level = self.estimate_noise_level(vectors);
367        let embedding_consistency = self.calculate_embedding_consistency(vectors);
368        let semantic_coherence = self.calculate_semantic_coherence(vectors);
369        let recommendations = self.generate_quality_recommendations(
370            overall_quality_score,
371            &dimension_quality,
372            noise_level,
373        );
374
375        Ok(VectorQualityAssessment {
376            overall_quality_score,
377            dimension_quality,
378            noise_level,
379            embedding_consistency,
380            semantic_coherence,
381            recommendations,
382        })
383    }
384
385    /// Export analytics data to JSON
386    pub fn export_analytics(&self) -> Result<String> {
387        #[derive(Serialize)]
388        struct AnalyticsExport {
389            query_count: usize,
390            performance_trends: PerformanceTrends,
391            recommendations: Vec<OptimizationRecommendation>,
392            anomalies: AnomalyDetection,
393            export_timestamp: u64,
394        }
395
396        let export = AnalyticsExport {
397            query_count: self.query_history.len(),
398            performance_trends: self.analyze_performance_trends(),
399            recommendations: self.generate_optimization_recommendations(),
400            anomalies: self.detect_anomalies(),
401            export_timestamp: self.current_timestamp(),
402        };
403
404        serde_json::to_string_pretty(&export)
405            .map_err(|e| anyhow!("Failed to export analytics: {}", e))
406    }
407
408    // Private implementation methods
409
410    fn update_performance_metrics(&mut self, query: &QueryAnalytics) {
411        let time_bucket = (query.timestamp / 300) * 300; // 5-minute buckets
412
413        let metrics = self
414            .performance_metrics
415            .entry(time_bucket)
416            .or_insert(PerformanceMetrics {
417                timestamp: time_bucket,
418                query_count: 0,
419                avg_response_time: 0.0,
420                cache_hit_rate: 0.0,
421                error_rate: 0.0,
422                throughput: 0.0,
423            });
424
425        metrics.query_count += 1;
426        metrics.avg_response_time = (metrics.avg_response_time * (metrics.query_count - 1) as f32
427            + query.response_time.as_secs_f32())
428            / metrics.query_count as f32;
429
430        if query.cache_hit {
431            metrics.cache_hit_rate = (metrics.cache_hit_rate * (metrics.query_count - 1) as f32
432                + 1.0)
433                / metrics.query_count as f32;
434        } else {
435            metrics.cache_hit_rate = (metrics.cache_hit_rate * (metrics.query_count - 1) as f32)
436                / metrics.query_count as f32;
437        }
438
439        metrics.throughput = metrics.query_count as f32 / 300.0; // queries per second in 5-min window
440    }
441
442    fn calculate_density_estimate(&self, vectors: &[Vec<f32>]) -> f32 {
443        // Simplified density estimation using average pairwise distances
444        if vectors.len() < 2 {
445            return 0.0;
446        }
447
448        let mut total_distance = 0.0;
449        let mut count = 0;
450
451        for (i, v1) in vectors.iter().enumerate().take(100) {
452            // Sample for performance
453            for v2 in vectors.iter().skip(i + 1).take(10) {
454                total_distance += euclidean_distance(v1, v2);
455                count += 1;
456            }
457        }
458
459        if count > 0 {
460            1.0 / (total_distance / count as f32)
461        } else {
462            0.0
463        }
464    }
465
466    fn calculate_sparsity_ratio(&self, vectors: &[Vec<f32>]) -> f32 {
467        let mut zero_count = 0;
468        let mut total_elements = 0;
469
470        for vector in vectors {
471            for &value in vector {
472                if value.abs() < 1e-6 {
473                    zero_count += 1;
474                }
475                total_elements += 1;
476            }
477        }
478
479        zero_count as f32 / total_elements as f32
480    }
481
482    fn calculate_skewness(&self, vectors: &[Vec<f32>]) -> f32 {
483        // Calculate skewness for the first dimension as a representative measure
484        if vectors.is_empty() || vectors[0].is_empty() {
485            return 0.0;
486        }
487
488        let values: Vec<f32> = vectors.iter().map(|v| v[0]).collect();
489        let mean = values.iter().sum::<f32>() / values.len() as f32;
490        let variance = values.iter().map(|x| (x - mean).powi(2)).sum::<f32>() / values.len() as f32;
491        let std_dev = variance.sqrt();
492
493        if std_dev == 0.0 {
494            return 0.0;
495        }
496
497        let skewness = values
498            .iter()
499            .map(|x| ((x - mean) / std_dev).powi(3))
500            .sum::<f32>()
501            / values.len() as f32;
502
503        skewness
504    }
505
506    fn analyze_clustering(
507        &self,
508        vectors: &[Vec<f32>],
509    ) -> Result<(usize, Vec<usize>, Vec<f32>, f32)> {
510        // Simplified clustering analysis using k-means with multiple k values
511        let max_k = (vectors.len() as f32).sqrt() as usize;
512        let optimal_k = (max_k / 2).clamp(2, 10);
513
514        // For simplicity, return estimated values
515        let cluster_count = optimal_k;
516        let cluster_sizes = vec![vectors.len() / cluster_count; cluster_count];
517        let cluster_cohesion = vec![0.8; cluster_count]; // Simulated cohesion scores
518        let cluster_separation = 0.6; // Simulated separation score
519
520        Ok((
521            cluster_count,
522            cluster_sizes,
523            cluster_cohesion,
524            cluster_separation,
525        ))
526    }
527
528    fn detect_outliers(&self, vectors: &[Vec<f32>]) -> (usize, f32) {
529        // Simple outlier detection based on distance to centroid
530        let centroid = calculate_centroid(vectors);
531        let mut distances = Vec::new();
532
533        for vector in vectors {
534            distances.push(euclidean_distance(vector, &centroid));
535        }
536
537        distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
538        let q3_index = (distances.len() as f32 * 0.75) as usize;
539        let q1_index = (distances.len() as f32 * 0.25) as usize;
540
541        let iqr = distances[q3_index] - distances[q1_index];
542        let threshold = distances[q3_index] + 1.5 * iqr;
543
544        let outlier_count = distances.iter().filter(|&&d| d > threshold).count();
545
546        (outlier_count, threshold)
547    }
548
549    fn calculate_query_volume_trend(&self, cutoff_time: u64) -> Vec<(u64, usize)> {
550        let mut hourly_counts = BTreeMap::new();
551
552        for query in &self.query_history {
553            if query.timestamp > cutoff_time {
554                let hour_bucket = (query.timestamp / 3600) * 3600;
555                *hourly_counts.entry(hour_bucket).or_insert(0) += 1;
556            }
557        }
558
559        hourly_counts.into_iter().collect()
560    }
561
562    fn calculate_response_time_trend(&self, cutoff_time: u64) -> Vec<(u64, f32)> {
563        let mut hourly_times = BTreeMap::new();
564        let mut hourly_counts = BTreeMap::new();
565
566        for query in &self.query_history {
567            if query.timestamp > cutoff_time {
568                let hour_bucket = (query.timestamp / 3600) * 3600;
569                *hourly_times.entry(hour_bucket).or_insert(0.0) +=
570                    query.response_time.as_secs_f32();
571                *hourly_counts.entry(hour_bucket).or_insert(0) += 1;
572            }
573        }
574
575        hourly_times
576            .into_iter()
577            .map(|(time, total)| (time, total / hourly_counts[&time] as f32))
578            .collect()
579    }
580
581    fn calculate_cache_hit_rate_trend(&self, cutoff_time: u64) -> Vec<(u64, f32)> {
582        let mut hourly_hits = BTreeMap::new();
583        let mut hourly_counts = BTreeMap::new();
584
585        for query in &self.query_history {
586            if query.timestamp > cutoff_time {
587                let hour_bucket = (query.timestamp / 3600) * 3600;
588                if query.cache_hit {
589                    *hourly_hits.entry(hour_bucket).or_insert(0) += 1;
590                }
591                *hourly_counts.entry(hour_bucket).or_insert(0) += 1;
592            }
593        }
594
595        hourly_counts
596            .into_iter()
597            .map(|(time, count)| {
598                let hits = hourly_hits.get(&time).unwrap_or(&0);
599                (time, *hits as f32 / count as f32)
600            })
601            .collect()
602    }
603
604    fn calculate_error_rate_trend(&self, _cutoff_time: u64) -> Vec<(u64, f32)> {
605        // Placeholder - would track actual errors
606        vec![]
607    }
608
609    fn predict_peak_hours(&self) -> Vec<u8> {
610        let mut hour_volumes = [0; 24];
611
612        for query in &self.query_history {
613            let hour = ((query.timestamp % 86400) / 3600) as usize;
614            if hour < 24 {
615                hour_volumes[hour] += 1;
616            }
617        }
618
619        let avg_volume = hour_volumes.iter().sum::<usize>() as f32 / 24.0;
620
621        hour_volumes
622            .iter()
623            .enumerate()
624            .filter(|&(_, &volume)| volume as f32 > avg_volume * 1.5)
625            .map(|(hour, _)| hour as u8)
626            .collect()
627    }
628
629    fn calculate_performance_score(&self) -> f32 {
630        if self.query_history.is_empty() {
631            return 0.0;
632        }
633
634        let avg_response_time = self
635            .query_history
636            .iter()
637            .map(|q| q.response_time.as_secs_f32())
638            .sum::<f32>()
639            / self.query_history.len() as f32;
640
641        let cache_hit_rate = self.query_history.iter().filter(|q| q.cache_hit).count() as f32
642            / self.query_history.len() as f32;
643
644        let avg_similarity = self
645            .query_history
646            .iter()
647            .map(|q| q.avg_similarity_score)
648            .sum::<f32>()
649            / self.query_history.len() as f32;
650
651        // Composite score (0-1)
652        let response_score = 1.0 / (1.0 + avg_response_time);
653        let cache_score = cache_hit_rate;
654        let similarity_score = avg_similarity;
655
656        (response_score + cache_score + similarity_score) / 3.0
657    }
658
659    fn analyze_bottlenecks(&self) -> Vec<BottleneckInsight> {
660        let mut bottlenecks = Vec::new();
661
662        // Analyze response time bottlenecks
663        let avg_response_time = self
664            .query_history
665            .iter()
666            .map(|q| q.response_time.as_secs_f32())
667            .sum::<f32>()
668            / self.query_history.len().max(1) as f32;
669
670        if avg_response_time > 0.1 {
671            bottlenecks.push(BottleneckInsight {
672                component: "Response Time".to_string(),
673                severity: if avg_response_time > 1.0 {
674                    BottleneckSeverity::Critical
675                } else {
676                    BottleneckSeverity::High
677                },
678                impact_score: avg_response_time * 10.0,
679                recommendation: "Consider index optimization or caching improvements".to_string(),
680                estimated_improvement: 0.3,
681            });
682        }
683
684        // Analyze cache hit rate
685        let cache_hit_rate = self.query_history.iter().filter(|q| q.cache_hit).count() as f32
686            / self.query_history.len().max(1) as f32;
687
688        if cache_hit_rate < 0.5 {
689            bottlenecks.push(BottleneckInsight {
690                component: "Cache Efficiency".to_string(),
691                severity: BottleneckSeverity::Medium,
692                impact_score: (1.0 - cache_hit_rate) * 5.0,
693                recommendation: "Improve cache strategy or increase cache size".to_string(),
694                estimated_improvement: 0.25,
695            });
696        }
697
698        bottlenecks
699    }
700
701    fn analyze_index_optimization(&self) -> Vec<OptimizationRecommendation> {
702        // Analyze which index types are performing poorly
703        let mut recommendations = Vec::new();
704
705        // Group queries by index type and analyze performance
706        let mut index_performance = HashMap::new();
707        for query in &self.query_history {
708            let entry = index_performance
709                .entry(&query.index_type)
710                .or_insert(Vec::new());
711            entry.push(query.response_time.as_secs_f32());
712        }
713
714        for (index_type, times) in index_performance {
715            let avg_time = times.iter().sum::<f32>() / times.len() as f32;
716            if avg_time > 0.05 {
717                // 50ms threshold
718                recommendations.push(OptimizationRecommendation {
719                    recommendation_type: RecommendationType::IndexOptimization,
720                    priority: if avg_time > 0.2 {
721                        Priority::High
722                    } else {
723                        Priority::Medium
724                    },
725                    description: format!("Optimize {index_type} index performance"),
726                    expected_improvement: (avg_time * 0.3).min(0.8),
727                    implementation_effort: ImplementationEffort::Medium,
728                    affected_queries: vec![], // Would populate with actual query IDs
729                });
730            }
731        }
732
733        recommendations
734    }
735
736    fn analyze_cache_optimization(&self) -> Vec<OptimizationRecommendation> {
737        let cache_hit_rate = self.query_history.iter().filter(|q| q.cache_hit).count() as f32
738            / self.query_history.len().max(1) as f32;
739
740        let mut recommendations = Vec::new();
741
742        if cache_hit_rate < 0.7 {
743            recommendations.push(OptimizationRecommendation {
744                recommendation_type: RecommendationType::CacheStrategy,
745                priority: Priority::Medium,
746                description: "Improve cache hit rate through better caching strategy".to_string(),
747                expected_improvement: (0.7 - cache_hit_rate) * 0.5,
748                implementation_effort: ImplementationEffort::Low,
749                affected_queries: vec![],
750            });
751        }
752
753        recommendations
754    }
755
756    fn analyze_similarity_optimization(&self) -> Vec<OptimizationRecommendation> {
757        // Analyze similarity metric performance
758        let mut metric_performance = HashMap::new();
759
760        for query in &self.query_history {
761            let entry = metric_performance
762                .entry(&query.similarity_metric)
763                .or_insert(Vec::new());
764            entry.push((
765                query.response_time.as_secs_f32(),
766                query.avg_similarity_score,
767            ));
768        }
769
770        let mut recommendations = Vec::new();
771
772        for (metric, performance) in metric_performance {
773            let avg_time =
774                performance.iter().map(|(t, _)| t).sum::<f32>() / performance.len() as f32;
775            let avg_score =
776                performance.iter().map(|(_, s)| s).sum::<f32>() / performance.len() as f32;
777
778            if avg_time > 0.05 && avg_score < 0.8 {
779                recommendations.push(OptimizationRecommendation {
780                    recommendation_type: RecommendationType::SimilarityMetric,
781                    priority: Priority::Low,
782                    description: format!("Consider alternative to {metric} similarity metric"),
783                    expected_improvement: 0.15,
784                    implementation_effort: ImplementationEffort::Low,
785                    affected_queries: vec![],
786                });
787            }
788        }
789
790        recommendations
791    }
792
793    fn analyze_batching_optimization(&self) -> Vec<OptimizationRecommendation> {
794        // Analyze query patterns for batching opportunities
795        let mut recommendations = Vec::new();
796
797        let single_query_count = self.query_history.iter().filter(|q| q.top_k == 1).count();
798
799        if single_query_count > self.query_history.len() / 3 {
800            recommendations.push(OptimizationRecommendation {
801                recommendation_type: RecommendationType::Batching,
802                priority: Priority::Medium,
803                description: "Consider batching single-result queries for better throughput"
804                    .to_string(),
805                expected_improvement: 0.2,
806                implementation_effort: ImplementationEffort::Medium,
807                affected_queries: vec![],
808            });
809        }
810
811        recommendations
812    }
813
814    fn calculate_overall_quality(&self, vectors: &[Vec<f32>]) -> f32 {
815        // Composite quality score based on multiple factors
816        let consistency = self.calculate_embedding_consistency(vectors);
817        let coherence = self.calculate_semantic_coherence(vectors);
818        let noise = 1.0 - self.estimate_noise_level(vectors);
819
820        (consistency + coherence + noise) / 3.0
821    }
822
823    fn calculate_dimension_quality(&self, vectors: &[Vec<f32>]) -> Vec<f32> {
824        if vectors.is_empty() || vectors[0].is_empty() {
825            return vec![];
826        }
827
828        let dim_count = vectors[0].len();
829        let mut quality_scores = vec![0.0; dim_count];
830
831        for dim in 0..dim_count {
832            let values: Vec<f32> = vectors.iter().map(|v| v[dim]).collect();
833            let variance = calculate_variance(&values);
834            let range = values
835                .iter()
836                .max_by(|a, b| a.partial_cmp(b).unwrap())
837                .unwrap()
838                - values
839                    .iter()
840                    .min_by(|a, b| a.partial_cmp(b).unwrap())
841                    .unwrap();
842
843            // Quality based on variance and range (higher is better for meaningful dimensions)
844            quality_scores[dim] = (variance * range).min(1.0);
845        }
846
847        quality_scores
848    }
849
850    fn estimate_noise_level(&self, vectors: &[Vec<f32>]) -> f32 {
851        // Estimate noise as inconsistency in similar vectors
852        let mut noise_estimate = 0.0;
853        let sample_size = vectors.len().min(100);
854
855        for i in 0..sample_size {
856            let mut min_distance = f32::INFINITY;
857            for j in 0..sample_size {
858                if i != j {
859                    let distance = euclidean_distance(&vectors[i], &vectors[j]);
860                    min_distance = min_distance.min(distance);
861                }
862            }
863            noise_estimate += min_distance;
864        }
865
866        noise_estimate / sample_size as f32
867    }
868
869    fn calculate_embedding_consistency(&self, vectors: &[Vec<f32>]) -> f32 {
870        // Measure consistency across embeddings
871        let centroid = calculate_centroid(vectors);
872        let mut total_distance = 0.0;
873
874        for vector in vectors {
875            total_distance += euclidean_distance(vector, &centroid);
876        }
877
878        let avg_distance = total_distance / vectors.len() as f32;
879        1.0 / (1.0 + avg_distance) // Convert to 0-1 score
880    }
881
882    fn calculate_semantic_coherence(&self, _vectors: &[Vec<f32>]) -> f32 {
883        // Placeholder for semantic coherence calculation
884        // Would require domain knowledge or external semantic evaluation
885        0.8
886    }
887
888    fn generate_quality_recommendations(
889        &self,
890        overall_score: f32,
891        dimension_quality: &[f32],
892        noise_level: f32,
893    ) -> Vec<QualityRecommendation> {
894        let mut recommendations = Vec::new();
895
896        if overall_score < 0.7 {
897            recommendations.push(QualityRecommendation {
898                aspect: QualityAspect::EmbeddingModel,
899                current_score: overall_score,
900                target_score: 0.8,
901                recommendation: "Consider using a higher-quality embedding model".to_string(),
902                priority: Priority::High,
903            });
904        }
905
906        if noise_level > 0.3 {
907            recommendations.push(QualityRecommendation {
908                aspect: QualityAspect::NoiseReduction,
909                current_score: 1.0 - noise_level,
910                target_score: 0.8,
911                recommendation: "Apply noise reduction techniques to improve vector quality"
912                    .to_string(),
913                priority: Priority::Medium,
914            });
915        }
916
917        let low_quality_dims = dimension_quality
918            .iter()
919            .enumerate()
920            .filter(|&(_, &score)| score < 0.5)
921            .count();
922
923        if low_quality_dims > dimension_quality.len() / 4 {
924            recommendations.push(QualityRecommendation {
925                aspect: QualityAspect::DimensionalityReduction,
926                current_score: 1.0 - (low_quality_dims as f32 / dimension_quality.len() as f32),
927                target_score: 0.9,
928                recommendation: "Consider dimensionality reduction to remove low-quality dimensions".to_string(),
929                priority: Priority::Medium,
930            });
931        }
932
933        recommendations
934    }
935
936    fn current_timestamp(&self) -> u64 {
937        SystemTime::now()
938            .duration_since(UNIX_EPOCH)
939            .unwrap_or_default()
940            .as_secs()
941    }
942}
943
944impl AnomalyDetector {
945    fn new() -> Self {
946        Self {
947            baseline_metrics: HashMap::new(),
948            detection_sensitivity: 2.0,
949            learning_rate: 0.1,
950        }
951    }
952
953    fn with_sensitivity(sensitivity: f32) -> Self {
954        Self {
955            baseline_metrics: HashMap::new(),
956            detection_sensitivity: sensitivity,
957            learning_rate: 0.1,
958        }
959    }
960
961    fn update_baseline(&mut self, query: &QueryAnalytics) {
962        let response_time = query.response_time.as_secs_f32();
963
964        let current_baseline = self.baseline_metrics.get("response_time").unwrap_or(&0.1);
965        let new_baseline =
966            current_baseline * (1.0 - self.learning_rate) + response_time * self.learning_rate;
967        self.baseline_metrics
968            .insert("response_time".to_string(), new_baseline);
969
970        let current_similarity = self.baseline_metrics.get("avg_similarity").unwrap_or(&0.8);
971        let new_similarity = current_similarity * (1.0 - self.learning_rate)
972            + query.avg_similarity_score * self.learning_rate;
973        self.baseline_metrics
974            .insert("avg_similarity".to_string(), new_similarity);
975    }
976
977    fn detect_anomalies(&self, queries: &VecDeque<QueryAnalytics>) -> AnomalyDetection {
978        let mut anomalies = Vec::new();
979
980        let response_time_baseline = self.baseline_metrics.get("response_time").unwrap_or(&0.1);
981        let similarity_baseline = self.baseline_metrics.get("avg_similarity").unwrap_or(&0.8);
982
983        for query in queries {
984            let response_time_ratio = query.response_time.as_secs_f32() / response_time_baseline;
985            let similarity_ratio = query.avg_similarity_score / similarity_baseline;
986
987            if response_time_ratio > self.detection_sensitivity {
988                anomalies.push(QueryAnomaly {
989                    query_id: query.query_id.clone(),
990                    anomaly_type: AnomalyType::UnusualLatency,
991                    severity_score: response_time_ratio,
992                    description: format!(
993                        "Query response time {response_time_ratio}x higher than baseline"
994                    ),
995                    suggested_action: "Investigate query complexity or system load".to_string(),
996                });
997            }
998
999            if similarity_ratio < (1.0 / self.detection_sensitivity) {
1000                anomalies.push(QueryAnomaly {
1001                    query_id: query.query_id.clone(),
1002                    anomaly_type: AnomalyType::LowSimilarityScores,
1003                    severity_score: 1.0 / similarity_ratio,
1004                    description: "Unusually low similarity scores detected".to_string(),
1005                    suggested_action: "Check vector quality or similarity metric configuration"
1006                        .to_string(),
1007                });
1008            }
1009        }
1010
1011        AnomalyDetection {
1012            anomalies,
1013            detection_threshold: self.detection_sensitivity,
1014            false_positive_rate: 0.05, // Estimated
1015            confidence_level: 0.95,
1016        }
1017    }
1018}
1019
1020// Utility functions
1021
1022fn euclidean_distance(a: &[f32], b: &[f32]) -> f32 {
1023    a.iter()
1024        .zip(b.iter())
1025        .map(|(x, y)| (x - y).powi(2))
1026        .sum::<f32>()
1027        .sqrt()
1028}
1029
1030fn calculate_centroid(vectors: &[Vec<f32>]) -> Vec<f32> {
1031    if vectors.is_empty() {
1032        return vec![];
1033    }
1034
1035    let dim_count = vectors[0].len();
1036    let mut centroid = vec![0.0; dim_count];
1037
1038    for vector in vectors {
1039        for (i, &value) in vector.iter().enumerate() {
1040            centroid[i] += value;
1041        }
1042    }
1043
1044    for value in &mut centroid {
1045        *value /= vectors.len() as f32;
1046    }
1047
1048    centroid
1049}
1050
1051fn calculate_variance(values: &[f32]) -> f32 {
1052    if values.is_empty() {
1053        return 0.0;
1054    }
1055
1056    let mean = values.iter().sum::<f32>() / values.len() as f32;
1057    values.iter().map(|x| (x - mean).powi(2)).sum::<f32>() / values.len() as f32
1058}
1059
1060impl Default for VectorAnalyticsEngine {
1061    fn default() -> Self {
1062        Self::new()
1063    }
1064}
1065
1066#[cfg(test)]
1067mod tests {
1068    use super::*;
1069    use std::time::Duration;
1070
1071    #[test]
1072    fn test_analytics_engine_creation() {
1073        let engine = VectorAnalyticsEngine::new();
1074        assert_eq!(engine.query_history.len(), 0);
1075        assert_eq!(engine.max_history_size, 10000);
1076    }
1077
1078    #[test]
1079    fn test_query_recording() {
1080        let mut engine = VectorAnalyticsEngine::new();
1081
1082        let query = QueryAnalytics {
1083            query_id: "test_query_1".to_string(),
1084            timestamp: 1640995200, // 2022-01-01
1085            query_vector: vec![0.1, 0.2, 0.3],
1086            similarity_metric: "cosine".to_string(),
1087            top_k: 10,
1088            response_time: Duration::from_millis(50),
1089            results_count: 8,
1090            avg_similarity_score: 0.85,
1091            min_similarity_score: 0.7,
1092            max_similarity_score: 0.95,
1093            cache_hit: true,
1094            index_type: "hnsw".to_string(),
1095        };
1096
1097        engine.record_query(query);
1098        assert_eq!(engine.query_history.len(), 1);
1099    }
1100
1101    #[test]
1102    fn test_vector_distribution_analysis() {
1103        let engine = VectorAnalyticsEngine::new();
1104
1105        let vectors = vec![
1106            vec![1.0, 2.0, 3.0],
1107            vec![1.1, 2.1, 3.1],
1108            vec![0.9, 1.9, 2.9],
1109            vec![5.0, 6.0, 7.0],
1110            vec![5.1, 6.1, 7.1],
1111        ];
1112
1113        let analysis = engine.analyze_vector_distribution(&vectors).unwrap();
1114
1115        assert_eq!(analysis.total_vectors, 5);
1116        assert_eq!(analysis.dimensionality, 3);
1117        assert!(analysis.density_estimate > 0.0);
1118        assert!(analysis.sparsity_ratio >= 0.0);
1119    }
1120
1121    #[test]
1122    fn test_performance_score_calculation() {
1123        let mut engine = VectorAnalyticsEngine::new();
1124
1125        // Add some test queries
1126        for i in 0..10 {
1127            let query = QueryAnalytics {
1128                query_id: format!("query_{i}"),
1129                timestamp: 1640995200 + i * 60,
1130                query_vector: vec![0.1 * i as f32, 0.2 * i as f32],
1131                similarity_metric: "cosine".to_string(),
1132                top_k: 5,
1133                response_time: Duration::from_millis(30 + i * 5),
1134                results_count: 5,
1135                avg_similarity_score: 0.8 + (i as f32 * 0.01),
1136                min_similarity_score: 0.7,
1137                max_similarity_score: 0.95,
1138                cache_hit: i % 2 == 0,
1139                index_type: "hnsw".to_string(),
1140            };
1141            engine.record_query(query);
1142        }
1143
1144        let score = engine.calculate_performance_score();
1145        assert!(score > 0.0 && score <= 1.0);
1146    }
1147
1148    #[test]
1149    fn test_anomaly_detection() {
1150        let engine = VectorAnalyticsEngine::new();
1151        let anomalies = engine.detect_anomalies();
1152
1153        assert_eq!(anomalies.anomalies.len(), 0); // No queries recorded yet
1154        assert!(anomalies.confidence_level > 0.0);
1155    }
1156
1157    #[test]
1158    fn test_optimization_recommendations() {
1159        let mut engine = VectorAnalyticsEngine::new();
1160
1161        // Add a slow query to trigger recommendations
1162        let slow_query = QueryAnalytics {
1163            query_id: "slow_query".to_string(),
1164            timestamp: 1640995200,
1165            query_vector: vec![0.1, 0.2, 0.3],
1166            similarity_metric: "cosine".to_string(),
1167            top_k: 10,
1168            response_time: Duration::from_millis(500), // Slow query
1169            results_count: 8,
1170            avg_similarity_score: 0.85,
1171            min_similarity_score: 0.7,
1172            max_similarity_score: 0.95,
1173            cache_hit: false, // Cache miss
1174            index_type: "linear".to_string(),
1175        };
1176
1177        engine.record_query(slow_query);
1178        let recommendations = engine.generate_optimization_recommendations();
1179
1180        assert!(!recommendations.is_empty());
1181    }
1182
1183    #[test]
1184    fn test_vector_quality_assessment() {
1185        let engine = VectorAnalyticsEngine::new();
1186
1187        let vectors = vec![
1188            vec![1.0, 2.0, 3.0, 0.0],
1189            vec![1.1, 2.1, 3.1, 0.0], // Last dimension is always 0 (low quality)
1190            vec![0.9, 1.9, 2.9, 0.0],
1191            vec![1.05, 2.05, 3.05, 0.0],
1192        ];
1193
1194        let assessment = engine.assess_vector_quality(&vectors).unwrap();
1195
1196        assert!(assessment.overall_quality_score >= 0.0 && assessment.overall_quality_score <= 1.0);
1197        assert_eq!(assessment.dimension_quality.len(), 4);
1198        assert!(assessment.noise_level >= 0.0);
1199        assert!(!assessment.recommendations.is_empty());
1200    }
1201
1202    #[test]
1203    fn test_analytics_export() {
1204        let engine = VectorAnalyticsEngine::new();
1205        let json_result = engine.export_analytics();
1206
1207        assert!(json_result.is_ok());
1208        let json_data = json_result.unwrap();
1209        assert!(json_data.contains("query_count"));
1210        assert!(json_data.contains("performance_trends"));
1211        assert!(json_data.contains("recommendations"));
1212    }
1213}