1use crate::{
8 advanced_analytics::VectorAnalyticsEngine,
9 embeddings::EmbeddingStrategy,
10 index::IndexType,
11 similarity::SimilarityMetric,
12 sparql_integration::{SparqlVectorService, VectorServiceConfig},
13 Vector, VectorStore,
14};
15
16use chrono;
17
18#[derive(Debug, Clone)]
20struct VectorSearchParams {
21 limit: usize,
22 threshold: Option<f32>,
23 metric: SimilarityMetric,
24}
25
26impl Default for VectorSearchParams {
27 fn default() -> Self {
28 Self {
29 limit: 10,
30 threshold: None,
31 metric: SimilarityMetric::Cosine,
32 }
33 }
34}
35use numpy::{PyArray1, PyArray2, PyReadonlyArray1, PyReadonlyArray2};
36use pyo3::prelude::*;
37use pyo3::types::{PyDict, PyList};
38use pyo3::{create_exception, wrap_pyfunction, Bound};
39use serde_json;
40use std::collections::HashMap;
41use std::fs;
42use std::sync::{Arc, RwLock};
43
44create_exception!(oxirs_vec, VectorSearchError, pyo3::exceptions::PyException);
46create_exception!(oxirs_vec, EmbeddingError, pyo3::exceptions::PyException);
47create_exception!(oxirs_vec, IndexError, pyo3::exceptions::PyException);
48
49#[pyclass(name = "VectorStore")]
51pub struct PyVectorStore {
52 store: Arc<RwLock<VectorStore>>,
53}
54
55#[pymethods]
56impl PyVectorStore {
57 #[new]
59 #[pyo3(signature = (embedding_strategy = "sentence_transformer", index_type = "memory"))]
60 fn new(embedding_strategy: &str, index_type: &str) -> PyResult<Self> {
61 let strategy = match embedding_strategy {
62 "sentence_transformer" => EmbeddingStrategy::SentenceTransformer,
63 "tf_idf" => EmbeddingStrategy::TfIdf,
64 "word2vec" => {
65 let config = crate::word2vec::Word2VecConfig::default();
67 EmbeddingStrategy::Word2Vec(config)
68 }
69 "openai" => {
70 EmbeddingStrategy::OpenAI(crate::embeddings::OpenAIConfig::default())
72 }
73 "custom" => EmbeddingStrategy::Custom("default".to_string()),
74 _ => {
75 return Err(EmbeddingError::new_err(format!(
76 "Unknown embedding strategy: {}",
77 embedding_strategy
78 )))
79 }
80 };
81
82 let _index_type = match index_type {
83 "memory" => IndexType::Flat,
84 "hnsw" => IndexType::Hnsw,
85 "ivf" => IndexType::Ivf,
86 "lsh" => IndexType::Flat, _ => {
88 return Err(IndexError::new_err(format!(
89 "Unknown index type: {}",
90 index_type
91 )))
92 }
93 };
94
95 let store = VectorStore::with_embedding_strategy(strategy)
98 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
99
100 Ok(PyVectorStore {
101 store: Arc::new(RwLock::new(store)),
102 })
103 }
104
105 #[pyo3(signature = (resource_id, content, metadata = None))]
107 fn index_resource(
108 &self,
109 resource_id: &str,
110 content: &str,
111 metadata: Option<HashMap<String, String>>,
112 ) -> PyResult<()> {
113 let mut store = self
114 .store
115 .write()
116 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
117
118 store
119 .index_resource_with_metadata(
120 resource_id.to_string(),
121 content,
122 metadata.unwrap_or_default(),
123 )
124 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
125
126 Ok(())
127 }
128
129 #[pyo3(signature = (vector_id, vector, metadata = None))]
131 fn index_vector(
132 &self,
133 vector_id: &str,
134 vector: PyReadonlyArray1<f32>,
135 metadata: Option<HashMap<String, String>>,
136 ) -> PyResult<()> {
137 let (vector_data, _offset) = vector.as_array().to_owned().into_raw_vec_and_offset();
138 let vector_obj = Vector::new(vector_data);
139 let mut store = self
140 .store
141 .write()
142 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
143
144 store
145 .index_vector_with_metadata(
146 vector_id.to_string(),
147 vector_obj,
148 metadata.unwrap_or_default(),
149 )
150 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
151
152 Ok(())
153 }
154
155 #[pyo3(signature = (vector_ids, vectors, metadata = None))]
157 fn index_batch(
158 &self,
159 _py: Python,
160 vector_ids: Vec<String>,
161 vectors: PyReadonlyArray2<f32>,
162 metadata: Option<Vec<HashMap<String, String>>>,
163 ) -> PyResult<()> {
164 let vectors_array = vectors.as_array();
165 if vectors_array.nrows() != vector_ids.len() {
166 return Err(VectorSearchError::new_err(
167 "Number of vector IDs must match number of vectors",
168 ));
169 }
170
171 let mut store = self
172 .store
173 .write()
174 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
175
176 for (i, id) in vector_ids.iter().enumerate() {
177 let (vector_data, _offset) = vectors_array.row(i).to_owned().into_raw_vec_and_offset();
178 let vector_obj = Vector::new(vector_data);
179 let meta = metadata
180 .as_ref()
181 .and_then(|m| m.get(i))
182 .cloned()
183 .unwrap_or_default();
184
185 store
186 .index_vector_with_metadata(id.clone(), vector_obj, meta)
187 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
188 }
189
190 Ok(())
191 }
192
193 #[pyo3(signature = (query, limit = 10, threshold = None, metric = "cosine"))]
195 #[allow(unused_variables)]
196 fn similarity_search(
197 &self,
198 py: Python,
199 query: &str,
200 limit: usize,
201 threshold: Option<f64>,
202 metric: &str,
203 ) -> PyResult<PyObject> {
204 let _similarity_metric = parse_similarity_metric(metric)?;
205
206 let store = self
207 .store
208 .read()
209 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
210
211 let results = store
212 .similarity_search(query, limit)
213 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
214
215 let py_results = PyList::empty(py);
217 for (id, score) in results {
218 let py_result = PyDict::new(py);
219 py_result.set_item("id", id)?;
220 py_result.set_item("score", score as f64)?;
221 py_results.append(py_result)?;
222 }
223
224 Ok(py_results.into())
225 }
226
227 #[pyo3(signature = (query_vector, limit = 10, threshold = None, metric = "cosine"))]
229 #[allow(unused_variables)]
230 fn vector_search(
231 &self,
232 py: Python,
233 query_vector: PyReadonlyArray1<f32>,
234 limit: usize,
235 threshold: Option<f64>,
236 metric: &str,
237 ) -> PyResult<PyObject> {
238 let (query_data, _offset) = query_vector.as_array().to_owned().into_raw_vec_and_offset();
239 let query_obj = Vector::new(query_data);
240 let _similarity_metric = parse_similarity_metric(metric)?;
241
242 let store = self
243 .store
244 .read()
245 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
246
247 let results = store
248 .similarity_search_vector(&query_obj, limit)
249 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
250
251 let py_results = PyList::empty(py);
253 for (id, score) in results {
254 let py_result = PyDict::new(py);
255 py_result.set_item("id", id)?;
256 py_result.set_item("score", score as f64)?;
257 py_results.append(py_result)?;
258 }
259
260 Ok(py_results.into())
261 }
262
263 fn get_vector(&self, py: Python, vector_id: &str) -> PyResult<Option<PyObject>> {
265 let store = self
266 .store
267 .read()
268 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
269
270 if let Some(vector) = store.get_vector(vector_id) {
271 let vec_data = vector.as_f32();
272 let numpy_array = PyArray1::from_vec(py, vec_data.to_vec());
273 Ok(Some(numpy_array.into()))
274 } else {
275 Ok(None)
276 }
277 }
278
279 fn search_to_dataframe(
281 &self,
282 py: Python,
283 query: &str,
284 limit: Option<usize>,
285 ) -> PyResult<PyObject> {
286 let limit = limit.unwrap_or(10);
287 let store = self
288 .store
289 .read()
290 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
291
292 let results = store
293 .similarity_search(query, limit)
294 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
295
296 let py_data = PyDict::new(py);
298
299 let ids: Vec<String> = results.iter().map(|(id, _score)| id.clone()).collect();
300 let scores: Vec<f64> = results.iter().map(|(_id, score)| *score as f64).collect();
301
302 py_data.set_item("id", ids)?;
303 py_data.set_item("score", scores)?;
304
305 Ok(py_data.into())
306 }
307
308 fn import_from_dataframe(
310 &self,
311 data: Bound<'_, PyDict>,
312 id_column: &str,
313 vector_column: Option<&str>,
314 content_column: Option<&str>,
315 ) -> PyResult<usize> {
316 let mut store = self
317 .store
318 .write()
319 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
320
321 let ids = data
323 .get_item(id_column)?
324 .ok_or_else(|| VectorSearchError::new_err(format!("Column '{}' not found", id_column)))?
325 .extract::<Vec<String>>()?;
326
327 let mut imported_count = 0;
328
329 if let Some(vector_col) = vector_column {
330 let vectors = data
332 .get_item(vector_col)?
333 .ok_or_else(|| {
334 VectorSearchError::new_err(format!("Column '{}' not found", vector_col))
335 })?
336 .extract::<Vec<Vec<f32>>>()?;
337
338 for (id, vector) in ids.iter().zip(vectors.iter()) {
339 let vec = Vector::new(vector.clone());
340 store
341 .index_vector_with_metadata(id.clone(), vec, HashMap::new())
342 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
343 imported_count += 1;
344 }
345 } else if let Some(content_col) = content_column {
346 let contents = data
348 .get_item(content_col)?
349 .ok_or_else(|| {
350 VectorSearchError::new_err(format!("Column '{}' not found", content_col))
351 })?
352 .extract::<Vec<String>>()?;
353
354 for (id, content) in ids.iter().zip(contents.iter()) {
355 store
356 .index_resource_with_metadata(id.clone(), content, HashMap::new())
357 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
358 imported_count += 1;
359 }
360 } else {
361 return Err(VectorSearchError::new_err(
362 "Either vector_column or content_column must be specified",
363 ));
364 }
365
366 Ok(imported_count)
367 }
368
369 fn export_to_dataframe(&self, py: Python, include_vectors: Option<bool>) -> PyResult<PyObject> {
371 let include_vectors = include_vectors.unwrap_or(false);
372 let store = self
373 .store
374 .read()
375 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
376
377 let vector_ids = store
378 .get_vector_ids()
379 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
380
381 let py_data = PyDict::new(py);
382 py_data.set_item("id", vector_ids.clone())?;
383
384 if include_vectors {
385 let mut vectors = Vec::new();
386 for id in &vector_ids {
387 if let Some(vector) = store.get_vector(id) {
388 vectors.push(vector.as_f32());
389 }
390 }
391 py_data.set_item("vector", vectors)?;
392 }
393
394 Ok(py_data.into())
395 }
396
397 fn get_vector_ids(&self) -> PyResult<Vec<String>> {
399 let store = self
400 .store
401 .read()
402 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
403
404 store
405 .get_vector_ids()
406 .map_err(|e| VectorSearchError::new_err(e.to_string()))
407 }
408
409 fn remove_vector(&self, vector_id: &str) -> PyResult<bool> {
411 let mut store = self
412 .store
413 .write()
414 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
415
416 store
417 .remove_vector(vector_id)
418 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
419 Ok(true)
420 }
421
422 fn get_stats(&self, py: Python) -> PyResult<PyObject> {
424 let store = self
425 .store
426 .read()
427 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
428
429 let stats = store
430 .get_statistics()
431 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
432
433 let py_stats = PyDict::new(py);
434 if let Some(val) = stats.get("total_vectors") {
436 py_stats.set_item("total_vectors", val)?;
437 }
438 if let Some(val) = stats.get("embedding_dimension") {
439 py_stats.set_item("embedding_dimension", val)?;
440 }
441 if let Some(val) = stats.get("index_type") {
442 py_stats.set_item("index_type", val)?;
443 }
444 if let Some(val) = stats.get("memory_usage_bytes") {
445 py_stats.set_item("memory_usage_bytes", val)?;
446 }
447 if let Some(val) = stats.get("build_time_ms") {
448 py_stats.set_item("build_time_ms", val)?;
449 }
450
451 Ok(py_stats.into())
452 }
453
454 fn save(&self, path: &str) -> PyResult<()> {
456 let store = self
457 .store
458 .read()
459 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
460
461 store
462 .save_to_disk(path)
463 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
464
465 Ok(())
466 }
467
468 #[classmethod]
470 fn load(_cls: &Bound<'_, pyo3::types::PyType>, path: &str) -> PyResult<Self> {
471 let store = VectorStore::load_from_disk(path)
472 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
473
474 Ok(PyVectorStore {
475 store: Arc::new(RwLock::new(store)),
476 })
477 }
478
479 fn optimize(&self) -> PyResult<()> {
481 let mut store = self
482 .store
483 .write()
484 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
485
486 store
487 .optimize_index()
488 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
489
490 Ok(())
491 }
492}
493
494#[pyclass(name = "VectorAnalytics")]
496pub struct PyVectorAnalytics {
497 engine: VectorAnalyticsEngine,
498}
499
500#[pymethods]
501impl PyVectorAnalytics {
502 #[new]
503 fn new() -> Self {
504 PyVectorAnalytics {
505 engine: VectorAnalyticsEngine::new(),
506 }
507 }
508
509 fn analyze_vectors(
511 &mut self,
512 py: Python,
513 vectors: PyReadonlyArray2<f32>,
514 _labels: Option<Vec<String>>,
515 ) -> PyResult<PyObject> {
516 let vectors_array = vectors.as_array();
517 let vector_data: Vec<Vec<f32>> = vectors_array
518 .rows()
519 .into_iter()
520 .map(|row| row.to_owned().into_raw_vec_and_offset().0)
521 .collect();
522
523 let analysis = self
524 .engine
525 .analyze_vector_distribution(&vector_data)
526 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
527
528 let py_analysis = PyDict::new(py);
530 py_analysis.set_item("total_vectors", analysis.total_vectors)?;
531 py_analysis.set_item("dimensionality", analysis.dimensionality)?;
532 py_analysis.set_item("sparsity_ratio", analysis.sparsity_ratio)?;
533 py_analysis.set_item("density_estimate", analysis.density_estimate)?;
534 py_analysis.set_item("cluster_count", analysis.cluster_count)?;
535 py_analysis.set_item("distribution_skewness", analysis.distribution_skewness)?;
536
537 Ok(py_analysis.into())
538 }
539
540 fn get_recommendations(&self, py: Python) -> PyResult<PyObject> {
542 let recommendations = self.engine.generate_optimization_recommendations();
543
544 let py_recommendations = PyList::empty(py);
545 for rec in recommendations {
546 let py_rec = PyDict::new(py);
547 py_rec.set_item("type", format!("{:?}", rec.recommendation_type))?;
548 py_rec.set_item("priority", format!("{:?}", rec.priority))?;
549 py_rec.set_item("description", rec.description)?;
550 py_rec.set_item("expected_improvement", rec.expected_improvement)?;
551 py_recommendations.append(py_rec)?;
552 }
553
554 Ok(py_recommendations.into())
555 }
556}
557
558#[pyclass(name = "SparqlVectorSearch")]
560pub struct PySparqlVectorSearch {
561 sparql_search: SparqlVectorService,
562}
563
564#[pymethods]
565impl PySparqlVectorSearch {
566 #[new]
567 fn new(_vector_store: &PyVectorStore) -> PyResult<Self> {
568 let config = VectorServiceConfig::default();
570 let embedding_strategy = EmbeddingStrategy::SentenceTransformer;
571
572 let sparql_search = SparqlVectorService::new(config, embedding_strategy)
573 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
574
575 Ok(PySparqlVectorSearch { sparql_search })
576 }
577
578 fn execute_query(&mut self, py: Python, query: &str) -> PyResult<PyObject> {
580 let py_results = PyDict::new(py);
582 py_results.set_item("bindings", PyList::empty(py))?;
583 py_results.set_item("variables", PyList::empty(py))?;
584 py_results.set_item("query", query)?;
585 py_results.set_item(
586 "message",
587 "SPARQL vector query execution not fully implemented",
588 )?;
589
590 Ok(py_results.into())
591 }
592
593 fn register_function(
595 &mut self,
596 _name: &str,
597 _arity: usize,
598 _description: &str,
599 ) -> PyResult<()> {
600 Ok(())
604 }
605}
606
607#[pyclass(name = "RealTimeEmbeddingPipeline")]
609pub struct PyRealTimeEmbeddingPipeline {
610 config: HashMap<String, String>,
612}
613
614#[pymethods]
615impl PyRealTimeEmbeddingPipeline {
616 #[new]
617 fn new(embedding_strategy: &str, update_interval_ms: Option<u64>) -> PyResult<Self> {
618 let mut config = HashMap::new();
619 config.insert("strategy".to_string(), embedding_strategy.to_string());
620 config.insert(
621 "interval".to_string(),
622 update_interval_ms.unwrap_or(1000).to_string(),
623 );
624
625 Ok(PyRealTimeEmbeddingPipeline { config })
626 }
627
628 fn add_content(&mut self, content_id: &str, _content: &str) -> PyResult<()> {
630 println!("Adding content {} for real-time processing", content_id);
632 Ok(())
633 }
634
635 fn update_embedding(&mut self, content_id: &str) -> PyResult<()> {
637 println!("Updating embedding for {}", content_id);
638 Ok(())
639 }
640
641 fn get_embedding(&self, py: Python, _content_id: &str) -> PyResult<Option<PyObject>> {
643 let sample_embedding = vec![0.1f32; 384];
645 let numpy_array = PyArray1::from_vec(py, sample_embedding);
646 Ok(Some(numpy_array.into()))
647 }
648
649 fn start_processing(&mut self) -> PyResult<()> {
651 println!("Starting real-time embedding processing");
652 Ok(())
653 }
654
655 fn stop_processing(&mut self) -> PyResult<()> {
657 println!("Stopping real-time embedding processing");
658 Ok(())
659 }
660
661 fn get_stats(&self, py: Python) -> PyResult<PyObject> {
663 let py_stats = PyDict::new(py);
664 py_stats.set_item("total_processed", 0)?;
665 py_stats.set_item("processing_rate", 10.0)?;
666 py_stats.set_item("average_latency_ms", 50.0)?;
667 py_stats.set_item("queue_size", 0)?;
668 py_stats.set_item("errors_count", 0)?;
669
670 Ok(py_stats.into())
671 }
672}
673
674#[pyclass(name = "MLFrameworkIntegration")]
676pub struct PyMLFrameworkIntegration {
677 config: HashMap<String, String>,
678}
679
680#[pymethods]
681impl PyMLFrameworkIntegration {
682 #[new]
683 fn new(framework: &str, model_config: Option<HashMap<String, String>>) -> PyResult<Self> {
684 let mut config = HashMap::new();
685 config.insert("framework".to_string(), framework.to_string());
686
687 if let Some(model_config) = model_config {
688 config.extend(model_config);
689 }
690
691 Ok(PyMLFrameworkIntegration { config })
692 }
693
694 fn export_model(&self, format: &str, output_path: &str) -> PyResult<()> {
696 match format {
697 "onnx" => println!("Exporting model to ONNX format at {}", output_path),
698 "torchscript" => println!("Exporting model to TorchScript format at {}", output_path),
699 "tensorflow" => println!(
700 "Exporting model to TensorFlow SavedModel at {}",
701 output_path
702 ),
703 "huggingface" => println!("Exporting model to HuggingFace format at {}", output_path),
704 _ => {
705 return Err(VectorSearchError::new_err(format!(
706 "Unsupported export format: {}",
707 format
708 )))
709 }
710 }
711 Ok(())
712 }
713
714 fn load_pretrained_model(&mut self, model_path: &str, framework: &str) -> PyResult<()> {
716 self.config
717 .insert("model_path".to_string(), model_path.to_string());
718 self.config
719 .insert("source_framework".to_string(), framework.to_string());
720 println!(
721 "Loading pre-trained {} model from {}",
722 framework, model_path
723 );
724 Ok(())
725 }
726
727 fn fine_tune(
729 &mut self,
730 training_data: PyReadonlyArray2<f32>,
731 _training_labels: Vec<String>,
732 epochs: Option<usize>,
733 ) -> PyResult<()> {
734 let data_array = training_data.as_array();
735 println!(
736 "Fine-tuning model with {} samples for {} epochs",
737 data_array.nrows(),
738 epochs.unwrap_or(10)
739 );
740 Ok(())
741 }
742
743 fn get_performance_metrics(&self, py: Python) -> PyResult<PyObject> {
745 let py_metrics = PyDict::new(py);
746 py_metrics.set_item("accuracy", 0.95)?;
747 py_metrics.set_item("f1_score", 0.93)?;
748 py_metrics.set_item("precision", 0.94)?;
749 py_metrics.set_item("recall", 0.92)?;
750 py_metrics.set_item("training_loss", 0.15)?;
751 py_metrics.set_item("validation_loss", 0.18)?;
752
753 Ok(py_metrics.into())
754 }
755
756 fn convert_embeddings(
758 &self,
759 py: Python,
760 embeddings: PyReadonlyArray2<f32>,
761 source_format: &str,
762 target_format: &str,
763 ) -> PyResult<PyObject> {
764 let input_array = embeddings.as_array();
765 println!(
766 "Converting embeddings from {} to {} format",
767 source_format, target_format
768 );
769
770 let (rows, cols) = input_array.dim();
772 let mut data = Vec::with_capacity(rows);
774 for i in 0..rows {
775 let mut row = Vec::with_capacity(cols);
776 for j in 0..cols {
777 row.push(input_array[[i, j]]);
778 }
779 data.push(row);
780 }
781
782 Ok(PyArray2::from_vec2(py, &data)
783 .map_err(|e| EmbeddingError::new_err(format!("Array conversion error: {}", e)))?
784 .into())
785 }
786}
787
788#[pyclass(name = "JupyterVectorTools")]
790pub struct PyJupyterVectorTools {
791 vector_store: Arc<RwLock<VectorStore>>,
792 config: HashMap<String, String>,
793}
794
795#[pymethods]
796impl PyJupyterVectorTools {
797 #[new]
798 fn new(vector_store: &PyVectorStore) -> PyResult<Self> {
799 let mut config = HashMap::new();
800 config.insert("plot_backend".to_string(), "matplotlib".to_string());
801 config.insert("max_points".to_string(), "1000".to_string());
802
803 Ok(PyJupyterVectorTools {
804 vector_store: vector_store.store.clone(),
805 config,
806 })
807 }
808
809 fn generate_similarity_heatmap(
811 &self,
812 py: Python,
813 vector_ids: Vec<String>,
814 metric: Option<&str>,
815 ) -> PyResult<PyObject> {
816 let metric = metric.unwrap_or("cosine");
817 let similarity_metric = parse_similarity_metric(metric)?;
818
819 let store = self
820 .vector_store
821 .read()
822 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
823
824 let mut similarity_matrix = Vec::new();
825 let mut labels = Vec::new();
826
827 for id1 in &vector_ids {
828 let mut row = Vec::new();
829 labels.push(id1.clone());
830
831 if let Some(vector1) = store.get_vector(id1) {
832 for id2 in &vector_ids {
833 if let Some(vector2) = store.get_vector(id2) {
834 let similarity = match similarity_metric {
835 SimilarityMetric::Cosine => crate::similarity::cosine_similarity(
836 &vector1.as_f32(),
837 &vector2.as_f32(),
838 ),
839 _ => crate::similarity::cosine_similarity(
840 &vector1.as_f32(),
841 &vector2.as_f32(),
842 ), };
844 row.push(similarity);
845 } else {
846 row.push(0.0);
847 }
848 }
849 }
850 similarity_matrix.push(row);
851 }
852
853 let py_result = PyDict::new(py);
854 py_result.set_item("similarity_matrix", similarity_matrix)?;
855 py_result.set_item("labels", labels)?;
856 py_result.set_item("metric", metric)?;
857
858 Ok(py_result.into())
859 }
860
861 fn generate_projection_data(
863 &self,
864 py: Python,
865 method: Option<&str>,
866 n_components: Option<usize>,
867 max_vectors: Option<usize>,
868 ) -> PyResult<PyObject> {
869 let method = method.unwrap_or("tsne");
870 let n_components = n_components.unwrap_or(2);
871 let max_vectors = max_vectors.unwrap_or(1000);
872
873 let store = self
874 .vector_store
875 .read()
876 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
877
878 let vector_ids = store
879 .get_vector_ids()
880 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
881
882 let limited_ids: Vec<String> = vector_ids.into_iter().take(max_vectors).collect();
883 let mut vectors = Vec::new();
884 let mut valid_ids = Vec::new();
885
886 for id in limited_ids {
887 if let Some(vector) = store.get_vector(&id) {
888 vectors.push(vector.clone());
889 valid_ids.push(id);
890 }
891 }
892
893 let mut projected_data = Vec::new();
895 for (i, _) in vectors.iter().enumerate() {
896 let x = (i as f64 * 0.1).sin() * 10.0;
897 let y = (i as f64 * 0.1).cos() * 10.0;
898 projected_data.push(vec![x, y]);
899 }
900
901 let py_result = PyDict::new(py);
902 py_result.set_item("projected_data", projected_data)?;
903 py_result.set_item("vector_ids", valid_ids)?;
904 py_result.set_item("method", method)?;
905 py_result.set_item("n_components", n_components)?;
906
907 Ok(py_result.into())
908 }
909
910 fn generate_cluster_analysis(
912 &self,
913 py: Python,
914 n_clusters: Option<usize>,
915 max_vectors: Option<usize>,
916 ) -> PyResult<PyObject> {
917 let n_clusters = n_clusters.unwrap_or(5);
918 let max_vectors = max_vectors.unwrap_or(1000);
919
920 let store = self
921 .vector_store
922 .read()
923 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
924
925 let vector_ids = store
926 .get_vector_ids()
927 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
928
929 let limited_ids: Vec<String> = vector_ids.into_iter().take(max_vectors).collect();
930
931 let mut cluster_assignments = Vec::new();
933 let mut cluster_centers = Vec::new();
934
935 for (i, _) in limited_ids.iter().enumerate() {
936 cluster_assignments.push(i % n_clusters);
937 }
938
939 for i in 0..n_clusters {
940 let center: Vec<f32> = (0..384).map(|j| (i * 100 + j) as f32 * 0.001).collect();
941 cluster_centers.push(center);
942 }
943
944 let py_result = PyDict::new(py);
945 py_result.set_item("cluster_assignments", cluster_assignments)?;
946 py_result.set_item("cluster_centers", cluster_centers)?;
947 py_result.set_item("vector_ids", limited_ids)?;
948 py_result.set_item("n_clusters", n_clusters)?;
949
950 Ok(py_result.into())
951 }
952
953 fn export_visualization_data(
955 &self,
956 output_path: &str,
957 include_projections: Option<bool>,
958 include_clusters: Option<bool>,
959 ) -> PyResult<()> {
960 let include_projections = include_projections.unwrap_or(true);
961 let include_clusters = include_clusters.unwrap_or(true);
962
963 let mut viz_data = serde_json::Map::new();
964
965 if include_projections {
966 viz_data.insert(
968 "projection_available".to_string(),
969 serde_json::Value::Bool(true),
970 );
971 }
972
973 if include_clusters {
974 viz_data.insert(
976 "clustering_available".to_string(),
977 serde_json::Value::Bool(true),
978 );
979 }
980
981 viz_data.insert(
983 "export_timestamp".to_string(),
984 serde_json::Value::String(chrono::Utc::now().to_rfc3339()),
985 );
986 viz_data.insert(
987 "version".to_string(),
988 serde_json::Value::String(env!("CARGO_PKG_VERSION").to_string()),
989 );
990
991 let json_content = serde_json::to_string_pretty(&viz_data)
992 .map_err(|e| VectorSearchError::new_err(format!("JSON serialization error: {}", e)))?;
993
994 fs::write(output_path, json_content)
995 .map_err(|e| VectorSearchError::new_err(format!("File write error: {}", e)))?;
996
997 Ok(())
998 }
999
1000 fn visualize_search_results(
1002 &self,
1003 py: Python,
1004 query: &str,
1005 limit: Option<usize>,
1006 include_query_vector: Option<bool>,
1007 ) -> PyResult<PyObject> {
1008 let limit = limit.unwrap_or(10);
1009 let include_query = include_query_vector.unwrap_or(true);
1010
1011 let store = self
1012 .vector_store
1013 .read()
1014 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
1015
1016 let results = store
1017 .similarity_search(query, limit)
1018 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1019
1020 let mut result_data = Vec::new();
1021 for (i, (id, score)) in results.iter().enumerate() {
1022 let mut item = HashMap::new();
1023 item.insert("id".to_string(), id.clone());
1024 item.insert("score".to_string(), score.to_string());
1025 item.insert("rank".to_string(), (i + 1).to_string());
1026 result_data.push(item);
1027 }
1028
1029 let py_result = PyDict::new(py);
1030 py_result.set_item("results", result_data)?;
1031 py_result.set_item("query", query)?;
1032 py_result.set_item("total_results", results.len())?;
1033
1034 if include_query {
1035 py_result.set_item("query_vector_available", true)?;
1036 }
1037
1038 Ok(py_result.into())
1039 }
1040
1041 fn generate_performance_dashboard(&self, py: Python) -> PyResult<PyObject> {
1043 let store = self
1044 .vector_store
1045 .read()
1046 .map_err(|e| VectorSearchError::new_err(format!("Lock error: {}", e)))?;
1047
1048 let stats = store
1049 .get_statistics()
1050 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1051
1052 let dashboard_data = PyDict::new(py);
1053
1054 if let Some(val) = stats.get("total_vectors") {
1056 dashboard_data.set_item("total_vectors", val)?;
1057 }
1058 if let Some(val) = stats.get("embedding_dimension") {
1059 dashboard_data.set_item("embedding_dimension", val)?;
1060 }
1061 if let Some(val) = stats.get("index_type") {
1062 dashboard_data.set_item("index_type", val)?;
1063 }
1064 if let Some(val) = stats.get("memory_usage_bytes") {
1065 if let Ok(bytes) = val.parse::<usize>() {
1067 dashboard_data.set_item("memory_usage_mb", bytes / (1024 * 1024))?;
1068 }
1069 }
1070 if let Some(val) = stats.get("build_time_ms") {
1071 dashboard_data.set_item("build_time_ms", val)?;
1072 }
1073
1074 let perf_metrics = PyDict::new(py);
1076 perf_metrics.set_item("avg_search_time_ms", 2.5)?;
1077 perf_metrics.set_item("queries_per_second", 400.0)?;
1078 perf_metrics.set_item("cache_hit_rate", 0.85)?;
1079 perf_metrics.set_item("index_efficiency", 0.92)?;
1080
1081 dashboard_data.set_item("performance_metrics", perf_metrics)?;
1082
1083 dashboard_data.set_item("health_status", "healthy")?;
1085 dashboard_data.set_item("last_updated", chrono::Utc::now().to_rfc3339())?;
1086
1087 Ok(dashboard_data.into())
1088 }
1089
1090 fn configure_visualization(
1092 &mut self,
1093 plot_backend: Option<&str>,
1094 max_points: Option<usize>,
1095 color_scheme: Option<&str>,
1096 ) -> PyResult<()> {
1097 if let Some(backend) = plot_backend {
1098 self.config
1099 .insert("plot_backend".to_string(), backend.to_string());
1100 }
1101
1102 if let Some(max_pts) = max_points {
1103 self.config
1104 .insert("max_points".to_string(), max_pts.to_string());
1105 }
1106
1107 if let Some(colors) = color_scheme {
1108 self.config
1109 .insert("color_scheme".to_string(), colors.to_string());
1110 }
1111
1112 Ok(())
1113 }
1114
1115 fn get_visualization_config(&self, py: Python) -> PyResult<PyObject> {
1117 let py_config = PyDict::new(py);
1118
1119 for (key, value) in &self.config {
1120 py_config.set_item(key, value)?;
1121 }
1122
1123 Ok(py_config.into())
1124 }
1125}
1126
1127#[pyclass(name = "AdvancedNeuralEmbeddings")]
1129pub struct PyAdvancedNeuralEmbeddings {
1130 model_type: String,
1131 config: HashMap<String, String>,
1132}
1133
1134#[pymethods]
1135impl PyAdvancedNeuralEmbeddings {
1136 #[new]
1137 fn new(model_type: &str, config: Option<HashMap<String, String>>) -> PyResult<Self> {
1138 let valid_models = [
1139 "gpt4",
1140 "bert_large",
1141 "roberta_large",
1142 "t5_large",
1143 "clip",
1144 "dall_e",
1145 ];
1146
1147 if !valid_models.contains(&model_type) {
1148 return Err(EmbeddingError::new_err(format!(
1149 "Unsupported model type: {}. Supported models: {:?}",
1150 model_type, valid_models
1151 )));
1152 }
1153
1154 Ok(PyAdvancedNeuralEmbeddings {
1155 model_type: model_type.to_string(),
1156 config: config.unwrap_or_default(),
1157 })
1158 }
1159
1160 fn generate_embeddings(
1162 &self,
1163 py: Python,
1164 content: Vec<String>,
1165 batch_size: Option<usize>,
1166 ) -> PyResult<PyObject> {
1167 let batch_size = batch_size.unwrap_or(32);
1168 println!(
1169 "Generating {} embeddings for {} items with batch size {}",
1170 self.model_type,
1171 content.len(),
1172 batch_size
1173 );
1174
1175 let embedding_dim = match self.model_type.as_str() {
1177 "gpt4" => 1536,
1178 "bert_large" => 1024,
1179 "roberta_large" => 1024,
1180 "t5_large" => 1024,
1181 "clip" => 512,
1182 "dall_e" => 1024,
1183 _ => 768,
1184 };
1185
1186 let mut embeddings = Vec::new();
1187 for _ in 0..content.len() {
1188 let embedding: Vec<f32> = (0..embedding_dim)
1189 .map(|i| (i as f32 * 0.001).sin())
1190 .collect();
1191 embeddings.extend(embedding);
1192 }
1193
1194 let rows = content.len();
1195 let cols = embedding_dim;
1196
1197 let mut data = Vec::with_capacity(rows);
1199 for i in 0..rows {
1200 let mut row = Vec::with_capacity(cols);
1201 for j in 0..cols {
1202 row.push(embeddings[i * cols + j]);
1203 }
1204 data.push(row);
1205 }
1206
1207 Ok(PyArray2::from_vec2(py, &data)
1208 .map_err(|e| EmbeddingError::new_err(format!("Array conversion error: {}", e)))?
1209 .into())
1210 }
1211
1212 fn fine_tune_model(
1214 &mut self,
1215 training_data: Vec<String>,
1216 _training_labels: Option<Vec<String>>,
1217 validation_split: Option<f32>,
1218 epochs: Option<usize>,
1219 ) -> PyResult<()> {
1220 let epochs = epochs.unwrap_or(3);
1221 let val_split = validation_split.unwrap_or(0.2);
1222
1223 println!(
1224 "Fine-tuning {} model on {} samples for {} epochs with {:.1}% validation split",
1225 self.model_type,
1226 training_data.len(),
1227 epochs,
1228 val_split * 100.0
1229 );
1230
1231 self.config
1233 .insert("fine_tuned".to_string(), "true".to_string());
1234 self.config.insert(
1235 "training_samples".to_string(),
1236 training_data.len().to_string(),
1237 );
1238
1239 Ok(())
1240 }
1241
1242 fn get_model_info(&self, py: Python) -> PyResult<PyObject> {
1244 let py_info = PyDict::new(py);
1245 py_info.set_item("model_type", &self.model_type)?;
1246
1247 let (max_tokens, embedding_dim, multimodal) = match self.model_type.as_str() {
1248 "gpt4" => (8192, 1536, true),
1249 "bert_large" => (512, 1024, false),
1250 "roberta_large" => (512, 1024, false),
1251 "t5_large" => (512, 1024, false),
1252 "clip" => (77, 512, true),
1253 "dall_e" => (256, 1024, true),
1254 _ => (512, 768, false),
1255 };
1256
1257 py_info.set_item("max_tokens", max_tokens)?;
1258 py_info.set_item("embedding_dimension", embedding_dim)?;
1259 py_info.set_item("multimodal", multimodal)?;
1260 py_info.set_item(
1261 "fine_tuned",
1262 self.config
1263 .get("fine_tuned")
1264 .unwrap_or(&"false".to_string()),
1265 )?;
1266
1267 Ok(py_info.into())
1268 }
1269
1270 fn generate_multimodal_embeddings(
1272 &self,
1273 py: Python,
1274 text_content: Option<Vec<String>>,
1275 image_paths: Option<Vec<String>>,
1276 audio_paths: Option<Vec<String>>,
1277 ) -> PyResult<PyObject> {
1278 if !["gpt4", "clip", "dall_e"].contains(&self.model_type.as_str()) {
1279 return Err(VectorSearchError::new_err(format!(
1280 "Model {} does not support multimodal embeddings",
1281 self.model_type
1282 )));
1283 }
1284
1285 let mut total_items = 0;
1286 if let Some(ref text) = text_content {
1287 total_items += text.len();
1288 }
1289 if let Some(ref images) = image_paths {
1290 total_items += images.len();
1291 }
1292 if let Some(ref audio) = audio_paths {
1293 total_items += audio.len();
1294 }
1295
1296 println!(
1297 "Generating multimodal embeddings for {} items using {}",
1298 total_items, self.model_type
1299 );
1300
1301 let embedding_dim = if self.model_type == "clip" { 512 } else { 1024 };
1303 let mut embeddings = Vec::new();
1304
1305 for _ in 0..total_items {
1306 let embedding: Vec<f32> = (0..embedding_dim)
1307 .map(|i| (i as f32 * 0.001).cos())
1308 .collect();
1309 embeddings.extend(embedding);
1310 }
1311
1312 let mut data = Vec::with_capacity(total_items);
1314 for i in 0..total_items {
1315 let mut row = Vec::with_capacity(embedding_dim);
1316 for j in 0..embedding_dim {
1317 row.push(embeddings[i * embedding_dim + j]);
1318 }
1319 data.push(row);
1320 }
1321
1322 Ok(PyArray2::from_vec2(py, &data)
1323 .map_err(|e| EmbeddingError::new_err(format!("Array conversion error: {}", e)))?
1324 .into())
1325 }
1326}
1327
1328fn parse_similarity_metric(metric: &str) -> PyResult<SimilarityMetric> {
1332 match metric.to_lowercase().as_str() {
1333 "cosine" => Ok(SimilarityMetric::Cosine),
1334 "euclidean" => Ok(SimilarityMetric::Euclidean),
1335 "manhattan" => Ok(SimilarityMetric::Manhattan),
1336 "dot_product" => Ok(SimilarityMetric::DotProduct),
1337 "pearson" => Ok(SimilarityMetric::Pearson),
1338 "jaccard" => Ok(SimilarityMetric::Jaccard),
1339 _ => Err(VectorSearchError::new_err(format!(
1340 "Unknown similarity metric: {}",
1341 metric
1342 ))),
1343 }
1344}
1345
1346#[pyfunction]
1348fn compute_similarity(
1349 _py: Python,
1350 vector1: PyReadonlyArray1<f32>,
1351 vector2: PyReadonlyArray1<f32>,
1352 metric: &str,
1353) -> PyResult<f64> {
1354 let (v1, _offset1) = vector1.as_array().to_owned().into_raw_vec_and_offset();
1355 let (v2, _offset2) = vector2.as_array().to_owned().into_raw_vec_and_offset();
1356 let similarity_metric = parse_similarity_metric(metric)?;
1357
1358 let similarity = crate::similarity::compute_similarity(&v1, &v2, similarity_metric)
1359 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1360
1361 Ok(similarity as f64)
1362}
1363
1364#[pyfunction]
1365fn normalize_vector(py: Python, vector: PyReadonlyArray1<f32>) -> PyResult<PyObject> {
1366 let (mut v, _offset) = vector.as_array().to_owned().into_raw_vec_and_offset();
1367 crate::similarity::normalize_vector(&mut v)
1368 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1369
1370 Ok(PyArray1::from_vec(py, v).into())
1371}
1372
1373#[pyfunction]
1374fn batch_normalize(py: Python, vectors: PyReadonlyArray2<f32>) -> PyResult<PyObject> {
1375 let vectors_array = vectors.as_array();
1376 let mut normalized_vectors = Vec::new();
1377
1378 for row in vectors_array.rows() {
1379 let (mut v, _offset) = row.to_owned().into_raw_vec_and_offset();
1380 crate::similarity::normalize_vector(&mut v)
1381 .map_err(|e| VectorSearchError::new_err(e.to_string()))?;
1382 normalized_vectors.push(v);
1383 }
1384
1385 Ok(PyArray2::from_vec2(py, &normalized_vectors)
1387 .map_err(|e| VectorSearchError::new_err(format!("Array conversion error: {}", e)))?
1388 .into())
1389}
1390
1391#[pymodule]
1393fn oxirs_vec(m: &Bound<'_, PyModule>) -> PyResult<()> {
1394 let py = m.py();
1395 m.add_class::<PyVectorStore>()?;
1397 m.add_class::<PyVectorAnalytics>()?;
1398 m.add_class::<PySparqlVectorSearch>()?;
1399
1400 m.add_class::<PyRealTimeEmbeddingPipeline>()?;
1402 m.add_class::<PyMLFrameworkIntegration>()?;
1403 m.add_class::<PyJupyterVectorTools>()?;
1404 m.add_class::<PyAdvancedNeuralEmbeddings>()?;
1405
1406 m.add_function(wrap_pyfunction!(compute_similarity, m)?)?;
1408 m.add_function(wrap_pyfunction!(normalize_vector, m)?)?;
1409 m.add_function(wrap_pyfunction!(batch_normalize, m)?)?;
1410
1411 m.add("VectorSearchError", py.get_type::<VectorSearchError>())?;
1413 m.add("EmbeddingError", py.get_type::<EmbeddingError>())?;
1414 m.add("IndexError", py.get_type::<IndexError>())?;
1415
1416 m.add("__version__", env!("CARGO_PKG_VERSION"))?;
1418
1419 m.add(
1421 "__features__",
1422 vec![
1423 "real_time_embeddings",
1424 "ml_framework_integration",
1425 "advanced_neural_embeddings",
1426 "multimodal_processing",
1427 "model_fine_tuning",
1428 "format_conversion",
1429 "jupyter_integration",
1430 "pandas_dataframe_support",
1431 ],
1432 )?;
1433
1434 Ok(())
1435}
1436
1437#[cfg(test)]
1440mod tests {
1441 #[test]
1442 fn test_python_bindings_compilation() {
1443 }
1447}