oxirs_vec/
adaptive_intelligent_caching.rs

1//! Adaptive Intelligent Caching System for OxiRS Vector Search
2//!
3//! This module provides advanced caching strategies that adapt based on query patterns,
4//! vector characteristics, and performance metrics. It implements machine learning-driven
5//! cache optimization and predictive prefetching.
6
7#![allow(dead_code)]
8
9use crate::{similarity::SimilarityMetric, Vector, VectorId};
10use anyhow::Result;
11use serde::{Deserialize, Serialize};
12use std::collections::{BTreeMap, HashMap, VecDeque};
13use std::hash::{Hash, Hasher};
14use std::sync::atomic::{AtomicU64, Ordering};
15use std::time::{Duration, Instant, SystemTime};
16use tracing::{debug, info, warn};
17
18/// Adaptive intelligent caching system with ML-driven optimization
19#[derive(Debug)]
20pub struct AdaptiveIntelligentCache {
21    /// Multi-tier cache storage
22    tiers: Vec<CacheTier>,
23    /// Cache access pattern analyzer
24    pattern_analyzer: AccessPatternAnalyzer,
25    /// Predictive prefetching engine
26    prefetcher: PredictivePrefetcher,
27    /// Cache optimization engine
28    optimizer: CacheOptimizer,
29    /// Performance metrics collector
30    metrics: CachePerformanceMetrics,
31    /// Configuration parameters
32    config: CacheConfiguration,
33    /// Machine learning models for cache decisions
34    ml_models: MLModels,
35}
36
37/// Individual cache tier with specific characteristics
38#[derive(Debug)]
39pub struct CacheTier {
40    /// Tier identifier
41    #[allow(dead_code)]
42    tier_id: u32,
43    /// Storage implementation
44    storage: Box<dyn CacheStorage>,
45    /// Eviction policy
46    eviction_policy: Box<dyn EvictionPolicy>,
47    /// Access frequency tracker
48    access_tracker: AccessTracker,
49    /// Tier-specific configuration
50    config: TierConfiguration,
51    /// Performance statistics
52    stats: TierStatistics,
53}
54
55/// Access pattern analysis for intelligent caching decisions
56#[allow(dead_code)]
57#[derive(Debug, Clone)]
58pub struct AccessPatternAnalyzer {
59    /// Recent access patterns
60    access_history: VecDeque<AccessEvent>,
61    /// Seasonal pattern detection
62    seasonal_detector: SeasonalPatternDetector,
63    /// Query similarity clustering
64    query_clustering: QueryClusteringEngine,
65    /// Temporal access predictions
66    temporal_predictor: TemporalAccessPredictor,
67}
68
69/// Predictive prefetching based on access patterns and ML models
70#[allow(dead_code)]
71#[derive(Debug)]
72pub struct PredictivePrefetcher {
73    /// Prefetch queue with priorities
74    prefetch_queue: VecDeque<PrefetchItem>,
75    /// Prefetch models
76    models: PrefetchModels,
77    /// Current prefetch strategies
78    strategies: Vec<PrefetchStrategy>,
79    /// Prefetch performance tracking
80    performance: PrefetchPerformance,
81}
82
83/// Cache optimization engine with adaptive algorithms
84#[allow(dead_code)]
85#[derive(Debug)]
86pub struct CacheOptimizer {
87    /// Optimization algorithms
88    algorithms: Vec<Box<dyn OptimizationAlgorithm>>,
89    /// Optimization history
90    optimization_history: Vec<OptimizationEvent>,
91    /// Current optimization state
92    current_state: OptimizationState,
93    /// Performance improvement tracking
94    improvements: ImprovementTracker,
95}
96
97/// Comprehensive cache performance metrics
98#[derive(Debug, Default)]
99pub struct CachePerformanceMetrics {
100    /// Hit/miss statistics
101    pub hit_count: AtomicU64,
102    pub miss_count: AtomicU64,
103    pub total_requests: AtomicU64,
104
105    /// Latency statistics
106    pub avg_hit_latency_ns: AtomicU64,
107    pub avg_miss_latency_ns: AtomicU64,
108    pub p99_latency_ns: AtomicU64,
109
110    /// Throughput metrics
111    pub requests_per_second: AtomicU64,
112    pub bytes_per_second: AtomicU64,
113
114    /// Cache efficiency
115    pub cache_efficiency_score: f64,
116    pub memory_utilization: f64,
117    pub fragmentation_ratio: f64,
118
119    /// Detailed statistics by tier
120    pub tier_metrics: HashMap<u32, TierMetrics>,
121
122    /// Time-series data for trend analysis
123    pub historical_metrics: VecDeque<HistoricalMetric>,
124}
125
126impl Clone for CachePerformanceMetrics {
127    fn clone(&self) -> Self {
128        Self {
129            hit_count: AtomicU64::new(self.hit_count.load(Ordering::SeqCst)),
130            miss_count: AtomicU64::new(self.miss_count.load(Ordering::SeqCst)),
131            total_requests: AtomicU64::new(self.total_requests.load(Ordering::SeqCst)),
132            avg_hit_latency_ns: AtomicU64::new(self.avg_hit_latency_ns.load(Ordering::SeqCst)),
133            avg_miss_latency_ns: AtomicU64::new(self.avg_miss_latency_ns.load(Ordering::SeqCst)),
134            p99_latency_ns: AtomicU64::new(self.p99_latency_ns.load(Ordering::SeqCst)),
135            requests_per_second: AtomicU64::new(self.requests_per_second.load(Ordering::SeqCst)),
136            bytes_per_second: AtomicU64::new(self.bytes_per_second.load(Ordering::SeqCst)),
137            cache_efficiency_score: self.cache_efficiency_score,
138            memory_utilization: self.memory_utilization,
139            fragmentation_ratio: self.fragmentation_ratio,
140            tier_metrics: self.tier_metrics.clone(),
141            historical_metrics: self.historical_metrics.clone(),
142        }
143    }
144}
145
146impl Serialize for CachePerformanceMetrics {
147    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
148    where
149        S: serde::Serializer,
150    {
151        use serde::ser::SerializeStruct;
152        let mut state = serializer.serialize_struct("CachePerformanceMetrics", 11)?;
153        state.serialize_field("hit_count", &self.hit_count.load(Ordering::SeqCst))?;
154        state.serialize_field("miss_count", &self.miss_count.load(Ordering::SeqCst))?;
155        state.serialize_field(
156            "total_requests",
157            &self.total_requests.load(Ordering::SeqCst),
158        )?;
159        state.serialize_field(
160            "avg_hit_latency_ns",
161            &self.avg_hit_latency_ns.load(Ordering::SeqCst),
162        )?;
163        state.serialize_field(
164            "avg_miss_latency_ns",
165            &self.avg_miss_latency_ns.load(Ordering::SeqCst),
166        )?;
167        state.serialize_field(
168            "p99_latency_ns",
169            &self.p99_latency_ns.load(Ordering::SeqCst),
170        )?;
171        state.serialize_field(
172            "requests_per_second",
173            &self.requests_per_second.load(Ordering::SeqCst),
174        )?;
175        state.serialize_field(
176            "bytes_per_second",
177            &self.bytes_per_second.load(Ordering::SeqCst),
178        )?;
179        state.serialize_field("cache_efficiency_score", &self.cache_efficiency_score)?;
180        state.serialize_field("memory_utilization", &self.memory_utilization)?;
181        state.serialize_field("fragmentation_ratio", &self.fragmentation_ratio)?;
182        state.serialize_field("tier_metrics", &self.tier_metrics)?;
183        state.serialize_field("historical_metrics", &self.historical_metrics)?;
184        state.end()
185    }
186}
187
188impl<'de> Deserialize<'de> for CachePerformanceMetrics {
189    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
190    where
191        D: serde::Deserializer<'de>,
192    {
193        use serde::de::{self, MapAccess, Visitor};
194        use std::fmt;
195
196        #[derive(Deserialize)]
197        #[serde(field_identifier, rename_all = "snake_case")]
198        enum Field {
199            HitCount,
200            MissCount,
201            TotalRequests,
202            AvgHitLatencyNs,
203            AvgMissLatencyNs,
204            P99LatencyNs,
205            RequestsPerSecond,
206            BytesPerSecond,
207            CacheEfficiencyScore,
208            MemoryUtilization,
209            FragmentationRatio,
210            TierMetrics,
211            HistoricalMetrics,
212        }
213
214        struct CachePerformanceMetricsVisitor;
215
216        impl<'de> Visitor<'de> for CachePerformanceMetricsVisitor {
217            type Value = CachePerformanceMetrics;
218
219            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
220                formatter.write_str("struct CachePerformanceMetrics")
221            }
222
223            fn visit_map<V>(self, mut map: V) -> Result<CachePerformanceMetrics, V::Error>
224            where
225                V: MapAccess<'de>,
226            {
227                let mut hit_count = None;
228                let mut miss_count = None;
229                let mut total_requests = None;
230                let mut avg_hit_latency_ns = None;
231                let mut avg_miss_latency_ns = None;
232                let mut p99_latency_ns = None;
233                let mut requests_per_second = None;
234                let mut bytes_per_second = None;
235                let mut cache_efficiency_score = None;
236                let mut memory_utilization = None;
237                let mut fragmentation_ratio = None;
238                let mut tier_metrics = None;
239                let mut historical_metrics = None;
240
241                while let Some(key) = map.next_key()? {
242                    match key {
243                        Field::HitCount => {
244                            if hit_count.is_some() {
245                                return Err(de::Error::duplicate_field("hit_count"));
246                            }
247                            hit_count = Some(map.next_value::<u64>()?);
248                        }
249                        Field::MissCount => {
250                            if miss_count.is_some() {
251                                return Err(de::Error::duplicate_field("miss_count"));
252                            }
253                            miss_count = Some(map.next_value::<u64>()?);
254                        }
255                        Field::TotalRequests => {
256                            if total_requests.is_some() {
257                                return Err(de::Error::duplicate_field("total_requests"));
258                            }
259                            total_requests = Some(map.next_value::<u64>()?);
260                        }
261                        Field::AvgHitLatencyNs => {
262                            if avg_hit_latency_ns.is_some() {
263                                return Err(de::Error::duplicate_field("avg_hit_latency_ns"));
264                            }
265                            avg_hit_latency_ns = Some(map.next_value::<u64>()?);
266                        }
267                        Field::AvgMissLatencyNs => {
268                            if avg_miss_latency_ns.is_some() {
269                                return Err(de::Error::duplicate_field("avg_miss_latency_ns"));
270                            }
271                            avg_miss_latency_ns = Some(map.next_value::<u64>()?);
272                        }
273                        Field::P99LatencyNs => {
274                            if p99_latency_ns.is_some() {
275                                return Err(de::Error::duplicate_field("p99_latency_ns"));
276                            }
277                            p99_latency_ns = Some(map.next_value::<u64>()?);
278                        }
279                        Field::RequestsPerSecond => {
280                            if requests_per_second.is_some() {
281                                return Err(de::Error::duplicate_field("requests_per_second"));
282                            }
283                            requests_per_second = Some(map.next_value::<u64>()?);
284                        }
285                        Field::BytesPerSecond => {
286                            if bytes_per_second.is_some() {
287                                return Err(de::Error::duplicate_field("bytes_per_second"));
288                            }
289                            bytes_per_second = Some(map.next_value::<u64>()?);
290                        }
291                        Field::CacheEfficiencyScore => {
292                            if cache_efficiency_score.is_some() {
293                                return Err(de::Error::duplicate_field("cache_efficiency_score"));
294                            }
295                            cache_efficiency_score = Some(map.next_value()?);
296                        }
297                        Field::MemoryUtilization => {
298                            if memory_utilization.is_some() {
299                                return Err(de::Error::duplicate_field("memory_utilization"));
300                            }
301                            memory_utilization = Some(map.next_value()?);
302                        }
303                        Field::FragmentationRatio => {
304                            if fragmentation_ratio.is_some() {
305                                return Err(de::Error::duplicate_field("fragmentation_ratio"));
306                            }
307                            fragmentation_ratio = Some(map.next_value()?);
308                        }
309                        Field::TierMetrics => {
310                            if tier_metrics.is_some() {
311                                return Err(de::Error::duplicate_field("tier_metrics"));
312                            }
313                            tier_metrics = Some(map.next_value()?);
314                        }
315                        Field::HistoricalMetrics => {
316                            if historical_metrics.is_some() {
317                                return Err(de::Error::duplicate_field("historical_metrics"));
318                            }
319                            historical_metrics = Some(map.next_value()?);
320                        }
321                    }
322                }
323
324                Ok(CachePerformanceMetrics {
325                    hit_count: AtomicU64::new(hit_count.unwrap_or(0)),
326                    miss_count: AtomicU64::new(miss_count.unwrap_or(0)),
327                    total_requests: AtomicU64::new(total_requests.unwrap_or(0)),
328                    avg_hit_latency_ns: AtomicU64::new(avg_hit_latency_ns.unwrap_or(0)),
329                    avg_miss_latency_ns: AtomicU64::new(avg_miss_latency_ns.unwrap_or(0)),
330                    p99_latency_ns: AtomicU64::new(p99_latency_ns.unwrap_or(0)),
331                    requests_per_second: AtomicU64::new(requests_per_second.unwrap_or(0)),
332                    bytes_per_second: AtomicU64::new(bytes_per_second.unwrap_or(0)),
333                    cache_efficiency_score: cache_efficiency_score.unwrap_or(0.0),
334                    memory_utilization: memory_utilization.unwrap_or(0.0),
335                    fragmentation_ratio: fragmentation_ratio.unwrap_or(0.0),
336                    tier_metrics: tier_metrics.unwrap_or_default(),
337                    historical_metrics: historical_metrics.unwrap_or_default(),
338                })
339            }
340        }
341
342        deserializer.deserialize_struct(
343            "CachePerformanceMetrics",
344            &[
345                "hit_count",
346                "miss_count",
347                "total_requests",
348                "avg_hit_latency_ns",
349                "avg_miss_latency_ns",
350                "p99_latency_ns",
351                "requests_per_second",
352                "bytes_per_second",
353                "cache_efficiency_score",
354                "memory_utilization",
355                "fragmentation_ratio",
356                "tier_metrics",
357                "historical_metrics",
358            ],
359            CachePerformanceMetricsVisitor,
360        )
361    }
362}
363
364/// Configuration for the adaptive cache system
365#[derive(Debug, Clone, Serialize, Deserialize)]
366pub struct CacheConfiguration {
367    /// Maximum total cache size in bytes
368    pub max_total_size_bytes: u64,
369    /// Number of cache tiers
370    pub num_tiers: u32,
371    /// Tier size distribution
372    pub tier_size_ratios: Vec<f64>,
373    /// Default TTL for cached items
374    pub default_ttl_seconds: u64,
375    /// Optimization frequency
376    pub optimization_interval_seconds: u64,
377    /// ML model update frequency
378    pub ml_update_interval_seconds: u64,
379    /// Enable predictive prefetching
380    pub enable_prefetching: bool,
381    /// Enable adaptive optimization
382    pub enable_adaptive_optimization: bool,
383    /// Performance monitoring settings
384    pub monitoring_config: MonitoringConfiguration,
385}
386
387/// Machine learning models for intelligent caching decisions
388#[derive(Debug)]
389pub struct MLModels {
390    /// Access pattern prediction model
391    access_predictor: AccessPredictionModel,
392    /// Cache hit probability model
393    hit_probability_model: HitProbabilityModel,
394    /// Optimal tier placement model
395    tier_placement_model: TierPlacementModel,
396    /// Eviction timing model
397    eviction_timing_model: EvictionTimingModel,
398}
399
400// Cache storage trait for different storage implementations
401pub trait CacheStorage: Send + Sync + std::fmt::Debug {
402    /// Store an item in the cache
403    fn store(&mut self, key: CacheKey, value: CacheValue, ttl: Option<Duration>) -> Result<()>;
404
405    /// Retrieve an item from the cache
406    fn retrieve(&self, key: &CacheKey) -> Option<CacheValue>;
407
408    /// Remove an item from the cache
409    fn remove(&mut self, key: &CacheKey) -> bool;
410
411    /// Get cache size information
412    fn size_info(&self) -> CacheSizeInfo;
413
414    /// Clear the entire cache
415    fn clear(&mut self);
416
417    /// Get storage-specific statistics
418    fn statistics(&self) -> StorageStatistics;
419}
420
421// Eviction policy trait for different eviction strategies
422pub trait EvictionPolicy: Send + Sync + std::fmt::Debug {
423    /// Determine which items to evict
424    fn evict(&mut self, current_size: u64, target_size: u64, items: &[CacheItem]) -> Vec<CacheKey>;
425
426    /// Update access information for an item
427    fn on_access(&mut self, key: &CacheKey, access_time: Instant);
428
429    /// Update when an item is stored
430    fn on_store(&mut self, key: &CacheKey, size: u64, store_time: Instant);
431
432    /// Get policy-specific statistics
433    fn statistics(&self) -> EvictionStatistics;
434}
435
436// Optimization algorithm trait
437pub trait OptimizationAlgorithm: Send + Sync + std::fmt::Debug {
438    /// Apply optimization to the cache system
439    fn optimize_cache(
440        &mut self,
441        tiers: &[CacheTier],
442        metrics: &CachePerformanceMetrics,
443        config: &CacheConfiguration,
444    ) -> Result<OptimizationResult>;
445
446    /// Get algorithm name
447    fn name(&self) -> &str;
448
449    /// Get optimization score for current state
450    fn score(&self, metrics: &CachePerformanceMetrics) -> f64;
451}
452
453// Supporting types and structures
454
455#[derive(Debug, Clone, PartialEq)]
456pub struct CacheKey {
457    pub query_vector: Vec<u8>, // Hashed query vector
458    pub similarity_metric: SimilarityMetric,
459    pub parameters: HashMap<String, String>,
460}
461
462impl Hash for CacheKey {
463    fn hash<H: Hasher>(&self, state: &mut H) {
464        self.query_vector.hash(state);
465        // Hash the similarity metric by its discriminant
466        std::mem::discriminant(&self.similarity_metric).hash(state);
467        // For parameters, we'll sort them to ensure consistent hashing
468        let mut params: Vec<_> = self.parameters.iter().collect();
469        params.sort_by_key(|(k, _)| *k);
470        params.hash(state);
471    }
472}
473
474impl Eq for CacheKey {}
475
476#[derive(Debug, Clone)]
477pub struct CacheValue {
478    pub results: Vec<(VectorId, f32)>, // Search results with scores
479    pub metadata: CacheMetadata,
480    pub created_at: SystemTime,
481    pub last_accessed: SystemTime,
482    pub access_count: u32,
483}
484
485#[derive(Debug, Clone)]
486pub struct CacheMetadata {
487    pub size_bytes: u64,
488    pub computation_cost: f64,
489    pub quality_score: f64,
490    pub staleness_factor: f64,
491}
492
493#[derive(Debug, Clone)]
494pub struct AccessEvent {
495    pub timestamp: SystemTime,
496    pub key: CacheKey,
497    pub hit: bool,
498    pub latency_ns: u64,
499    pub user_context: Option<String>,
500}
501
502#[derive(Debug, Clone)]
503pub struct PrefetchItem {
504    pub key: CacheKey,
505    pub priority: f64,
506    pub predicted_access_time: SystemTime,
507    pub confidence: f64,
508    pub strategy: PrefetchStrategy,
509}
510
511#[derive(Debug, Clone, Copy, PartialEq, Eq)]
512pub enum PrefetchStrategy {
513    SequentialPattern,
514    SeasonalPattern,
515    SimilarityBased,
516    UserBehavior,
517    MachineLearning,
518}
519
520#[derive(Debug, Clone)]
521pub struct CacheItem {
522    pub key: CacheKey,
523    pub value: CacheValue,
524    pub tier_id: u32,
525    pub last_access: Instant,
526    pub access_frequency: f64,
527}
528
529#[derive(Debug, Clone, Default)]
530pub struct CacheSizeInfo {
531    pub used_bytes: u64,
532    pub available_bytes: u64,
533    pub total_capacity_bytes: u64,
534    pub item_count: u64,
535}
536
537#[derive(Debug, Clone, Default)]
538pub struct StorageStatistics {
539    pub read_operations: u64,
540    pub write_operations: u64,
541    pub delete_operations: u64,
542    pub avg_operation_latency_ns: u64,
543    pub fragmentation_ratio: f64,
544}
545
546#[derive(Debug, Clone, Default)]
547pub struct EvictionStatistics {
548    pub total_evictions: u64,
549    pub false_evictions: u64, // Items evicted but accessed shortly after
550    pub eviction_accuracy: f64,
551    pub avg_item_lifetime: Duration,
552}
553
554#[derive(Debug, Clone)]
555pub struct OptimizationResult {
556    pub improvement_score: f64,
557    pub changes_applied: Vec<OptimizationChange>,
558    pub estimated_impact: EstimatedImpact,
559}
560
561#[derive(Debug, Clone)]
562pub struct OptimizationChange {
563    pub change_type: OptimizationChangeType,
564    pub description: String,
565    pub tier_id: Option<u32>,
566    pub old_value: String,
567    pub new_value: String,
568}
569
570#[derive(Debug, Clone, Copy)]
571pub enum OptimizationChangeType {
572    TierSizeAdjustment,
573    EvictionPolicyChange,
574    TTLAdjustment,
575    PrefetchingStrategy,
576    TierRebalancing,
577}
578
579#[derive(Debug, Clone, Default)]
580pub struct EstimatedImpact {
581    pub hit_rate_improvement: f64,
582    pub latency_reduction: f64,
583    pub memory_efficiency_gain: f64,
584    pub cost_reduction: f64,
585}
586
587// Additional implementation types
588#[derive(Debug, Clone)]
589pub struct TierConfiguration {
590    pub max_size_bytes: u64,
591    pub default_ttl: Duration,
592    pub compression_enabled: bool,
593    pub persistence_enabled: bool,
594    pub replication_factor: u32,
595}
596
597#[derive(Debug, Clone, Default, Serialize, Deserialize)]
598pub struct TierStatistics {
599    pub hit_count: u64,
600    pub miss_count: u64,
601    pub eviction_count: u64,
602    pub size_bytes: u64,
603    pub item_count: u64,
604    pub avg_access_time: Duration,
605}
606
607#[derive(Debug, Clone, Default, Serialize, Deserialize)]
608pub struct TierMetrics {
609    pub hit_rate: f64,
610    pub utilization: f64,
611    pub avg_item_size: u64,
612    pub hotness_score: f64,
613}
614
615#[derive(Debug, Clone, Serialize, Deserialize)]
616pub struct HistoricalMetric {
617    pub timestamp: SystemTime,
618    pub hit_rate: f64,
619    pub latency_p99: u64,
620    pub throughput: f64,
621    pub memory_usage: u64,
622}
623
624#[derive(Debug, Clone)]
625pub struct AccessTracker {
626    access_counts: HashMap<CacheKey, u64>,
627    access_times: HashMap<CacheKey, VecDeque<SystemTime>>,
628    hot_keys: BTreeMap<u64, CacheKey>, // Frequency -> Key
629}
630
631#[derive(Debug, Clone)]
632pub struct SeasonalPatternDetector {
633    hourly_patterns: [f64; 24],
634    daily_patterns: [f64; 7],
635    monthly_patterns: [f64; 31],
636    pattern_confidence: f64,
637}
638
639#[derive(Debug, Clone)]
640pub struct QueryClusteringEngine {
641    clusters: Vec<QueryCluster>,
642    cluster_assignments: HashMap<CacheKey, u32>,
643    cluster_centroids: Vec<Vector>,
644}
645
646#[derive(Debug, Clone)]
647pub struct QueryCluster {
648    pub cluster_id: u32,
649    pub centroid: Vector,
650    pub members: Vec<CacheKey>,
651    pub access_pattern: AccessPattern,
652}
653
654#[derive(Debug, Clone)]
655pub struct AccessPattern {
656    pub frequency: f64,
657    pub seasonality: SeasonalityInfo,
658    pub correlation_score: f64,
659}
660
661#[derive(Debug, Clone)]
662pub struct SeasonalityInfo {
663    pub has_daily_pattern: bool,
664    pub has_weekly_pattern: bool,
665    pub peak_hours: Vec<u8>,
666    pub peak_days: Vec<u8>,
667}
668
669#[derive(Debug, Clone)]
670pub struct TemporalAccessPredictor {
671    time_series_models: HashMap<CacheKey, TimeSeriesModel>,
672    global_trend_model: GlobalTrendModel,
673    prediction_horizon: Duration,
674}
675
676#[derive(Debug, Clone)]
677pub struct TimeSeriesModel {
678    pub coefficients: Vec<f64>,
679    pub seasonal_components: Vec<f64>,
680    pub trend_component: f64,
681    pub accuracy_score: f64,
682}
683
684#[derive(Debug, Clone)]
685pub struct GlobalTrendModel {
686    pub hourly_multipliers: [f64; 24],
687    pub daily_multipliers: [f64; 7],
688    pub base_rate: f64,
689}
690
691#[derive(Debug, Clone)]
692pub struct PrefetchModels {
693    pub similarity_model: SimilarityPrefetchModel,
694    pub sequence_model: SequencePrefetchModel,
695    pub user_behavior_model: UserBehaviorModel,
696}
697
698#[derive(Debug, Clone)]
699pub struct SimilarityPrefetchModel {
700    pub similarity_threshold: f64,
701    pub prefetch_depth: u32,
702    pub confidence_weights: Vec<f64>,
703}
704
705#[derive(Debug, Clone)]
706pub struct SequencePrefetchModel {
707    pub sequence_patterns: HashMap<Vec<CacheKey>, f64>, // Pattern -> Probability
708    pub max_sequence_length: u32,
709    pub min_confidence: f64,
710}
711
712#[derive(Debug, Clone)]
713pub struct UserBehaviorModel {
714    pub user_profiles: HashMap<String, UserProfile>,
715    pub default_profile: UserProfile,
716}
717
718#[derive(Debug, Clone)]
719pub struct UserProfile {
720    pub typical_query_patterns: Vec<QueryPattern>,
721    pub access_frequency: f64,
722    pub preference_weights: HashMap<SimilarityMetric, f64>,
723}
724
725#[derive(Debug, Clone)]
726pub struct QueryPattern {
727    pub pattern_vector: Vector,
728    pub frequency: f64,
729    pub time_distribution: Vec<f64>, // Hourly distribution
730}
731
732#[derive(Debug, Clone)]
733pub struct PrefetchPerformance {
734    pub successful_prefetches: u64,
735    pub failed_prefetches: u64,
736    pub cache_space_saved: u64,
737    pub avg_prediction_accuracy: f64,
738}
739
740#[derive(Debug, Clone)]
741pub struct OptimizationEvent {
742    pub timestamp: SystemTime,
743    pub algorithm: String,
744    pub changes: Vec<OptimizationChange>,
745    pub before_metrics: CachePerformanceMetrics,
746    pub after_metrics: Option<CachePerformanceMetrics>,
747}
748
749#[derive(Debug, Clone)]
750pub struct OptimizationState {
751    pub last_optimization: SystemTime,
752    pub optimization_frequency: Duration,
753    pub pending_optimizations: Vec<String>,
754    pub optimization_backlog: u32,
755}
756
757#[derive(Debug, Clone)]
758pub struct ImprovementTracker {
759    pub baseline_metrics: CachePerformanceMetrics,
760    pub current_improvement: f64,
761    pub improvement_history: VecDeque<ImprovementPoint>,
762    pub regression_detection: RegressionDetector,
763}
764
765#[derive(Debug, Clone)]
766pub struct ImprovementPoint {
767    pub timestamp: SystemTime,
768    pub improvement_score: f64,
769    pub optimization_applied: String,
770}
771
772#[derive(Debug, Clone)]
773pub struct RegressionDetector {
774    pub regression_threshold: f64,
775    pub detection_window: Duration,
776    pub recent_scores: VecDeque<f64>,
777}
778
779#[derive(Debug, Clone)]
780pub struct AccessPredictionModel {
781    pub model_weights: Vec<f64>,
782    pub feature_extractors: Vec<FeatureExtractor>,
783    pub prediction_accuracy: f64,
784}
785
786#[derive(Debug, Clone)]
787pub struct HitProbabilityModel {
788    pub probability_matrix: HashMap<(CacheKey, u32), f64>, // (Key, Tier) -> Probability
789    pub model_confidence: f64,
790    pub last_update: SystemTime,
791}
792
793#[derive(Debug, Clone)]
794pub struct TierPlacementModel {
795    pub placement_scores: HashMap<CacheKey, Vec<f64>>, // Key -> Tier scores
796    pub optimization_objective: OptimizationObjective,
797}
798
799#[derive(Debug, Clone)]
800pub struct EvictionTimingModel {
801    pub survival_functions: HashMap<CacheKey, SurvivalFunction>,
802    pub hazard_rates: HashMap<CacheKey, f64>,
803}
804
805#[derive(Debug, Clone)]
806pub struct SurvivalFunction {
807    pub time_points: Vec<Duration>,
808    pub survival_probabilities: Vec<f64>,
809}
810
811#[derive(Debug, Clone)]
812pub enum FeatureExtractor {
813    AccessFrequency,
814    RecencyScore,
815    SizeMetric,
816    ComputationCost,
817    UserContext,
818    TemporalFeatures,
819}
820
821#[derive(Debug, Clone, Copy)]
822pub enum OptimizationObjective {
823    MaximizeHitRate,
824    MinimizeLatency,
825    MaximizeThroughput,
826    MinimizeCost,
827    BalancedPerformance,
828}
829
830#[derive(Debug, Clone, Serialize, Deserialize)]
831pub struct MonitoringConfiguration {
832    pub enable_detailed_metrics: bool,
833    pub metrics_retention_days: u32,
834    pub alert_thresholds: AlertThresholds,
835    pub export_prometheus: bool,
836}
837
838#[derive(Debug, Clone, Serialize, Deserialize)]
839pub struct AlertThresholds {
840    pub min_hit_rate: f64,
841    pub max_latency_p99_ms: f64,
842    pub max_memory_utilization: f64,
843    pub min_cache_efficiency: f64,
844}
845
846impl AdaptiveIntelligentCache {
847    /// Create a new adaptive intelligent cache with the given configuration
848    pub fn new(config: CacheConfiguration) -> Result<Self> {
849        info!(
850            "Initializing Adaptive Intelligent Cache with {} tiers",
851            config.num_tiers
852        );
853
854        let mut tiers = Vec::new();
855        let tier_sizes = Self::calculate_tier_sizes(&config);
856
857        for (tier_id, size) in tier_sizes.into_iter().enumerate() {
858            let tier_config = TierConfiguration {
859                max_size_bytes: size,
860                default_ttl: Duration::from_secs(config.default_ttl_seconds),
861                compression_enabled: tier_id > 0, // Enable compression for higher tiers
862                persistence_enabled: tier_id == config.num_tiers as usize - 1, // Only last tier persisted
863                replication_factor: if tier_id == 0 { 1 } else { 2 }, // Replicate slower tiers
864            };
865
866            let storage = Self::create_storage_for_tier(tier_id as u32, &tier_config)?;
867            let eviction_policy = Self::create_eviction_policy_for_tier(tier_id as u32);
868
869            let tier = CacheTier {
870                tier_id: tier_id as u32,
871                storage,
872                eviction_policy,
873                access_tracker: AccessTracker::new(),
874                config: tier_config,
875                stats: TierStatistics::default(),
876            };
877
878            tiers.push(tier);
879        }
880
881        Ok(Self {
882            tiers,
883            pattern_analyzer: AccessPatternAnalyzer::new(),
884            prefetcher: PredictivePrefetcher::new(),
885            optimizer: CacheOptimizer::new(),
886            metrics: CachePerformanceMetrics::default(),
887            config,
888            ml_models: MLModels::new()?,
889        })
890    }
891
892    /// Store a value in the cache with intelligent tier placement
893    pub fn store(&mut self, key: CacheKey, value: CacheValue) -> Result<()> {
894        let start_time = Instant::now();
895
896        // Determine optimal tier placement using ML model
897        let optimal_tier = self
898            .ml_models
899            .tier_placement_model
900            .predict_optimal_tier(&key, &value);
901
902        // Store in the determined tier
903        let tier = &mut self.tiers[optimal_tier as usize];
904        tier.storage
905            .store(key.clone(), value.clone(), Some(tier.config.default_ttl))?;
906
907        // Update access tracking and metrics
908        tier.access_tracker.on_store(&key);
909        self.update_store_metrics(optimal_tier, start_time.elapsed());
910
911        // Trigger eviction if necessary
912        self.check_and_evict(optimal_tier)?;
913
914        // Update ML models with new data
915        self.ml_models
916            .update_with_store_event(&key, &value, optimal_tier);
917
918        debug!(
919            "Stored cache item in tier {} with key hash {:?}",
920            optimal_tier,
921            self.hash_key(&key)
922        );
923        Ok(())
924    }
925
926    /// Retrieve a value from the cache with intelligent promotion
927    pub fn retrieve(&mut self, key: &CacheKey) -> Option<CacheValue> {
928        let start_time = Instant::now();
929
930        // Search through tiers starting from fastest
931        for (tier_index, tier) in self.tiers.iter_mut().enumerate() {
932            if let Some(mut value) = tier.storage.retrieve(key) {
933                // Update access information
934                value.last_accessed = SystemTime::now();
935                value.access_count += 1;
936
937                tier.access_tracker.on_access(key, Instant::now());
938                self.update_hit_metrics(tier_index as u32, start_time.elapsed());
939
940                // Consider promoting to faster tier based on access pattern
941                if tier_index > 0 && self.should_promote(key, &value, tier_index) {
942                    if let Err(e) = self.promote_item(key.clone(), value.clone(), tier_index) {
943                        warn!("Failed to promote cache item: {}", e);
944                    }
945                }
946
947                // Record access event for pattern analysis
948                self.pattern_analyzer.record_access(AccessEvent {
949                    timestamp: SystemTime::now(),
950                    key: key.clone(),
951                    hit: true,
952                    latency_ns: start_time.elapsed().as_nanos() as u64,
953                    user_context: None, // Could be extracted from key metadata
954                });
955
956                // Trigger predictive prefetching
957                if self.config.enable_prefetching {
958                    self.prefetcher.trigger_prefetch_analysis(key, &value);
959                }
960
961                return Some(value);
962            }
963        }
964
965        // Cache miss - update metrics and patterns
966        self.update_miss_metrics(start_time.elapsed());
967        self.pattern_analyzer.record_access(AccessEvent {
968            timestamp: SystemTime::now(),
969            key: key.clone(),
970            hit: false,
971            latency_ns: start_time.elapsed().as_nanos() as u64,
972            user_context: None,
973        });
974
975        None
976    }
977
978    /// Remove an item from all cache tiers
979    pub fn remove(&mut self, key: &CacheKey) -> bool {
980        let mut removed = false;
981        for tier in &mut self.tiers {
982            if tier.storage.remove(key) {
983                tier.access_tracker.on_remove(key);
984                removed = true;
985            }
986        }
987        removed
988    }
989
990    /// Get comprehensive cache statistics
991    pub fn get_statistics(&self) -> CacheStatistics {
992        let total_hits = self.metrics.hit_count.load(Ordering::Relaxed);
993        let total_misses = self.metrics.miss_count.load(Ordering::Relaxed);
994        let total_requests = total_hits + total_misses;
995
996        let hit_rate = if total_requests > 0 {
997            total_hits as f64 / total_requests as f64
998        } else {
999            0.0
1000        };
1001
1002        CacheStatistics {
1003            hit_rate,
1004            miss_rate: 1.0 - hit_rate,
1005            total_requests,
1006            avg_hit_latency_ns: self.metrics.avg_hit_latency_ns.load(Ordering::Relaxed),
1007            avg_miss_latency_ns: self.metrics.avg_miss_latency_ns.load(Ordering::Relaxed),
1008            cache_efficiency: self.metrics.cache_efficiency_score,
1009            memory_utilization: self.calculate_memory_utilization(),
1010            tier_statistics: self.collect_tier_statistics(),
1011            prefetch_statistics: self.prefetcher.get_statistics(),
1012            optimization_statistics: self.optimizer.get_statistics(),
1013        }
1014    }
1015
1016    /// Run cache optimization cycle
1017    pub fn optimize(&mut self) -> Result<OptimizationResult> {
1018        if !self.config.enable_adaptive_optimization {
1019            return Ok(OptimizationResult {
1020                improvement_score: 0.0,
1021                changes_applied: vec![],
1022                estimated_impact: EstimatedImpact::default(),
1023            });
1024        }
1025
1026        info!("Running cache optimization cycle");
1027        let before_metrics = self.metrics.clone();
1028
1029        let mut total_improvement = 0.0;
1030        let mut all_changes = Vec::new();
1031
1032        // Run each optimization algorithm
1033        // Temporarily move algorithms out to avoid borrowing conflicts
1034        let mut algorithms = std::mem::take(&mut self.optimizer.algorithms);
1035        for algorithm in &mut algorithms {
1036            match algorithm.optimize_cache(&self.tiers, &self.metrics, &self.config) {
1037                Ok(result) => {
1038                    total_improvement += result.improvement_score;
1039                    all_changes.extend(result.changes_applied);
1040                    info!(
1041                        "Optimization algorithm '{}' achieved {:.2}% improvement",
1042                        algorithm.name(),
1043                        result.improvement_score * 100.0
1044                    );
1045                }
1046                Err(e) => {
1047                    warn!(
1048                        "Optimization algorithm '{}' failed: {}",
1049                        algorithm.name(),
1050                        e
1051                    );
1052                }
1053            }
1054        }
1055        // Move algorithms back
1056        self.optimizer.algorithms = algorithms;
1057
1058        // Update optimization history
1059        self.optimizer.record_optimization_event(OptimizationEvent {
1060            timestamp: SystemTime::now(),
1061            algorithm: "combined".to_string(),
1062            changes: all_changes.clone(),
1063            before_metrics,
1064            after_metrics: None, // Will be updated later
1065        });
1066
1067        Ok(OptimizationResult {
1068            improvement_score: total_improvement,
1069            changes_applied: all_changes,
1070            estimated_impact: self.estimate_optimization_impact(total_improvement),
1071        })
1072    }
1073
1074    /// Export cache performance data for external analysis
1075    pub fn export_performance_data(&self, format: ExportFormat) -> Result<String> {
1076        match format {
1077            ExportFormat::Json => {
1078                let data = CachePerformanceData {
1079                    metrics: self.metrics.clone(),
1080                    statistics: self.get_statistics(),
1081                    configuration: self.config.clone(),
1082                    access_patterns: self.pattern_analyzer.export_patterns(),
1083                    optimization_history: self.optimizer.export_history(),
1084                };
1085                Ok(serde_json::to_string_pretty(&data)?)
1086            }
1087            ExportFormat::Prometheus => self.export_prometheus_metrics(),
1088            ExportFormat::Csv => self.export_csv_metrics(),
1089        }
1090    }
1091
1092    // Private helper methods
1093
1094    fn calculate_tier_sizes(config: &CacheConfiguration) -> Vec<u64> {
1095        let total_size = config.max_total_size_bytes;
1096        config
1097            .tier_size_ratios
1098            .iter()
1099            .map(|ratio| (total_size as f64 * ratio) as u64)
1100            .collect()
1101    }
1102
1103    fn create_storage_for_tier(
1104        tier_id: u32,
1105        config: &TierConfiguration,
1106    ) -> Result<Box<dyn CacheStorage>> {
1107        match tier_id {
1108            0 => Ok(Box::new(MemoryStorage::new(config.max_size_bytes))),
1109            1 => Ok(Box::new(CompressedStorage::new(config.max_size_bytes))),
1110            _ => Ok(Box::new(PersistentStorage::new(config.max_size_bytes)?)),
1111        }
1112    }
1113
1114    fn create_eviction_policy_for_tier(tier_id: u32) -> Box<dyn EvictionPolicy> {
1115        match tier_id {
1116            0 => Box::new(LRUEvictionPolicy::new()),
1117            1 => Box::new(LFUEvictionPolicy::new()),
1118            _ => Box::new(AdaptiveEvictionPolicy::new()),
1119        }
1120    }
1121
1122    fn should_promote(&self, _key: &CacheKey, value: &CacheValue, current_tier: usize) -> bool {
1123        // Use ML model to determine if item should be promoted
1124        let access_frequency = value.access_count as f64;
1125        let recency_score = self.calculate_recency_score(value.last_accessed);
1126        let size_penalty = value.metadata.size_bytes as f64 / 1024.0; // KB
1127
1128        let promotion_score = access_frequency * recency_score / size_penalty;
1129        promotion_score > 2.0 && current_tier > 0
1130    }
1131
1132    fn promote_item(&mut self, key: CacheKey, value: CacheValue, from_tier: usize) -> Result<()> {
1133        if from_tier == 0 {
1134            return Ok(()); // Already in fastest tier
1135        }
1136
1137        let target_tier = from_tier - 1;
1138
1139        // Remove from current tier
1140        self.tiers[from_tier].storage.remove(&key);
1141
1142        // Store in target tier
1143        let default_ttl = self.tiers[target_tier].config.default_ttl;
1144        self.tiers[target_tier]
1145            .storage
1146            .store(key, value, Some(default_ttl))?;
1147
1148        debug!(
1149            "Promoted cache item from tier {} to tier {}",
1150            from_tier, target_tier
1151        );
1152        Ok(())
1153    }
1154
1155    fn calculate_recency_score(&self, last_accessed: SystemTime) -> f64 {
1156        let now = SystemTime::now();
1157        let duration = now.duration_since(last_accessed).unwrap_or(Duration::ZERO);
1158        let hours = duration.as_secs_f64() / 3600.0;
1159
1160        // Exponential decay
1161        (-hours / 24.0).exp()
1162    }
1163
1164    fn check_and_evict(&mut self, tier_id: u32) -> Result<()> {
1165        let size_info = {
1166            let tier = &self.tiers[tier_id as usize];
1167            tier.storage.size_info()
1168        };
1169
1170        if size_info.used_bytes > self.tiers[tier_id as usize].config.max_size_bytes {
1171            let target_size =
1172                (self.tiers[tier_id as usize].config.max_size_bytes as f64 * 0.8) as u64; // Target 80% utilization
1173            let items = self.collect_tier_items(tier_id);
1174
1175            let keys_to_evict = {
1176                let tier = &mut self.tiers[tier_id as usize];
1177                tier.eviction_policy
1178                    .evict(size_info.used_bytes, target_size, &items)
1179            };
1180
1181            let tier = &mut self.tiers[tier_id as usize];
1182            for key in keys_to_evict {
1183                tier.storage.remove(&key);
1184                tier.stats.eviction_count += 1;
1185            }
1186        }
1187
1188        Ok(())
1189    }
1190
1191    fn collect_tier_items(&self, _tier_id: u32) -> Vec<CacheItem> {
1192        // This would collect all items from the tier for eviction analysis
1193        // Simplified implementation
1194        Vec::new()
1195    }
1196
1197    fn hash_key(&self, key: &CacheKey) -> u64 {
1198        use std::collections::hash_map::DefaultHasher;
1199        let mut hasher = DefaultHasher::new();
1200        key.hash(&mut hasher);
1201        hasher.finish()
1202    }
1203
1204    fn update_store_metrics(&mut self, tier_id: u32, _latency: Duration) {
1205        // Update tier-specific metrics
1206        if let Some(_tier_metrics) = self.metrics.tier_metrics.get_mut(&tier_id) {
1207            // Update tier metrics
1208        }
1209    }
1210
1211    fn update_hit_metrics(&mut self, _tier_id: u32, latency: Duration) {
1212        self.metrics.hit_count.fetch_add(1, Ordering::Relaxed);
1213        self.metrics.total_requests.fetch_add(1, Ordering::Relaxed);
1214
1215        // Update average hit latency (simplified)
1216        let latency_ns = latency.as_nanos() as u64;
1217        self.metrics
1218            .avg_hit_latency_ns
1219            .store(latency_ns, Ordering::Relaxed);
1220    }
1221
1222    fn update_miss_metrics(&mut self, latency: Duration) {
1223        self.metrics.miss_count.fetch_add(1, Ordering::Relaxed);
1224        self.metrics.total_requests.fetch_add(1, Ordering::Relaxed);
1225
1226        let latency_ns = latency.as_nanos() as u64;
1227        self.metrics
1228            .avg_miss_latency_ns
1229            .store(latency_ns, Ordering::Relaxed);
1230    }
1231
1232    fn calculate_memory_utilization(&self) -> f64 {
1233        let total_used: u64 = self
1234            .tiers
1235            .iter()
1236            .map(|tier| tier.storage.size_info().used_bytes)
1237            .sum();
1238        let total_capacity: u64 = self
1239            .tiers
1240            .iter()
1241            .map(|tier| tier.storage.size_info().total_capacity_bytes)
1242            .sum();
1243
1244        if total_capacity > 0 {
1245            total_used as f64 / total_capacity as f64
1246        } else {
1247            0.0
1248        }
1249    }
1250
1251    fn collect_tier_statistics(&self) -> Vec<TierStatistics> {
1252        self.tiers.iter().map(|tier| tier.stats.clone()).collect()
1253    }
1254
1255    fn estimate_optimization_impact(&self, improvement_score: f64) -> EstimatedImpact {
1256        EstimatedImpact {
1257            hit_rate_improvement: improvement_score * 0.1,
1258            latency_reduction: improvement_score * 0.05,
1259            memory_efficiency_gain: improvement_score * 0.08,
1260            cost_reduction: improvement_score * 0.03,
1261        }
1262    }
1263
1264    fn export_prometheus_metrics(&self) -> Result<String> {
1265        let mut metrics = String::new();
1266
1267        let hit_count = self.metrics.hit_count.load(Ordering::Relaxed);
1268        let miss_count = self.metrics.miss_count.load(Ordering::Relaxed);
1269        let total = hit_count + miss_count;
1270
1271        metrics.push_str(&format!("oxirs_cache_hits_total {hit_count}\n"));
1272        metrics.push_str(&format!("oxirs_cache_misses_total {miss_count}\n"));
1273        metrics.push_str(&format!("oxirs_cache_requests_total {total}\n"));
1274
1275        if total > 0 {
1276            let hit_rate = hit_count as f64 / total as f64;
1277            metrics.push_str(&format!("oxirs_cache_hit_rate {hit_rate:.4}\n"));
1278        }
1279
1280        metrics.push_str(&format!(
1281            "oxirs_cache_memory_utilization {:.4}\n",
1282            self.calculate_memory_utilization()
1283        ));
1284        metrics.push_str(&format!(
1285            "oxirs_cache_efficiency_score {:.4}\n",
1286            self.metrics.cache_efficiency_score
1287        ));
1288
1289        Ok(metrics)
1290    }
1291
1292    fn export_csv_metrics(&self) -> Result<String> {
1293        let mut csv = String::new();
1294        csv.push_str("metric,value,timestamp\n");
1295
1296        let now = SystemTime::now()
1297            .duration_since(SystemTime::UNIX_EPOCH)?
1298            .as_secs();
1299        let hit_count = self.metrics.hit_count.load(Ordering::Relaxed);
1300        let miss_count = self.metrics.miss_count.load(Ordering::Relaxed);
1301
1302        csv.push_str(&format!("hit_count,{hit_count},{now}\n"));
1303        csv.push_str(&format!("miss_count,{miss_count},{now}\n"));
1304        csv.push_str(&format!(
1305            "memory_utilization,{:.4},{}\n",
1306            self.calculate_memory_utilization(),
1307            now
1308        ));
1309
1310        Ok(csv)
1311    }
1312}
1313
1314// Supporting implementations (simplified for brevity)
1315
1316#[derive(Debug)]
1317pub struct MemoryStorage {
1318    data: HashMap<CacheKey, CacheValue>,
1319    max_size: u64,
1320    current_size: u64,
1321}
1322
1323impl MemoryStorage {
1324    pub fn new(max_size: u64) -> Self {
1325        Self {
1326            data: HashMap::new(),
1327            max_size,
1328            current_size: 0,
1329        }
1330    }
1331}
1332
1333impl CacheStorage for MemoryStorage {
1334    fn store(&mut self, key: CacheKey, value: CacheValue, _ttl: Option<Duration>) -> Result<()> {
1335        let size = value.metadata.size_bytes;
1336        if self.current_size + size <= self.max_size {
1337            self.data.insert(key, value);
1338            self.current_size += size;
1339        }
1340        Ok(())
1341    }
1342
1343    fn retrieve(&self, key: &CacheKey) -> Option<CacheValue> {
1344        self.data.get(key).cloned()
1345    }
1346
1347    fn remove(&mut self, key: &CacheKey) -> bool {
1348        if let Some(value) = self.data.remove(key) {
1349            self.current_size -= value.metadata.size_bytes;
1350            true
1351        } else {
1352            false
1353        }
1354    }
1355
1356    fn size_info(&self) -> CacheSizeInfo {
1357        CacheSizeInfo {
1358            used_bytes: self.current_size,
1359            available_bytes: self.max_size - self.current_size,
1360            total_capacity_bytes: self.max_size,
1361            item_count: self.data.len() as u64,
1362        }
1363    }
1364
1365    fn clear(&mut self) {
1366        self.data.clear();
1367        self.current_size = 0;
1368    }
1369
1370    fn statistics(&self) -> StorageStatistics {
1371        StorageStatistics::default()
1372    }
1373}
1374
1375// Additional implementations would go here...
1376// (CompressedStorage, PersistentStorage, EvictionPolicies, MLModels, etc.)
1377
1378#[derive(Debug, Clone, Serialize, Deserialize)]
1379pub struct CacheStatistics {
1380    pub hit_rate: f64,
1381    pub miss_rate: f64,
1382    pub total_requests: u64,
1383    pub avg_hit_latency_ns: u64,
1384    pub avg_miss_latency_ns: u64,
1385    pub cache_efficiency: f64,
1386    pub memory_utilization: f64,
1387    pub tier_statistics: Vec<TierStatistics>,
1388    pub prefetch_statistics: PrefetchStatistics,
1389    pub optimization_statistics: OptimizationStatistics,
1390}
1391
1392#[derive(Debug, Clone, Serialize, Deserialize)]
1393pub struct PrefetchStatistics {
1394    pub successful_prefetches: u64,
1395    pub failed_prefetches: u64,
1396    pub prefetch_hit_rate: f64,
1397    pub avg_prediction_accuracy: f64,
1398}
1399
1400#[derive(Debug, Clone, Serialize, Deserialize)]
1401pub struct OptimizationStatistics {
1402    pub total_optimizations: u64,
1403    pub successful_optimizations: u64,
1404    pub avg_improvement_score: f64,
1405    pub last_optimization: Option<SystemTime>,
1406}
1407
1408#[derive(Debug, Clone, Serialize, Deserialize)]
1409pub struct CachePerformanceData {
1410    pub metrics: CachePerformanceMetrics,
1411    pub statistics: CacheStatistics,
1412    pub configuration: CacheConfiguration,
1413    pub access_patterns: String,      // JSON encoded patterns
1414    pub optimization_history: String, // JSON encoded history
1415}
1416
1417#[derive(Debug, Clone, Copy)]
1418pub enum ExportFormat {
1419    Json,
1420    Prometheus,
1421    Csv,
1422}
1423
1424// Placeholder implementations for complex components
1425impl Default for AccessPatternAnalyzer {
1426    fn default() -> Self {
1427        Self::new()
1428    }
1429}
1430
1431impl AccessPatternAnalyzer {
1432    pub fn new() -> Self {
1433        Self {
1434            access_history: VecDeque::new(),
1435            seasonal_detector: SeasonalPatternDetector::new(),
1436            query_clustering: QueryClusteringEngine::new(),
1437            temporal_predictor: TemporalAccessPredictor::new(),
1438        }
1439    }
1440
1441    pub fn record_access(&mut self, _event: AccessEvent) {
1442        // Implementation would analyze access patterns
1443    }
1444
1445    pub fn export_patterns(&self) -> String {
1446        "{}".to_string() // Simplified
1447    }
1448}
1449
1450// Additional placeholder implementations...
1451impl Default for SeasonalPatternDetector {
1452    fn default() -> Self {
1453        Self::new()
1454    }
1455}
1456
1457impl SeasonalPatternDetector {
1458    pub fn new() -> Self {
1459        Self {
1460            hourly_patterns: [1.0; 24],
1461            daily_patterns: [1.0; 7],
1462            monthly_patterns: [1.0; 31],
1463            pattern_confidence: 0.0,
1464        }
1465    }
1466}
1467
1468impl Default for QueryClusteringEngine {
1469    fn default() -> Self {
1470        Self::new()
1471    }
1472}
1473
1474impl QueryClusteringEngine {
1475    pub fn new() -> Self {
1476        Self {
1477            clusters: Vec::new(),
1478            cluster_assignments: HashMap::new(),
1479            cluster_centroids: Vec::new(),
1480        }
1481    }
1482}
1483
1484impl Default for TemporalAccessPredictor {
1485    fn default() -> Self {
1486        Self::new()
1487    }
1488}
1489
1490impl TemporalAccessPredictor {
1491    pub fn new() -> Self {
1492        Self {
1493            time_series_models: HashMap::new(),
1494            global_trend_model: GlobalTrendModel {
1495                hourly_multipliers: [1.0; 24],
1496                daily_multipliers: [1.0; 7],
1497                base_rate: 1.0,
1498            },
1499            prediction_horizon: Duration::from_secs(3600),
1500        }
1501    }
1502}
1503
1504impl Default for PredictivePrefetcher {
1505    fn default() -> Self {
1506        Self::new()
1507    }
1508}
1509
1510impl PredictivePrefetcher {
1511    pub fn new() -> Self {
1512        Self {
1513            prefetch_queue: VecDeque::new(),
1514            models: PrefetchModels::new(),
1515            strategies: vec![
1516                PrefetchStrategy::SequentialPattern,
1517                PrefetchStrategy::SimilarityBased,
1518                PrefetchStrategy::MachineLearning,
1519            ],
1520            performance: PrefetchPerformance {
1521                successful_prefetches: 0,
1522                failed_prefetches: 0,
1523                cache_space_saved: 0,
1524                avg_prediction_accuracy: 0.0,
1525            },
1526        }
1527    }
1528
1529    pub fn trigger_prefetch_analysis(&mut self, _key: &CacheKey, _value: &CacheValue) {
1530        // Implementation would analyze prefetch opportunities
1531    }
1532
1533    pub fn get_statistics(&self) -> PrefetchStatistics {
1534        PrefetchStatistics {
1535            successful_prefetches: self.performance.successful_prefetches,
1536            failed_prefetches: self.performance.failed_prefetches,
1537            prefetch_hit_rate: if self.performance.successful_prefetches
1538                + self.performance.failed_prefetches
1539                > 0
1540            {
1541                self.performance.successful_prefetches as f64
1542                    / (self.performance.successful_prefetches + self.performance.failed_prefetches)
1543                        as f64
1544            } else {
1545                0.0
1546            },
1547            avg_prediction_accuracy: self.performance.avg_prediction_accuracy,
1548        }
1549    }
1550}
1551
1552impl Default for PrefetchModels {
1553    fn default() -> Self {
1554        Self::new()
1555    }
1556}
1557
1558impl PrefetchModels {
1559    pub fn new() -> Self {
1560        Self {
1561            similarity_model: SimilarityPrefetchModel {
1562                similarity_threshold: 0.8,
1563                prefetch_depth: 5,
1564                confidence_weights: vec![1.0, 0.8, 0.6, 0.4, 0.2],
1565            },
1566            sequence_model: SequencePrefetchModel {
1567                sequence_patterns: HashMap::new(),
1568                max_sequence_length: 5,
1569                min_confidence: 0.7,
1570            },
1571            user_behavior_model: UserBehaviorModel {
1572                user_profiles: HashMap::new(),
1573                default_profile: UserProfile {
1574                    typical_query_patterns: Vec::new(),
1575                    access_frequency: 1.0,
1576                    preference_weights: HashMap::new(),
1577                },
1578            },
1579        }
1580    }
1581}
1582
1583impl Default for CacheOptimizer {
1584    fn default() -> Self {
1585        Self::new()
1586    }
1587}
1588
1589impl CacheOptimizer {
1590    pub fn new() -> Self {
1591        Self {
1592            algorithms: vec![], // Would contain actual optimization algorithms
1593            optimization_history: Vec::new(),
1594            current_state: OptimizationState {
1595                last_optimization: SystemTime::now(),
1596                optimization_frequency: Duration::from_secs(3600),
1597                pending_optimizations: Vec::new(),
1598                optimization_backlog: 0,
1599            },
1600            improvements: ImprovementTracker {
1601                baseline_metrics: CachePerformanceMetrics::default(),
1602                current_improvement: 0.0,
1603                improvement_history: VecDeque::new(),
1604                regression_detection: RegressionDetector {
1605                    regression_threshold: -0.05,
1606                    detection_window: Duration::from_secs(1800),
1607                    recent_scores: VecDeque::new(),
1608                },
1609            },
1610        }
1611    }
1612
1613    pub fn record_optimization_event(&mut self, event: OptimizationEvent) {
1614        self.optimization_history.push(event);
1615    }
1616
1617    pub fn get_statistics(&self) -> OptimizationStatistics {
1618        OptimizationStatistics {
1619            total_optimizations: self.optimization_history.len() as u64,
1620            successful_optimizations: self
1621                .optimization_history
1622                .iter()
1623                .filter(|e| !e.changes.is_empty())
1624                .count() as u64,
1625            avg_improvement_score: self.improvements.current_improvement,
1626            last_optimization: self.optimization_history.last().map(|e| e.timestamp),
1627        }
1628    }
1629
1630    pub fn export_history(&self) -> String {
1631        "{}".to_string() // Simplified
1632    }
1633}
1634
1635impl MLModels {
1636    pub fn new() -> Result<Self> {
1637        Ok(Self {
1638            access_predictor: AccessPredictionModel {
1639                model_weights: vec![1.0, 0.8, 0.6, 0.4],
1640                feature_extractors: vec![
1641                    FeatureExtractor::AccessFrequency,
1642                    FeatureExtractor::RecencyScore,
1643                    FeatureExtractor::SizeMetric,
1644                    FeatureExtractor::ComputationCost,
1645                ],
1646                prediction_accuracy: 0.75,
1647            },
1648            hit_probability_model: HitProbabilityModel {
1649                probability_matrix: HashMap::new(),
1650                model_confidence: 0.8,
1651                last_update: SystemTime::now(),
1652            },
1653            tier_placement_model: TierPlacementModel {
1654                placement_scores: HashMap::new(),
1655                optimization_objective: OptimizationObjective::BalancedPerformance,
1656            },
1657            eviction_timing_model: EvictionTimingModel {
1658                survival_functions: HashMap::new(),
1659                hazard_rates: HashMap::new(),
1660            },
1661        })
1662    }
1663
1664    pub fn update_with_store_event(&mut self, _key: &CacheKey, _value: &CacheValue, _tier: u32) {
1665        // Implementation would update ML models with new data
1666    }
1667}
1668
1669impl TierPlacementModel {
1670    pub fn predict_optimal_tier(&self, _key: &CacheKey, _value: &CacheValue) -> u32 {
1671        // Simplified: for now just return tier 0 (fastest)
1672        0
1673    }
1674}
1675
1676impl Default for AccessTracker {
1677    fn default() -> Self {
1678        Self::new()
1679    }
1680}
1681
1682impl AccessTracker {
1683    pub fn new() -> Self {
1684        Self {
1685            access_counts: HashMap::new(),
1686            access_times: HashMap::new(),
1687            hot_keys: BTreeMap::new(),
1688        }
1689    }
1690
1691    pub fn on_access(&mut self, key: &CacheKey, _access_time: Instant) {
1692        *self.access_counts.entry(key.clone()).or_insert(0) += 1;
1693        self.access_times
1694            .entry(key.clone())
1695            .or_default()
1696            .push_back(SystemTime::now());
1697    }
1698
1699    pub fn on_store(&mut self, key: &CacheKey) {
1700        // Record that an item was stored
1701        self.access_times.entry(key.clone()).or_default();
1702    }
1703
1704    pub fn on_remove(&mut self, key: &CacheKey) {
1705        self.access_counts.remove(key);
1706        self.access_times.remove(key);
1707    }
1708}
1709
1710// Simplified eviction policy implementations
1711#[derive(Debug)]
1712pub struct LRUEvictionPolicy {
1713    access_order: VecDeque<CacheKey>,
1714}
1715
1716impl Default for LRUEvictionPolicy {
1717    fn default() -> Self {
1718        Self::new()
1719    }
1720}
1721
1722impl LRUEvictionPolicy {
1723    pub fn new() -> Self {
1724        Self {
1725            access_order: VecDeque::new(),
1726        }
1727    }
1728}
1729
1730impl EvictionPolicy for LRUEvictionPolicy {
1731    fn evict(
1732        &mut self,
1733        current_size: u64,
1734        target_size: u64,
1735        _items: &[CacheItem],
1736    ) -> Vec<CacheKey> {
1737        let bytes_to_evict = current_size.saturating_sub(target_size);
1738        let items_to_evict = (bytes_to_evict / 1024).max(1) as usize; // Estimate items to evict
1739
1740        self.access_order
1741            .iter()
1742            .take(items_to_evict)
1743            .cloned()
1744            .collect()
1745    }
1746
1747    fn on_access(&mut self, key: &CacheKey, _access_time: Instant) {
1748        // Move to back (most recently used)
1749        if let Some(pos) = self.access_order.iter().position(|k| k == key) {
1750            let key = self.access_order.remove(pos).unwrap();
1751            self.access_order.push_back(key);
1752        }
1753    }
1754
1755    fn on_store(&mut self, key: &CacheKey, _size: u64, _store_time: Instant) {
1756        self.access_order.push_back(key.clone());
1757    }
1758
1759    fn statistics(&self) -> EvictionStatistics {
1760        EvictionStatistics::default()
1761    }
1762}
1763
1764#[derive(Debug)]
1765pub struct LFUEvictionPolicy {
1766    frequency_map: HashMap<CacheKey, u64>,
1767}
1768
1769impl Default for LFUEvictionPolicy {
1770    fn default() -> Self {
1771        Self::new()
1772    }
1773}
1774
1775impl LFUEvictionPolicy {
1776    pub fn new() -> Self {
1777        Self {
1778            frequency_map: HashMap::new(),
1779        }
1780    }
1781}
1782
1783impl EvictionPolicy for LFUEvictionPolicy {
1784    fn evict(
1785        &mut self,
1786        current_size: u64,
1787        target_size: u64,
1788        _items: &[CacheItem],
1789    ) -> Vec<CacheKey> {
1790        let bytes_to_evict = current_size.saturating_sub(target_size);
1791        let items_to_evict = (bytes_to_evict / 1024).max(1) as usize;
1792
1793        let mut frequency_pairs: Vec<_> = self.frequency_map.iter().collect();
1794        frequency_pairs.sort_by_key(|&(_, &freq)| freq);
1795
1796        frequency_pairs
1797            .iter()
1798            .take(items_to_evict)
1799            .map(|(key, _)| (*key).clone())
1800            .collect()
1801    }
1802
1803    fn on_access(&mut self, key: &CacheKey, _access_time: Instant) {
1804        *self.frequency_map.entry(key.clone()).or_insert(0) += 1;
1805    }
1806
1807    fn on_store(&mut self, key: &CacheKey, _size: u64, _store_time: Instant) {
1808        self.frequency_map.insert(key.clone(), 0);
1809    }
1810
1811    fn statistics(&self) -> EvictionStatistics {
1812        EvictionStatistics::default()
1813    }
1814}
1815
1816#[derive(Debug)]
1817pub struct AdaptiveEvictionPolicy {
1818    lru_component: LRUEvictionPolicy,
1819    lfu_component: LFUEvictionPolicy,
1820    lru_weight: f64,
1821}
1822
1823impl Default for AdaptiveEvictionPolicy {
1824    fn default() -> Self {
1825        Self::new()
1826    }
1827}
1828
1829impl AdaptiveEvictionPolicy {
1830    pub fn new() -> Self {
1831        Self {
1832            lru_component: LRUEvictionPolicy::new(),
1833            lfu_component: LFUEvictionPolicy::new(),
1834            lru_weight: 0.5,
1835        }
1836    }
1837}
1838
1839impl EvictionPolicy for AdaptiveEvictionPolicy {
1840    fn evict(&mut self, current_size: u64, target_size: u64, items: &[CacheItem]) -> Vec<CacheKey> {
1841        // Combine LRU and LFU decisions
1842        let lru_candidates = self.lru_component.evict(current_size, target_size, items);
1843        let lfu_candidates = self.lfu_component.evict(current_size, target_size, items);
1844
1845        // For simplicity, interleave the results based on weights
1846        let lru_count = (lru_candidates.len() as f64 * self.lru_weight) as usize;
1847        let mut result = Vec::new();
1848        result.extend(lru_candidates.into_iter().take(lru_count));
1849        result.extend(lfu_candidates.into_iter().take(items.len() - lru_count));
1850
1851        result
1852    }
1853
1854    fn on_access(&mut self, key: &CacheKey, access_time: Instant) {
1855        self.lru_component.on_access(key, access_time);
1856        self.lfu_component.on_access(key, access_time);
1857    }
1858
1859    fn on_store(&mut self, key: &CacheKey, size: u64, store_time: Instant) {
1860        self.lru_component.on_store(key, size, store_time);
1861        self.lfu_component.on_store(key, size, store_time);
1862    }
1863
1864    fn statistics(&self) -> EvictionStatistics {
1865        EvictionStatistics::default()
1866    }
1867}
1868
1869// Placeholder storage implementations
1870#[derive(Debug)]
1871pub struct CompressedStorage {
1872    inner: MemoryStorage,
1873}
1874
1875impl CompressedStorage {
1876    pub fn new(max_size: u64) -> Self {
1877        Self {
1878            inner: MemoryStorage::new(max_size),
1879        }
1880    }
1881}
1882
1883impl CacheStorage for CompressedStorage {
1884    fn store(&mut self, key: CacheKey, value: CacheValue, ttl: Option<Duration>) -> Result<()> {
1885        // In a real implementation, this would compress the value
1886        self.inner.store(key, value, ttl)
1887    }
1888
1889    fn retrieve(&self, key: &CacheKey) -> Option<CacheValue> {
1890        // In a real implementation, this would decompress the value
1891        self.inner.retrieve(key)
1892    }
1893
1894    fn remove(&mut self, key: &CacheKey) -> bool {
1895        self.inner.remove(key)
1896    }
1897
1898    fn size_info(&self) -> CacheSizeInfo {
1899        self.inner.size_info()
1900    }
1901
1902    fn clear(&mut self) {
1903        self.inner.clear()
1904    }
1905
1906    fn statistics(&self) -> StorageStatistics {
1907        self.inner.statistics()
1908    }
1909}
1910
1911#[derive(Debug)]
1912pub struct PersistentStorage {
1913    inner: MemoryStorage,
1914}
1915
1916impl PersistentStorage {
1917    pub fn new(max_size: u64) -> Result<Self> {
1918        Ok(Self {
1919            inner: MemoryStorage::new(max_size),
1920        })
1921    }
1922}
1923
1924impl CacheStorage for PersistentStorage {
1925    fn store(&mut self, key: CacheKey, value: CacheValue, ttl: Option<Duration>) -> Result<()> {
1926        // In a real implementation, this would persist to disk
1927        self.inner.store(key, value, ttl)
1928    }
1929
1930    fn retrieve(&self, key: &CacheKey) -> Option<CacheValue> {
1931        // In a real implementation, this would load from disk if not in memory
1932        self.inner.retrieve(key)
1933    }
1934
1935    fn remove(&mut self, key: &CacheKey) -> bool {
1936        self.inner.remove(key)
1937    }
1938
1939    fn size_info(&self) -> CacheSizeInfo {
1940        self.inner.size_info()
1941    }
1942
1943    fn clear(&mut self) {
1944        self.inner.clear()
1945    }
1946
1947    fn statistics(&self) -> StorageStatistics {
1948        self.inner.statistics()
1949    }
1950}
1951
1952impl Default for CacheConfiguration {
1953    fn default() -> Self {
1954        Self {
1955            max_total_size_bytes: 1024 * 1024 * 1024, // 1GB
1956            num_tiers: 3,
1957            tier_size_ratios: vec![0.5, 0.3, 0.2], // 50%, 30%, 20%
1958            default_ttl_seconds: 3600,             // 1 hour
1959            optimization_interval_seconds: 300,    // 5 minutes
1960            ml_update_interval_seconds: 900,       // 15 minutes
1961            enable_prefetching: true,
1962            enable_adaptive_optimization: true,
1963            monitoring_config: MonitoringConfiguration {
1964                enable_detailed_metrics: true,
1965                metrics_retention_days: 7,
1966                alert_thresholds: AlertThresholds {
1967                    min_hit_rate: 0.8,
1968                    max_latency_p99_ms: 100.0,
1969                    max_memory_utilization: 0.9,
1970                    min_cache_efficiency: 0.7,
1971                },
1972                export_prometheus: true,
1973            },
1974        }
1975    }
1976}
1977
1978#[cfg(test)]
1979mod tests {
1980    use super::*;
1981
1982    #[test]
1983    fn test_adaptive_cache_creation() {
1984        let config = CacheConfiguration::default();
1985        let cache = AdaptiveIntelligentCache::new(config).unwrap();
1986        assert_eq!(cache.tiers.len(), 3);
1987    }
1988
1989    #[test]
1990    fn test_cache_store_and_retrieve() {
1991        let config = CacheConfiguration::default();
1992        let mut cache = AdaptiveIntelligentCache::new(config).unwrap();
1993
1994        let key = CacheKey {
1995            query_vector: vec![1, 2, 3, 4],
1996            similarity_metric: SimilarityMetric::Cosine,
1997            parameters: HashMap::new(),
1998        };
1999
2000        let value = CacheValue {
2001            results: vec![("vec1".to_string(), 0.95)],
2002            metadata: CacheMetadata {
2003                size_bytes: 1024,
2004                computation_cost: 0.5,
2005                quality_score: 0.9,
2006                staleness_factor: 0.1,
2007            },
2008            created_at: SystemTime::now(),
2009            last_accessed: SystemTime::now(),
2010            access_count: 1,
2011        };
2012
2013        cache.store(key.clone(), value.clone()).unwrap();
2014        let retrieved = cache.retrieve(&key);
2015
2016        assert!(retrieved.is_some());
2017        let retrieved_value = retrieved.unwrap();
2018        assert_eq!(retrieved_value.results, value.results);
2019    }
2020
2021    #[test]
2022    fn test_cache_statistics() {
2023        let config = CacheConfiguration::default();
2024        let cache = AdaptiveIntelligentCache::new(config).unwrap();
2025        let stats = cache.get_statistics();
2026
2027        assert_eq!(stats.total_requests, 0);
2028        assert_eq!(stats.hit_rate, 0.0);
2029    }
2030
2031    #[test]
2032    fn test_cache_optimization() {
2033        let config = CacheConfiguration::default();
2034        let mut cache = AdaptiveIntelligentCache::new(config).unwrap();
2035
2036        let result = cache.optimize().unwrap();
2037        assert!(result.improvement_score >= 0.0);
2038    }
2039
2040    #[test]
2041    fn test_performance_data_export() {
2042        let config = CacheConfiguration::default();
2043        let cache = AdaptiveIntelligentCache::new(config).unwrap();
2044
2045        let json_export = cache.export_performance_data(ExportFormat::Json).unwrap();
2046        assert!(!json_export.is_empty());
2047
2048        let prometheus_export = cache
2049            .export_performance_data(ExportFormat::Prometheus)
2050            .unwrap();
2051        assert!(!prometheus_export.is_empty());
2052    }
2053
2054    #[test]
2055    fn test_eviction_policies() {
2056        let mut lru = LRUEvictionPolicy::new();
2057        let key = CacheKey {
2058            query_vector: vec![1, 2, 3],
2059            similarity_metric: SimilarityMetric::Cosine,
2060            parameters: HashMap::new(),
2061        };
2062
2063        lru.on_store(&key, 1024, Instant::now());
2064        lru.on_access(&key, Instant::now());
2065
2066        let items = vec![];
2067        let evicted = lru.evict(2048, 1024, &items);
2068        assert!(!evicted.is_empty());
2069    }
2070}