1#![allow(dead_code)]
2use anyhow::{anyhow, Result};
15use serde::{Deserialize, Serialize};
16use std::collections::{HashMap, VecDeque};
17use std::sync::Arc;
18use std::time::{Duration, Instant};
19use tokio::sync::RwLock;
20use tracing::{debug, info, warn};
21
22#[derive(Debug, Clone, Serialize, Deserialize)]
28pub struct AdvancedOptimizerConfig {
29 pub enable_adaptive_optimization: bool,
31 pub enable_ml_cardinality: bool,
33 pub enable_plan_caching: bool,
35 pub enable_hardware_awareness: bool,
37 pub enable_parallel_planning: bool,
39 pub plan_cache_size: usize,
41 pub cardinality_training_interval: Duration,
43 pub statistics_window_size: usize,
45 pub plan_similarity_threshold: f64,
47 pub enable_genetic_optimization: bool,
49 pub genetic_population_size: usize,
51 pub genetic_generations: usize,
53}
54
55impl Default for AdvancedOptimizerConfig {
56 fn default() -> Self {
57 Self {
58 enable_adaptive_optimization: true,
59 enable_ml_cardinality: true,
60 enable_plan_caching: true,
61 enable_hardware_awareness: true,
62 enable_parallel_planning: true,
63 plan_cache_size: 1000,
64 cardinality_training_interval: Duration::from_secs(3600),
65 statistics_window_size: 10000,
66 plan_similarity_threshold: 0.85,
67 enable_genetic_optimization: true,
68 genetic_population_size: 50,
69 genetic_generations: 100,
70 }
71 }
72}
73
74pub struct AdvancedQueryOptimizer {
76 config: AdvancedOptimizerConfig,
77 plan_cache: Arc<RwLock<PlanCache>>,
79 cardinality_estimator: Arc<RwLock<CardinalityEstimator>>,
81 stats_collector: Arc<RwLock<RuntimeStatsCollector>>,
83 hardware_profile: Arc<HardwareProfile>,
85}
86
87impl AdvancedQueryOptimizer {
88 pub fn new(config: AdvancedOptimizerConfig) -> Self {
90 let hardware_profile = Arc::new(HardwareProfile::detect());
91
92 Self {
93 config: config.clone(),
94 plan_cache: Arc::new(RwLock::new(PlanCache::new(config.plan_cache_size))),
95 cardinality_estimator: Arc::new(RwLock::new(CardinalityEstimator::new())),
96 stats_collector: Arc::new(RwLock::new(RuntimeStatsCollector::new(
97 config.statistics_window_size,
98 ))),
99 hardware_profile,
100 }
101 }
102
103 pub async fn optimize_query(&self, query: &QueryPlan) -> Result<OptimizedPlan> {
105 let start = Instant::now();
106
107 if self.config.enable_plan_caching {
109 if let Some(cached_plan) = self
110 .plan_cache
111 .read()
112 .await
113 .find_similar_plan(query, self.config.plan_similarity_threshold)
114 {
115 debug!("Found similar cached plan, reusing optimization");
116 return Ok(cached_plan);
117 }
118 }
119
120 let candidates = if self.config.enable_parallel_planning {
122 self.generate_candidate_plans_parallel(query).await?
123 } else {
124 self.generate_candidate_plans_sequential(query).await?
125 };
126
127 let candidates_with_cardinality = if self.config.enable_ml_cardinality {
129 self.estimate_cardinalities(candidates).await?
130 } else {
131 candidates
132 };
133
134 let costed_plans = if self.config.enable_hardware_awareness {
136 self.estimate_costs_hardware_aware(&candidates_with_cardinality)
137 .await?
138 } else {
139 self.estimate_costs_basic(&candidates_with_cardinality)
140 .await?
141 };
142
143 let best_plan = if self.config.enable_genetic_optimization && costed_plans.len() > 10 {
145 self.select_best_plan_genetic(&costed_plans).await?
146 } else {
147 self.select_best_plan_simple(&costed_plans)?
148 };
149
150 if self.config.enable_plan_caching {
152 self.plan_cache
153 .write()
154 .await
155 .insert(query.clone(), best_plan.clone());
156 }
157
158 let elapsed = start.elapsed();
159 info!("Query optimization completed in {:?}", elapsed);
160
161 Ok(best_plan)
162 }
163
164 pub async fn execute_adaptive(
166 &self,
167 _query: &QueryPlan,
168 initial_plan: &OptimizedPlan,
169 ) -> Result<ExecutionResult> {
170 if !self.config.enable_adaptive_optimization {
171 return self.execute_static(initial_plan).await;
172 }
173
174 let start = Instant::now();
175 let current_plan = initial_plan.clone();
176 let mut results = Vec::new();
177 let adjustments = 0;
178
179 let step_count = current_plan.steps.len();
181 for step_idx in 0..step_count {
182 let step = ¤t_plan.steps[step_idx];
183 let step_start = Instant::now();
184
185 let step_result = self.execute_step(step).await?;
187 results.push(step_result.clone());
188
189 let step_elapsed = step_start.elapsed();
190
191 self.stats_collector
193 .write()
194 .await
195 .record_execution(step, &step_result, step_elapsed);
196
197 }
200
201 let total_elapsed = start.elapsed();
202
203 Ok(ExecutionResult {
204 results,
205 execution_time: total_elapsed,
206 plan_adjustments: adjustments,
207 final_plan: current_plan,
208 })
209 }
210
211 async fn generate_candidate_plans_parallel(&self, query: &QueryPlan) -> Result<Vec<QueryPlan>> {
213 debug!("Generating candidate plans in parallel");
214
215 let mut tasks = Vec::new();
217
218 let query1 = query.clone();
220 tasks.push(tokio::spawn(async move {
221 Self::generate_left_deep_plan(&query1)
222 }));
223
224 let query2 = query.clone();
226 tasks.push(tokio::spawn(async move {
227 Self::generate_right_deep_plan(&query2)
228 }));
229
230 let query3 = query.clone();
232 tasks.push(tokio::spawn(
233 async move { Self::generate_bushy_plan(&query3) },
234 ));
235
236 let query4 = query.clone();
238 tasks.push(tokio::spawn(async move {
239 Self::generate_service_first_plan(&query4)
240 }));
241
242 let mut candidates = Vec::new();
244 for task in tasks {
245 match task.await {
246 Ok(Ok(plan)) => candidates.push(plan),
247 Ok(Err(e)) => warn!("Candidate generation failed: {}", e),
248 Err(e) => warn!("Task failed: {}", e),
249 }
250 }
251
252 Ok(candidates)
253 }
254
255 async fn generate_candidate_plans_sequential(
257 &self,
258 query: &QueryPlan,
259 ) -> Result<Vec<QueryPlan>> {
260 let candidates = vec![
261 Self::generate_left_deep_plan(query)?,
262 Self::generate_right_deep_plan(query)?,
263 Self::generate_bushy_plan(query)?,
264 Self::generate_service_first_plan(query)?,
265 ];
266
267 Ok(candidates)
268 }
269
270 fn generate_left_deep_plan(query: &QueryPlan) -> Result<QueryPlan> {
272 let mut plan = query.clone();
274 plan.plan_type = PlanType::LeftDeep;
275 Ok(plan)
276 }
277
278 fn generate_right_deep_plan(query: &QueryPlan) -> Result<QueryPlan> {
280 let mut plan = query.clone();
281 plan.plan_type = PlanType::RightDeep;
282 Ok(plan)
283 }
284
285 fn generate_bushy_plan(query: &QueryPlan) -> Result<QueryPlan> {
287 let mut plan = query.clone();
288 plan.plan_type = PlanType::Bushy;
289 Ok(plan)
290 }
291
292 fn generate_service_first_plan(query: &QueryPlan) -> Result<QueryPlan> {
294 let mut plan = query.clone();
295 plan.plan_type = PlanType::ServiceFirst;
296 Ok(plan)
297 }
298
299 async fn estimate_cardinalities(&self, plans: Vec<QueryPlan>) -> Result<Vec<QueryPlan>> {
301 let estimator = self.cardinality_estimator.read().await;
302
303 let mut plans_with_cardinality = Vec::new();
304 for mut plan in plans {
305 plan.estimated_cardinality = estimator.estimate(&plan)?;
306 plans_with_cardinality.push(plan);
307 }
308
309 Ok(plans_with_cardinality)
310 }
311
312 async fn estimate_costs_hardware_aware(&self, plans: &[QueryPlan]) -> Result<Vec<CostedPlan>> {
314 let mut costed_plans = Vec::new();
315
316 for plan in plans {
317 let cpu_cost = self.hardware_profile.estimate_cpu_cost(plan);
318 let memory_cost = self.hardware_profile.estimate_memory_cost(plan);
319 let network_cost = self.hardware_profile.estimate_network_cost(plan);
320
321 let total_cost = cpu_cost + memory_cost + network_cost;
322
323 costed_plans.push(CostedPlan {
324 plan: plan.clone(),
325 total_cost,
326 cpu_cost,
327 memory_cost,
328 network_cost,
329 });
330 }
331
332 Ok(costed_plans)
333 }
334
335 async fn estimate_costs_basic(&self, plans: &[QueryPlan]) -> Result<Vec<CostedPlan>> {
337 let mut costed_plans = Vec::new();
338
339 for plan in plans {
340 let total_cost = plan.estimated_cardinality as f64 * plan.join_count as f64;
342
343 costed_plans.push(CostedPlan {
344 plan: plan.clone(),
345 total_cost,
346 cpu_cost: total_cost * 0.4,
347 memory_cost: total_cost * 0.3,
348 network_cost: total_cost * 0.3,
349 });
350 }
351
352 Ok(costed_plans)
353 }
354
355 async fn select_best_plan_genetic(&self, plans: &[CostedPlan]) -> Result<OptimizedPlan> {
357 debug!("Selecting best plan using simplified optimization");
358
359 self.select_best_plan_simple(plans)
362 }
363
364 fn select_best_plan_simple(&self, plans: &[CostedPlan]) -> Result<OptimizedPlan> {
366 let best = plans
367 .iter()
368 .min_by(|a, b| a.total_cost.partial_cmp(&b.total_cost).unwrap())
369 .ok_or_else(|| anyhow!("No plans available"))?;
370
371 Ok(OptimizedPlan {
372 original_plan: best.plan.clone(),
373 estimated_cost: best.total_cost,
374 steps: vec![],
375 optimization_method: "min_cost".to_string(),
376 })
377 }
378
379 async fn execute_static(&self, plan: &OptimizedPlan) -> Result<ExecutionResult> {
381 let start = Instant::now();
382 let mut results = Vec::new();
383
384 for step in &plan.steps {
385 let step_result = self.execute_step(step).await?;
386 results.push(step_result);
387 }
388
389 Ok(ExecutionResult {
390 results,
391 execution_time: start.elapsed(),
392 plan_adjustments: 0,
393 final_plan: plan.clone(),
394 })
395 }
396
397 async fn execute_step(&self, _step: &ExecutionStep) -> Result<StepResult> {
399 Ok(StepResult {
401 rows_returned: 0,
402 execution_time: Duration::from_millis(10),
403 })
404 }
405
406 async fn should_adjust_plan(
408 &self,
409 _current_plan: &OptimizedPlan,
410 _step_idx: usize,
411 _step_result: &StepResult,
412 _step_elapsed: Duration,
413 ) -> Result<Option<OptimizedPlan>> {
414 Ok(None)
419 }
420
421 pub async fn train_cardinality_estimator(&self) -> Result<()> {
423 let stats = self.stats_collector.read().await;
424 let training_data = stats.get_training_data();
425
426 let mut estimator = self.cardinality_estimator.write().await;
427 estimator.train(training_data)?;
428
429 info!("Cardinality estimator trained successfully");
430 Ok(())
431 }
432}
433
434#[derive(Debug, Clone, Serialize, Deserialize)]
436pub struct QueryPlan {
437 pub id: String,
438 pub query_text: String,
439 pub plan_type: PlanType,
440 pub join_count: usize,
441 pub estimated_cardinality: u64,
442}
443
444#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
446pub enum PlanType {
447 LeftDeep,
448 RightDeep,
449 Bushy,
450 ServiceFirst,
451}
452
453#[derive(Debug, Clone)]
455pub struct CostedPlan {
456 pub plan: QueryPlan,
457 pub total_cost: f64,
458 pub cpu_cost: f64,
459 pub memory_cost: f64,
460 pub network_cost: f64,
461}
462
463#[derive(Debug, Clone, Serialize, Deserialize)]
465pub struct OptimizedPlan {
466 pub original_plan: QueryPlan,
467 pub estimated_cost: f64,
468 pub steps: Vec<ExecutionStep>,
469 pub optimization_method: String,
470}
471
472#[derive(Debug, Clone, Serialize, Deserialize)]
474pub struct ExecutionStep {
475 pub step_id: usize,
476 pub operation: String,
477}
478
479#[derive(Debug, Clone)]
481pub struct StepResult {
482 pub rows_returned: usize,
483 pub execution_time: Duration,
484}
485
486#[derive(Debug, Clone)]
488pub struct ExecutionResult {
489 pub results: Vec<StepResult>,
490 pub execution_time: Duration,
491 pub plan_adjustments: usize,
492 pub final_plan: OptimizedPlan,
493}
494
495#[derive(Debug)]
497struct PlanCache {
498 cache: HashMap<String, OptimizedPlan>,
499 max_size: usize,
500 access_order: VecDeque<String>,
501}
502
503impl PlanCache {
504 fn new(max_size: usize) -> Self {
505 Self {
506 cache: HashMap::new(),
507 max_size,
508 access_order: VecDeque::new(),
509 }
510 }
511
512 fn insert(&mut self, query: QueryPlan, plan: OptimizedPlan) {
513 let key = query.id.clone();
514
515 if self.cache.len() >= self.max_size {
517 if let Some(oldest_key) = self.access_order.pop_front() {
518 self.cache.remove(&oldest_key);
519 }
520 }
521
522 self.cache.insert(key.clone(), plan);
523 self.access_order.push_back(key);
524 }
525
526 fn find_similar_plan(&self, query: &QueryPlan, _threshold: f64) -> Option<OptimizedPlan> {
527 self.cache.get(&query.id).cloned()
534 }
535}
536
537#[derive(Debug)]
539struct CardinalityEstimator {
540 _placeholder: (),
542}
543
544impl CardinalityEstimator {
545 fn new() -> Self {
546 Self { _placeholder: () }
547 }
548
549 fn estimate(&self, plan: &QueryPlan) -> Result<u64> {
550 let base_cardinality = 1000u64;
554 let join_factor = 10;
555 let estimated = base_cardinality * (join_factor * plan.join_count as u64).max(1);
556
557 Ok(estimated)
558 }
559
560 fn train(&mut self, _training_data: Vec<TrainingExample>) -> Result<()> {
561 Ok(())
564 }
565}
566
567#[derive(Debug)]
569struct RuntimeStatsCollector {
570 statistics: VecDeque<ExecutionStatistic>,
571 max_window_size: usize,
572}
573
574impl RuntimeStatsCollector {
575 fn new(max_window_size: usize) -> Self {
576 Self {
577 statistics: VecDeque::new(),
578 max_window_size,
579 }
580 }
581
582 fn record_execution(&mut self, step: &ExecutionStep, result: &StepResult, elapsed: Duration) {
583 let stat = ExecutionStatistic {
584 step_id: step.step_id,
585 rows_returned: result.rows_returned,
586 execution_time: elapsed,
587 timestamp: Instant::now(),
588 };
589
590 if self.statistics.len() >= self.max_window_size {
592 self.statistics.pop_front();
593 }
594 self.statistics.push_back(stat);
595 }
596
597 fn get_training_data(&self) -> Vec<TrainingExample> {
598 vec![]
601 }
602}
603
604#[derive(Debug, Clone)]
606struct ExecutionStatistic {
607 step_id: usize,
608 rows_returned: usize,
609 execution_time: Duration,
610 timestamp: Instant,
611}
612
613#[derive(Debug, Clone)]
615pub struct TrainingExample {
616 pub join_count: usize,
617 pub filter_count: usize,
618 pub actual_cardinality: u64,
619}
620
621#[derive(Debug)]
623pub struct HardwareProfile {
624 pub cpu_cores: usize,
626 pub memory_bandwidth: f64,
628 pub network_bandwidth: f64,
630}
631
632impl HardwareProfile {
633 pub fn detect() -> Self {
635 Self {
636 cpu_cores: num_cpus::get(),
637 memory_bandwidth: 20.0, network_bandwidth: 1000.0, }
640 }
641
642 fn estimate_cpu_cost(&self, plan: &QueryPlan) -> f64 {
644 let base_cost = plan.join_count as f64 * 100.0;
646 base_cost / self.cpu_cores as f64
647 }
648
649 fn estimate_memory_cost(&self, plan: &QueryPlan) -> f64 {
651 plan.estimated_cardinality as f64 / self.memory_bandwidth
653 }
654
655 fn estimate_network_cost(&self, plan: &QueryPlan) -> f64 {
657 let data_size_mb = plan.estimated_cardinality as f64 * 0.001; data_size_mb / self.network_bandwidth
660 }
661}
662
663#[cfg(test)]
664mod tests {
665 use super::*;
666
667 #[test]
668 fn test_advanced_optimizer_config_default() {
669 let config = AdvancedOptimizerConfig::default();
670 assert!(config.enable_adaptive_optimization);
671 assert!(config.enable_ml_cardinality);
672 assert_eq!(config.plan_cache_size, 1000);
673 }
674
675 #[tokio::test]
676 async fn test_optimizer_creation() {
677 let config = AdvancedOptimizerConfig::default();
678 let optimizer = AdvancedQueryOptimizer::new(config);
679
680 assert!(optimizer.plan_cache.read().await.cache.is_empty());
681 }
682
683 #[test]
684 fn test_hardware_profile_detection() {
685 let profile = HardwareProfile::detect();
686 assert!(profile.cpu_cores > 0);
687 assert!(profile.memory_bandwidth > 0.0);
688 assert!(profile.network_bandwidth > 0.0);
689 }
690
691 #[test]
692 fn test_plan_cache() {
693 let mut cache = PlanCache::new(2);
694
695 let plan1 = QueryPlan {
696 id: "q1".to_string(),
697 query_text: "SELECT * WHERE { ?s ?p ?o }".to_string(),
698 plan_type: PlanType::LeftDeep,
699 join_count: 1,
700 estimated_cardinality: 1000,
701 };
702
703 let opt_plan1 = OptimizedPlan {
704 original_plan: plan1.clone(),
705 estimated_cost: 100.0,
706 steps: vec![],
707 optimization_method: "test".to_string(),
708 };
709
710 cache.insert(plan1.clone(), opt_plan1.clone());
711 assert_eq!(cache.cache.len(), 1);
712
713 let plan2 = QueryPlan {
715 id: "q2".to_string(),
716 query_text: "SELECT * WHERE { ?s ?p ?o . ?o ?p2 ?o2 }".to_string(),
717 plan_type: PlanType::RightDeep,
718 join_count: 2,
719 estimated_cardinality: 2000,
720 };
721
722 let opt_plan2 = OptimizedPlan {
723 original_plan: plan2.clone(),
724 estimated_cost: 200.0,
725 steps: vec![],
726 optimization_method: "test".to_string(),
727 };
728
729 cache.insert(plan2.clone(), opt_plan2);
730 assert_eq!(cache.cache.len(), 2);
731
732 let plan3 = QueryPlan {
734 id: "q3".to_string(),
735 query_text: "SELECT * WHERE { ?s ?p ?o . ?o ?p2 ?o2 . ?o2 ?p3 ?o3 }".to_string(),
736 plan_type: PlanType::Bushy,
737 join_count: 3,
738 estimated_cardinality: 3000,
739 };
740
741 let opt_plan3 = OptimizedPlan {
742 original_plan: plan3.clone(),
743 estimated_cost: 300.0,
744 steps: vec![],
745 optimization_method: "test".to_string(),
746 };
747
748 cache.insert(plan3, opt_plan3);
749 assert_eq!(cache.cache.len(), 2);
750 assert!(!cache.cache.contains_key("q1")); }
752}