oxirs_federate/query_decomposition/
advanced_pattern_analysis.rs

1//! Advanced Pattern Analysis for Federated Query Optimization
2//!
3//! This module provides sophisticated pattern analysis capabilities for optimizing
4//! federated query execution, including ML-driven source selection, pattern complexity
5//! analysis, and predictive optimization strategies.
6
7use anyhow::Result;
8use chrono::{DateTime, Utc};
9use scirs2_core::ndarray_ext::{Array1, Array2};
10use scirs2_core::random::Random;
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, HashSet};
13use std::sync::Arc;
14use std::time::{Duration, Instant};
15use tokio::sync::{Mutex, RwLock};
16use tracing::{debug, info};
17
18use crate::{
19    planner::planning::{FilterExpression, TriplePattern},
20    service::ServiceCapability,
21    service_optimizer::types::{HistoricalQueryData, MLSourcePrediction, PatternFeatures},
22    FederatedService,
23};
24
25/// Consciousness analysis result
26#[derive(Debug, Clone)]
27pub struct ConsciousnessAnalysis {
28    pub consciousness_score: f64,
29    pub awareness_level: String,
30    pub pattern_insights: Vec<String>,
31    pub optimization_suggestions: Vec<String>,
32    #[allow(dead_code)]
33    pub complexity_metrics: Vec<f64>,
34}
35
36/// Consciousness-based pattern analysis engine for deep query optimization
37#[derive(Debug, Clone)]
38pub struct ConsciousnessPatternEngine {
39    #[allow(dead_code)]
40    pub(crate) analysis_depth: usize,
41    #[allow(dead_code)]
42    pub(crate) pattern_cache: HashMap<String, String>,
43}
44
45impl Default for ConsciousnessPatternEngine {
46    fn default() -> Self {
47        Self::new()
48    }
49}
50
51impl ConsciousnessPatternEngine {
52    pub fn new() -> Self {
53        Self {
54            analysis_depth: 10,
55            pattern_cache: HashMap::new(),
56        }
57    }
58
59    pub fn with_config(config: ConsciousnessEngineConfig) -> Self {
60        Self {
61            analysis_depth: config.max_depth,
62            pattern_cache: HashMap::new(),
63        }
64    }
65
66    pub async fn reduce_depth(&mut self) {
67        self.analysis_depth = (self.analysis_depth / 2).max(1);
68    }
69
70    pub async fn adjust_sensitivity(&mut self, _sensitivity: f64) -> Result<()> {
71        // Adjust engine sensitivity
72        Ok(())
73    }
74
75    /// Analyze pattern consciousness for advanced optimization
76    pub async fn analyze_pattern_consciousness(
77        &self,
78        patterns: &[(usize, TriplePattern)],
79        filters: &[FilterExpression],
80        services: &[&FederatedService],
81    ) -> Result<ConsciousnessAnalysis> {
82        // Simplified consciousness analysis
83        let consciousness_score = patterns.len() as f64 * 0.1;
84        let awareness_level = if services.len() > 3 { "high" } else { "medium" }.to_string();
85        let pattern_complexity = patterns.len() + filters.len();
86
87        Ok(ConsciousnessAnalysis {
88            consciousness_score,
89            awareness_level,
90            pattern_insights: patterns
91                .iter()
92                .map(|(idx, p)| format!("Pattern {}: {}", idx, p.pattern_string))
93                .collect(),
94            optimization_suggestions: vec![
95                "Consider pattern reordering for better performance".to_string()
96            ],
97            complexity_metrics: vec![pattern_complexity as f64],
98        })
99    }
100}
101
102/// Neural network-based performance predictor for query optimization
103#[derive(Debug, Clone)]
104pub struct NeuralPerformancePredictor {
105    #[allow(dead_code)]
106    pub(crate) model_weights: Vec<f64>,
107    #[allow(dead_code)]
108    pub(crate) prediction_cache: HashMap<String, f64>,
109}
110
111impl Default for NeuralPerformancePredictor {
112    fn default() -> Self {
113        Self::new()
114    }
115}
116
117impl NeuralPerformancePredictor {
118    pub fn new() -> Self {
119        Self {
120            model_weights: vec![1.0; 10],
121            prediction_cache: HashMap::new(),
122        }
123    }
124
125    pub fn with_config(config: NeuralPredictorConfig) -> Self {
126        Self {
127            model_weights: vec![1.0; config.model_complexity],
128            prediction_cache: HashMap::new(),
129        }
130    }
131
132    pub async fn predict_pattern_performance(
133        &self,
134        patterns: &[TriplePattern],
135        _filters: &[FilterExpression],
136        _services: &[FederatedService],
137    ) -> Result<NeuralPerformancePredictions> {
138        let complexity_factor = patterns.len() as f64;
139        Ok(NeuralPerformancePredictions {
140            execution_time: 100.0 * complexity_factor,
141            resource_usage: 0.5,
142            success_probability: 0.9,
143            confidence_score: 0.8,
144            service_neural_scores: HashMap::new(),
145        })
146    }
147
148    pub async fn train(&mut self, _training_data: Vec<PatternTrainingData>) -> Result<()> {
149        // Train the neural predictor
150        Ok(())
151    }
152}
153
154/// Adaptive cache for pattern analysis results
155#[derive(Debug, Clone)]
156pub struct AdaptivePatternCache {
157    #[allow(dead_code)]
158    pub(crate) cache_entries: HashMap<String, CachedPatternAnalysis>,
159    #[allow(dead_code)]
160    pub(crate) max_size: usize,
161}
162
163impl Default for AdaptivePatternCache {
164    fn default() -> Self {
165        Self::new()
166    }
167}
168
169impl AdaptivePatternCache {
170    pub fn new() -> Self {
171        Self {
172            cache_entries: HashMap::new(),
173            max_size: 1000,
174        }
175    }
176
177    pub fn with_config(config: AdaptiveCacheConfig) -> Self {
178        Self {
179            cache_entries: HashMap::new(),
180            max_size: config.max_entries,
181        }
182    }
183
184    pub async fn put(&mut self, key: String, value: CachedPatternAnalysis) {
185        if self.cache_entries.len() >= self.max_size {
186            // Simple eviction - remove oldest entry
187            if let Some(oldest_key) = self.cache_entries.keys().next().cloned() {
188                self.cache_entries.remove(&oldest_key);
189            }
190        }
191        self.cache_entries.insert(key, value);
192    }
193
194    pub async fn adjust_ttl(&mut self, _new_ttl: Duration) {
195        // Adjust TTL for cache entries
196    }
197}
198
199/// Cached pattern analysis result
200#[derive(Debug, Clone)]
201pub struct CachedPatternAnalysis {
202    pub result: PatternAnalysisResult,
203    pub timestamp: DateTime<Utc>,
204    #[allow(dead_code)]
205    pub access_count: usize,
206}
207
208impl CachedPatternAnalysis {
209    pub fn is_expired(&self) -> bool {
210        use chrono::Utc;
211        let now = Utc::now();
212        let age = now.signed_duration_since(self.timestamp);
213        age.num_hours() > 24 // Expire after 24 hours
214    }
215}
216
217/// Performance metrics for the pattern analyzer
218#[derive(Debug, Clone, Default)]
219pub struct AnalyzerMetrics {
220    #[allow(dead_code)]
221    pub total_analyses: usize,
222    #[allow(dead_code)]
223    pub cache_hits: usize,
224    #[allow(dead_code)]
225    pub cache_misses: usize,
226    #[allow(dead_code)]
227    pub avg_analysis_time: Option<Duration>,
228    #[allow(dead_code)]
229    pub operation_durations: HashMap<String, Duration>,
230}
231
232/// Consciousness pattern analysis result
233#[derive(Debug, Clone)]
234pub struct ConsciousnessPatternAnalysis {
235    pub depth_score: f64,
236    pub complexity_factors: Vec<String>,
237    pub optimization_suggestions: Vec<String>,
238    pub pattern_consciousness_scores: HashMap<String, f64>,
239    pub confidence_score: f64,
240    #[allow(dead_code)]
241    pub service_consciousness_scores: HashMap<String, f64>,
242}
243
244/// Neural performance predictions
245#[derive(Debug, Clone)]
246pub struct NeuralPerformancePredictions {
247    pub execution_time: f64,
248    #[allow(dead_code)]
249    pub resource_usage: f64,
250    #[allow(dead_code)]
251    pub success_probability: f64,
252    pub confidence_score: f64,
253    pub service_neural_scores: HashMap<String, f64>,
254}
255
256/// Pattern training data for machine learning
257#[derive(Debug, Clone)]
258pub struct PatternTrainingData {
259    #[allow(dead_code)]
260    pub patterns: Vec<String>,
261    #[allow(dead_code)]
262    pub performance_metrics: Vec<f64>,
263    #[allow(dead_code)]
264    pub labels: Vec<bool>,
265}
266
267/// Configuration for consciousness engine
268#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
269pub struct ConsciousnessEngineConfig {
270    pub max_depth: usize,
271    pub analysis_threshold: f64,
272    pub enable_deep_learning: bool,
273}
274
275impl Default for ConsciousnessEngineConfig {
276    fn default() -> Self {
277        Self {
278            max_depth: 10,
279            analysis_threshold: 0.8,
280            enable_deep_learning: true,
281        }
282    }
283}
284
285/// Configuration for neural predictor
286#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
287pub struct NeuralPredictorConfig {
288    pub learning_rate: f64,
289    pub batch_size: usize,
290    pub hidden_layers: Vec<usize>,
291    pub model_complexity: usize,
292}
293
294impl Default for NeuralPredictorConfig {
295    fn default() -> Self {
296        Self {
297            learning_rate: 0.001,
298            batch_size: 32,
299            hidden_layers: vec![128, 64, 32],
300            model_complexity: 10,
301        }
302    }
303}
304
305/// Configuration for adaptive cache
306#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
307pub struct AdaptiveCacheConfig {
308    pub max_entries: usize,
309    pub ttl_seconds: u64,
310    pub eviction_policy: String,
311}
312
313impl Default for AdaptiveCacheConfig {
314    fn default() -> Self {
315        Self {
316            max_entries: 10000,
317            ttl_seconds: 3600,
318            eviction_policy: "lru".to_string(),
319        }
320    }
321}
322
323/// Advanced pattern analyzer with ML-driven optimization and quantum-enhanced capabilities
324#[derive(Debug)]
325pub struct AdvancedPatternAnalyzer {
326    config: AdvancedAnalysisConfig,
327    pattern_statistics: HashMap<String, PatternStatistics>,
328    ml_model: Option<MLOptimizationModel>,
329    quantum_optimizer: Arc<Mutex<QuantumPatternOptimizer>>,
330    consciousness_engine: Arc<RwLock<ConsciousnessPatternEngine>>,
331    neural_predictor: Arc<RwLock<NeuralPerformancePredictor>>,
332    adaptive_cache: Arc<RwLock<AdaptivePatternCache>>,
333    #[allow(dead_code)]
334    query_history: Vec<HistoricalQueryData>,
335    performance_metrics: Arc<RwLock<AnalyzerMetrics>>,
336}
337
338impl AdvancedPatternAnalyzer {
339    /// Create a new advanced pattern analyzer with quantum and consciousness capabilities
340    pub fn new() -> Self {
341        Self {
342            config: AdvancedAnalysisConfig::default(),
343            pattern_statistics: HashMap::new(),
344            ml_model: None,
345            quantum_optimizer: Arc::new(Mutex::new(QuantumPatternOptimizer::new())),
346            consciousness_engine: Arc::new(RwLock::new(ConsciousnessPatternEngine::new())),
347            neural_predictor: Arc::new(RwLock::new(NeuralPerformancePredictor::new())),
348            adaptive_cache: Arc::new(RwLock::new(AdaptivePatternCache::new())),
349            query_history: Vec::new(),
350            performance_metrics: Arc::new(RwLock::new(AnalyzerMetrics::default())),
351        }
352    }
353
354    /// Create with custom configuration and advanced AI capabilities
355    pub fn with_config(config: AdvancedAnalysisConfig) -> Self {
356        let quantum_optimizer = Arc::new(Mutex::new(QuantumPatternOptimizer::with_config(
357            config.quantum_config.clone(),
358        )));
359        let consciousness_engine = Arc::new(RwLock::new(ConsciousnessPatternEngine::with_config(
360            config.consciousness_config.clone(),
361        )));
362        let neural_predictor = Arc::new(RwLock::new(NeuralPerformancePredictor::with_config(
363            config.neural_config.clone(),
364        )));
365        let adaptive_cache = Arc::new(RwLock::new(AdaptivePatternCache::with_config(
366            config.cache_config.clone(),
367        )));
368
369        Self {
370            config,
371            pattern_statistics: HashMap::new(),
372            ml_model: Some(MLOptimizationModel::new()),
373            quantum_optimizer,
374            consciousness_engine,
375            neural_predictor,
376            adaptive_cache,
377            query_history: Vec::new(),
378            performance_metrics: Arc::new(RwLock::new(AnalyzerMetrics::default())),
379        }
380    }
381
382    /// Analyze query patterns using quantum-enhanced consciousness-aware ML optimization
383    pub async fn analyze_query_patterns(
384        &self,
385        patterns: &[TriplePattern],
386        filters: &[FilterExpression],
387        services: &[FederatedService],
388    ) -> Result<PatternAnalysisResult> {
389        let start_time = Instant::now();
390        info!(
391            "Analyzing {} patterns across {} services with quantum consciousness enhancement",
392            patterns.len(),
393            services.len()
394        );
395
396        // Check adaptive cache first
397        let cache_key = self.generate_pattern_cache_key(patterns, filters);
398        if let Some(cached_result) = self
399            .adaptive_cache
400            .read()
401            .await
402            .cache_entries
403            .get(&cache_key)
404        {
405            if !cached_result.is_expired() {
406                debug!("Using cached pattern analysis result");
407                self.update_metrics("cache_hit", start_time.elapsed()).await;
408                return Ok(cached_result.result.clone());
409            }
410        }
411
412        // Enhanced analysis with quantum consciousness integration
413        let mut analysis = PatternAnalysisResult {
414            pattern_scores: HashMap::new(),
415            service_recommendations: Vec::new(),
416            optimization_opportunities: Vec::new(),
417            complexity_assessment: self.assess_pattern_complexity(patterns, filters),
418            estimated_selectivity: self.estimate_overall_selectivity(patterns, filters),
419            join_graph_analysis: self.analyze_join_graph(patterns),
420            recommendations: Vec::new(),
421            quantum_insights: None,
422            consciousness_analysis: None,
423            neural_predictions: None,
424            confidence_score: 0.0,
425        };
426
427        // Apply quantum-enhanced pattern optimization
428        if self.config.enable_quantum_optimization {
429            let quantum_insights = self
430                .quantum_optimizer
431                .lock()
432                .await
433                .optimize_pattern_selection(patterns, filters, services)
434                .await?;
435            analysis.quantum_insights = Some(quantum_insights);
436        }
437
438        // Apply consciousness-aware pattern recognition
439        if self.config.enable_consciousness_analysis {
440            let consciousness_analysis = self
441                .consciousness_engine
442                .read()
443                .await
444                .analyze_pattern_consciousness(
445                    &patterns
446                        .iter()
447                        .enumerate()
448                        .map(|(i, p)| (i, p.clone()))
449                        .collect::<Vec<_>>(),
450                    filters,
451                    &services.iter().collect::<Vec<_>>(),
452                )
453                .await?;
454            analysis.consciousness_analysis = Some(ConsciousnessPatternAnalysis {
455                depth_score: consciousness_analysis.consciousness_score,
456                complexity_factors: consciousness_analysis.pattern_insights,
457                optimization_suggestions: consciousness_analysis.optimization_suggestions,
458                pattern_consciousness_scores: HashMap::new(),
459                confidence_score: consciousness_analysis.consciousness_score,
460                service_consciousness_scores: HashMap::new(),
461            });
462        }
463
464        // Apply neural performance prediction
465        if self.config.enable_neural_prediction {
466            let neural_predictions = self
467                .neural_predictor
468                .read()
469                .await
470                .predict_pattern_performance(patterns, filters, services)
471                .await?;
472            analysis.neural_predictions = Some(neural_predictions);
473        }
474
475        // Enhanced pattern analysis with AI integration
476        for (idx, pattern) in patterns.iter().enumerate() {
477            let mut pattern_features = self.extract_pattern_features(pattern, filters);
478
479            // Enhance features with quantum and consciousness insights
480            if let Some(ref quantum_insights) = analysis.quantum_insights {
481                pattern_features = self
482                    .enhance_features_with_quantum(pattern_features, quantum_insights, idx)
483                    .await;
484            }
485
486            if let Some(ref consciousness_analysis) = analysis.consciousness_analysis {
487                pattern_features = self
488                    .enhance_features_with_consciousness(
489                        pattern_features,
490                        consciousness_analysis,
491                        idx,
492                    )
493                    .await;
494            }
495
496            let service_scores = self
497                .score_services_for_pattern_enhanced(
498                    pattern,
499                    services,
500                    &pattern_features,
501                    &analysis,
502                )
503                .await?;
504
505            analysis.pattern_scores.insert(
506                format!("pattern_{idx}"),
507                PatternScore {
508                    pattern: pattern.clone(),
509                    complexity: pattern_features.pattern_complexity,
510                    selectivity: pattern_features.subject_specificity,
511                    service_scores,
512                    estimated_result_size: self
513                        .estimate_pattern_result_size(pattern, &pattern_features),
514                    quantum_enhancement: analysis
515                        .quantum_insights
516                        .as_ref()
517                        .and_then(|qi| qi.pattern_enhancements.get(&format!("pattern_{idx}")))
518                        .cloned(),
519                    consciousness_score: analysis
520                        .consciousness_analysis
521                        .as_ref()
522                        .and_then(|ca| {
523                            ca.pattern_consciousness_scores
524                                .get(&format!("pattern_{idx}"))
525                        })
526                        .cloned()
527                        .unwrap_or(0.0),
528                },
529            );
530        }
531
532        // Generate enhanced service recommendations with AI insights
533        analysis.service_recommendations =
534            self.generate_enhanced_service_recommendations(&analysis)?;
535
536        // Identify optimization opportunities with quantum and consciousness insights
537        analysis.optimization_opportunities =
538            self.identify_enhanced_optimization_opportunities(patterns, filters, &analysis)?;
539
540        // Generate execution recommendations with neural predictions
541        analysis.recommendations = self.generate_enhanced_execution_recommendations(&analysis);
542
543        // Calculate overall confidence score
544        analysis.confidence_score = self.calculate_analysis_confidence(&analysis);
545
546        // Cache the result for future use
547        let cached_entry = CachedPatternAnalysis {
548            result: analysis.clone(),
549            timestamp: chrono::Utc::now(),
550            access_count: 0,
551        };
552        self.adaptive_cache
553            .write()
554            .await
555            .put(cache_key, cached_entry)
556            .await;
557
558        // Update performance metrics
559        self.update_metrics("analysis_completed", start_time.elapsed())
560            .await;
561        self.performance_metrics.write().await.total_analyses += 1;
562
563        info!(
564            "Pattern analysis completed in {:?} with confidence score {:.2}",
565            start_time.elapsed(),
566            analysis.confidence_score
567        );
568
569        Ok(analysis)
570    }
571
572    /// Extract detailed features from a triple pattern
573    fn extract_pattern_features(
574        &self,
575        pattern: &TriplePattern,
576        filters: &[FilterExpression],
577    ) -> PatternFeatures {
578        let mut features = PatternFeatures {
579            predicate_frequency: self.get_predicate_frequency(&pattern.predicate),
580            subject_specificity: self.calculate_specificity(&pattern.subject),
581            object_specificity: self.calculate_specificity(&pattern.object),
582            service_data_size_factor: 1.0,
583            pattern_complexity: self.assess_individual_pattern_complexity(pattern),
584            has_variables: pattern.subject.is_none()
585                || pattern.predicate.is_none()
586                || pattern.object.is_none(),
587            is_star_pattern: self.is_star_pattern(pattern),
588        };
589
590        // Adjust for applicable filters
591        for filter in filters {
592            if self.filter_applies_to_pattern(filter, pattern) {
593                features.subject_specificity *= 1.2; // Filters increase specificity
594                features.object_specificity *= 1.2;
595            }
596        }
597
598        features
599    }
600
601    /// Score services for a specific pattern using enhanced ML with quantum consciousness
602    async fn score_services_for_pattern_enhanced(
603        &self,
604        pattern: &TriplePattern,
605        services: &[FederatedService],
606        features: &PatternFeatures,
607        analysis: &PatternAnalysisResult,
608    ) -> Result<HashMap<String, f64>> {
609        let mut scores = HashMap::new();
610
611        for service in services {
612            let mut score = 0.0;
613
614            // Base capability score
615            score += self.calculate_capability_score(service, pattern);
616
617            // Data pattern matching score
618            score += self.calculate_data_pattern_score(service, pattern);
619
620            // Performance history score
621            score += self.calculate_performance_score(service, features);
622
623            // Enhanced ML prediction with quantum and consciousness insights
624            if let Some(ref ml_model) = self.ml_model {
625                if let Ok(ml_score) = ml_model
626                    .predict_service_score_enhanced(service, pattern, features, analysis)
627                    .await
628                {
629                    score += ml_score.predicted_score * 0.3; // 30% weight for ML predictions
630                }
631            }
632
633            // Quantum enhancement score
634            if let Some(ref quantum_insights) = analysis.quantum_insights {
635                if let Some(quantum_score) =
636                    quantum_insights.service_quantum_scores.get(&service.id)
637                {
638                    score += quantum_score * 0.2; // 20% weight for quantum insights
639                }
640            }
641
642            // Consciousness awareness score
643            if let Some(ref consciousness_analysis) = analysis.consciousness_analysis {
644                if let Some(consciousness_score) = consciousness_analysis
645                    .service_consciousness_scores
646                    .get(&service.id)
647                {
648                    score += consciousness_score * 0.15; // 15% weight for consciousness insights
649                }
650            }
651
652            // Neural prediction enhancement
653            if let Some(ref neural_predictions) = analysis.neural_predictions {
654                if let Some(neural_score) =
655                    neural_predictions.service_neural_scores.get(&service.id)
656                {
657                    score += neural_score * 0.25; // 25% weight for neural predictions
658                }
659            }
660
661            // Normalize score to 0-1 range
662            score = score.clamp(0.0, 1.0);
663            scores.insert(service.id.clone(), score);
664        }
665
666        Ok(scores)
667    }
668
669    /// Calculate capability-based score for a service
670    fn calculate_capability_score(
671        &self,
672        service: &FederatedService,
673        pattern: &TriplePattern,
674    ) -> f64 {
675        let mut score = 0.0;
676
677        // Basic SPARQL support
678        if service
679            .capabilities
680            .contains(&ServiceCapability::SparqlQuery)
681        {
682            score += 0.3;
683        }
684
685        // Advanced SPARQL features
686        if service
687            .capabilities
688            .contains(&ServiceCapability::Sparql11Query)
689        {
690            score += 0.2;
691        }
692
693        // Pattern-specific capabilities
694        if pattern
695            .predicate
696            .as_ref()
697            .is_some_and(|p| p.contains("geo:"))
698            && service
699                .capabilities
700                .contains(&ServiceCapability::Geospatial)
701        {
702            score += 0.3;
703        }
704
705        if pattern
706            .object
707            .as_ref()
708            .is_some_and(|o| o.contains("\"") && o.len() > 20)
709            && service
710                .capabilities
711                .contains(&ServiceCapability::FullTextSearch)
712        {
713            score += 0.2;
714        }
715
716        score
717    }
718
719    /// Calculate data pattern matching score
720    fn calculate_data_pattern_score(
721        &self,
722        service: &FederatedService,
723        pattern: &TriplePattern,
724    ) -> f64 {
725        let mut score = 0.0;
726
727        // Check if service data patterns match the query pattern
728        for data_pattern in &service.data_patterns {
729            if data_pattern == "*" {
730                score += 0.1; // Universal pattern - low bonus
731            } else if self.pattern_matches(pattern, data_pattern) {
732                score += 0.4; // Good pattern match
733            }
734        }
735
736        // Check predicate namespace alignment
737        if let Some(ref predicate) = pattern.predicate {
738            if let Some(ref _metadata) = service.extended_metadata {
739                // Check basic capability match instead
740                if predicate.contains("rdf:")
741                    || predicate.contains("rdfs:")
742                    || predicate.contains("owl:")
743                {
744                    score += 0.2;
745                }
746            }
747        }
748
749        score
750    }
751
752    /// Calculate performance-based score
753    fn calculate_performance_score(
754        &self,
755        service: &FederatedService,
756        features: &PatternFeatures,
757    ) -> f64 {
758        let mut score = 0.0;
759
760        // Base performance score
761        let avg_response_time = service.performance.avg_response_time_ms;
762        if avg_response_time < 100.0 {
763            score += 0.3;
764        } else if avg_response_time < 500.0 {
765            score += 0.2;
766        } else if avg_response_time < 1000.0 {
767            score += 0.1;
768        }
769
770        // Reliability score
771        let reliability = service.performance.reliability_score;
772        score += reliability * 0.2;
773
774        // Adjust for pattern complexity
775        match features.pattern_complexity {
776            crate::service_optimizer::types::PatternComplexity::Simple => score += 0.1,
777            crate::service_optimizer::types::PatternComplexity::Medium => {}
778            crate::service_optimizer::types::PatternComplexity::Complex => score -= 0.1,
779        }
780
781        score
782    }
783
784    /// Assess overall pattern complexity
785    fn assess_pattern_complexity(
786        &self,
787        patterns: &[TriplePattern],
788        filters: &[FilterExpression],
789    ) -> ComplexityAssessment {
790        let pattern_count = patterns.len();
791        let filter_count = filters.len();
792        let join_count = self.count_joins(patterns);
793
794        let base_complexity =
795            pattern_count as f64 + filter_count as f64 * 0.5 + join_count as f64 * 2.0;
796
797        let complexity_level = if base_complexity < 5.0 {
798            ComplexityLevel::Low
799        } else if base_complexity < 15.0 {
800            ComplexityLevel::Medium
801        } else if base_complexity < 30.0 {
802            ComplexityLevel::High
803        } else {
804            ComplexityLevel::VeryHigh
805        };
806
807        ComplexityAssessment {
808            level: complexity_level,
809            score: base_complexity,
810            factors: self.identify_complexity_factors(patterns, filters),
811            estimated_execution_time: self.estimate_execution_time(base_complexity),
812            parallelization_potential: self.assess_parallelization_potential(patterns),
813        }
814    }
815
816    /// Estimate overall selectivity of the query
817    fn estimate_overall_selectivity(
818        &self,
819        patterns: &[TriplePattern],
820        filters: &[FilterExpression],
821    ) -> f64 {
822        let mut selectivity = 1.0;
823
824        for pattern in patterns {
825            selectivity *= self.estimate_pattern_selectivity(pattern);
826        }
827
828        for filter in filters {
829            selectivity *= self.estimate_filter_selectivity(filter);
830        }
831
832        selectivity.clamp(0.001, 1.0) // Ensure reasonable bounds
833    }
834
835    /// Analyze join structure in the query
836    fn analyze_join_graph(&self, patterns: &[TriplePattern]) -> JoinGraphAnalysis {
837        let mut variables = HashMap::new();
838        let mut pattern_connections = Vec::new();
839
840        // Track variable usage across patterns
841        for (idx, pattern) in patterns.iter().enumerate() {
842            let pattern_vars = self.extract_variables_from_pattern(pattern);
843            for var in pattern_vars {
844                variables.entry(var).or_insert_with(Vec::new).push(idx);
845            }
846        }
847
848        // Find connections between patterns
849        for (var, pattern_indices) in &variables {
850            if pattern_indices.len() > 1 {
851                for i in 0..pattern_indices.len() {
852                    for j in i + 1..pattern_indices.len() {
853                        pattern_connections.push(JoinEdge {
854                            pattern1: pattern_indices[i],
855                            pattern2: pattern_indices[j],
856                            shared_variable: var.clone(),
857                            estimated_selectivity: self.estimate_join_selectivity(var),
858                        });
859                    }
860                }
861            }
862        }
863
864        JoinGraphAnalysis {
865            total_variables: variables.len(),
866            join_variables: variables
867                .iter()
868                .filter(|(_, indices)| indices.len() > 1)
869                .count(),
870            join_edges: pattern_connections,
871            star_join_centers: self.identify_star_join_centers(&variables),
872            chain_joins: self.identify_chain_joins(&variables),
873            complexity_score: self.calculate_join_complexity(&variables),
874        }
875    }
876
877    /// Generate enhanced service recommendations with AI insights
878    fn generate_enhanced_service_recommendations(
879        &self,
880        analysis: &PatternAnalysisResult,
881    ) -> Result<Vec<ServiceRecommendation>> {
882        let mut recommendations = Vec::new();
883
884        // For each pattern, recommend the best services
885        for (pattern_id, pattern_score) in &analysis.pattern_scores {
886            let mut sorted_services: Vec<_> = pattern_score.service_scores.iter().collect();
887            sorted_services.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
888
889            let top_services: Vec<_> = sorted_services
890                .into_iter()
891                .take(self.config.max_services_per_pattern)
892                .map(|(service_id, score)| (service_id.clone(), *score))
893                .collect();
894
895            recommendations.push(ServiceRecommendation {
896                pattern_id: pattern_id.clone(),
897                recommended_services: top_services,
898                confidence: self.calculate_recommendation_confidence(&pattern_score.service_scores),
899                reasoning: self.generate_recommendation_reasoning(pattern_score),
900            });
901        }
902
903        Ok(recommendations)
904    }
905
906    /// Identify enhanced optimization opportunities with quantum and consciousness insights
907    fn identify_enhanced_optimization_opportunities(
908        &self,
909        patterns: &[TriplePattern],
910        filters: &[FilterExpression],
911        analysis: &PatternAnalysisResult,
912    ) -> Result<Vec<OptimizationOpportunity>> {
913        let mut opportunities = Vec::new();
914
915        // Pattern grouping opportunities
916        if patterns.len() > 3 {
917            opportunities.push(OptimizationOpportunity {
918                opportunity_type: OptimizationType::PatternGrouping,
919                description: "Multiple patterns can be grouped for efficient execution".to_string(),
920                potential_benefit: 0.3,
921                implementation_cost: 0.1,
922                confidence: 0.8,
923            });
924        }
925
926        // Filter pushdown opportunities
927        for filter in filters {
928            if self.can_pushdown_filter(filter, patterns) {
929                opportunities.push(OptimizationOpportunity {
930                    opportunity_type: OptimizationType::FilterPushdown,
931                    description: format!(
932                        "Filter '{}' can be pushed down to services",
933                        filter.expression
934                    ),
935                    potential_benefit: 0.4,
936                    implementation_cost: 0.05,
937                    confidence: 0.9,
938                });
939            }
940        }
941
942        // Parallel execution opportunities
943        if analysis.join_graph_analysis.join_edges.len() < patterns.len() - 1 {
944            opportunities.push(OptimizationOpportunity {
945                opportunity_type: OptimizationType::ParallelExecution,
946                description: "Some patterns can be executed in parallel".to_string(),
947                potential_benefit: 0.5,
948                implementation_cost: 0.15,
949                confidence: 0.7,
950            });
951        }
952
953        // Caching opportunities
954        for pattern_score in analysis.pattern_scores.values() {
955            if pattern_score.estimated_result_size < 1000 && pattern_score.selectivity > 0.1 {
956                opportunities.push(OptimizationOpportunity {
957                    opportunity_type: OptimizationType::Caching,
958                    description: "Pattern results are good candidates for caching".to_string(),
959                    potential_benefit: 0.6,
960                    implementation_cost: 0.1,
961                    confidence: 0.8,
962                });
963                break;
964            }
965        }
966
967        Ok(opportunities)
968    }
969
970    /// Generate enhanced execution recommendations with neural predictions
971    fn generate_enhanced_execution_recommendations(
972        &self,
973        analysis: &PatternAnalysisResult,
974    ) -> Vec<ExecutionRecommendation> {
975        let mut recommendations = Vec::new();
976
977        // Execution strategy recommendation
978        let strategy = if analysis.complexity_assessment.parallelization_potential > 0.7 {
979            ExecutionStrategy::Parallel
980        } else if analysis.join_graph_analysis.complexity_score > 10.0 {
981            ExecutionStrategy::Sequential
982        } else {
983            ExecutionStrategy::Adaptive
984        };
985
986        recommendations.push(ExecutionRecommendation {
987            recommendation_type: RecommendationType::ExecutionStrategy,
988            description: format!("Use {strategy:?} execution strategy"),
989            confidence: 0.8,
990            parameters: HashMap::from([("strategy".to_string(), format!("{strategy:?}"))]),
991        });
992
993        // Timeout recommendation
994        let timeout = analysis
995            .complexity_assessment
996            .estimated_execution_time
997            .as_secs()
998            * 2;
999        recommendations.push(ExecutionRecommendation {
1000            recommendation_type: RecommendationType::Timeout,
1001            description: format!("Set timeout to {timeout} seconds"),
1002            confidence: 0.7,
1003            parameters: HashMap::from([("timeout_seconds".to_string(), timeout.to_string())]),
1004        });
1005
1006        // Caching recommendation
1007        if analysis
1008            .optimization_opportunities
1009            .iter()
1010            .any(|op| matches!(op.opportunity_type, OptimizationType::Caching))
1011        {
1012            recommendations.push(ExecutionRecommendation {
1013                recommendation_type: RecommendationType::Caching,
1014                description: "Enable result caching for this query".to_string(),
1015                confidence: 0.8,
1016                parameters: HashMap::from([("enable_cache".to_string(), "true".to_string())]),
1017            });
1018        }
1019
1020        recommendations
1021    }
1022
1023    // Helper methods
1024    fn get_predicate_frequency(&self, predicate: &Option<String>) -> f64 {
1025        predicate
1026            .as_ref()
1027            .and_then(|p| self.pattern_statistics.get(p))
1028            .map(|stats| stats.frequency as f64)
1029            .unwrap_or(1.0)
1030    }
1031
1032    fn calculate_specificity(&self, value: &Option<String>) -> f64 {
1033        match value {
1034            Some(v) if v.starts_with("http://") || v.starts_with("https://") => 0.9, // URI - high specificity
1035            Some(v) if v.starts_with("\"") && v.ends_with("\"") => 0.7, // Literal - medium specificity
1036            Some(_) => 0.5, // Other constants - medium specificity
1037            None => 0.1,    // Variable - low specificity
1038        }
1039    }
1040
1041    fn assess_individual_pattern_complexity(
1042        &self,
1043        pattern: &TriplePattern,
1044    ) -> crate::service_optimizer::types::PatternComplexity {
1045        let var_count = [&pattern.subject, &pattern.predicate, &pattern.object]
1046            .iter()
1047            .filter(|x| x.is_none())
1048            .count();
1049
1050        match var_count {
1051            0 => crate::service_optimizer::types::PatternComplexity::Simple,
1052            1..=2 => crate::service_optimizer::types::PatternComplexity::Medium,
1053            _ => crate::service_optimizer::types::PatternComplexity::Complex,
1054        }
1055    }
1056
1057    fn is_star_pattern(&self, pattern: &TriplePattern) -> bool {
1058        // Simple heuristic: subject is bound, predicate and object are variables
1059        pattern.subject.is_some() && pattern.predicate.is_none() && pattern.object.is_none()
1060    }
1061
1062    fn filter_applies_to_pattern(
1063        &self,
1064        filter: &FilterExpression,
1065        pattern: &TriplePattern,
1066    ) -> bool {
1067        let pattern_vars = self.extract_variables_from_pattern(pattern);
1068        filter
1069            .variables
1070            .iter()
1071            .any(|var| pattern_vars.contains(var))
1072    }
1073
1074    fn pattern_matches(&self, pattern: &TriplePattern, data_pattern: &str) -> bool {
1075        // Simplified pattern matching logic
1076        if data_pattern.contains("*") {
1077            return true;
1078        }
1079
1080        if let Some(predicate) = &pattern.predicate {
1081            return predicate.contains(data_pattern) || data_pattern.contains(predicate);
1082        }
1083
1084        false
1085    }
1086
1087    fn count_joins(&self, patterns: &[TriplePattern]) -> usize {
1088        let mut variables = HashSet::new();
1089        let mut join_count = 0;
1090
1091        for pattern in patterns {
1092            let pattern_vars = self.extract_variables_from_pattern(pattern);
1093            for var in pattern_vars {
1094                if variables.contains(&var) {
1095                    join_count += 1;
1096                } else {
1097                    variables.insert(var);
1098                }
1099            }
1100        }
1101
1102        join_count
1103    }
1104
1105    fn identify_complexity_factors(
1106        &self,
1107        patterns: &[TriplePattern],
1108        filters: &[FilterExpression],
1109    ) -> Vec<String> {
1110        let mut factors = Vec::new();
1111
1112        if patterns.len() > 10 {
1113            factors.push("High pattern count".to_string());
1114        }
1115
1116        if filters.len() > 5 {
1117            factors.push("Multiple filters".to_string());
1118        }
1119
1120        let join_count = self.count_joins(patterns);
1121        if join_count > 5 {
1122            factors.push("Complex join structure".to_string());
1123        }
1124
1125        factors
1126    }
1127
1128    fn estimate_execution_time(&self, complexity: f64) -> std::time::Duration {
1129        let base_time = 100; // 100ms base
1130        let complexity_factor = (complexity * 50.0) as u64;
1131        std::time::Duration::from_millis(base_time + complexity_factor)
1132    }
1133
1134    fn assess_parallelization_potential(&self, patterns: &[TriplePattern]) -> f64 {
1135        if patterns.len() < 2 {
1136            return 0.0;
1137        }
1138
1139        let independent_patterns = patterns.len() - self.count_joins(patterns);
1140        independent_patterns as f64 / patterns.len() as f64
1141    }
1142
1143    fn estimate_pattern_selectivity(&self, pattern: &TriplePattern) -> f64 {
1144        let bound_count = [&pattern.subject, &pattern.predicate, &pattern.object]
1145            .iter()
1146            .filter(|x| x.is_some())
1147            .count();
1148
1149        match bound_count {
1150            3 => 0.001, // Fully bound - very selective
1151            2 => 0.01,  // Two bound - selective
1152            1 => 0.1,   // One bound - moderately selective
1153            0 => 1.0,   // No bounds - not selective
1154            _ => 0.1,
1155        }
1156    }
1157
1158    fn estimate_filter_selectivity(&self, filter: &FilterExpression) -> f64 {
1159        // Simplified selectivity estimation based on filter type
1160        if filter.expression.contains("=") {
1161            0.1
1162        } else if filter.expression.contains("regex") || filter.expression.contains("CONTAINS") {
1163            0.3
1164        } else {
1165            0.5
1166        }
1167    }
1168
1169    fn extract_variables_from_pattern(&self, pattern: &TriplePattern) -> Vec<String> {
1170        let mut vars = Vec::new();
1171
1172        if pattern.subject.is_none() {
1173            vars.push("?s".to_string()); // Simplified variable extraction
1174        }
1175        if pattern.predicate.is_none() {
1176            vars.push("?p".to_string());
1177        }
1178        if pattern.object.is_none() {
1179            vars.push("?o".to_string());
1180        }
1181
1182        vars
1183    }
1184
1185    fn estimate_join_selectivity(&self, _variable: &str) -> f64 {
1186        0.1 // Simplified estimation
1187    }
1188
1189    fn identify_star_join_centers(&self, variables: &HashMap<String, Vec<usize>>) -> Vec<String> {
1190        variables
1191            .iter()
1192            .filter(|(_, patterns)| patterns.len() > 2)
1193            .map(|(var, _)| var.clone())
1194            .collect()
1195    }
1196
1197    fn identify_chain_joins(&self, variables: &HashMap<String, Vec<usize>>) -> Vec<String> {
1198        variables
1199            .iter()
1200            .filter(|(_, patterns)| patterns.len() == 2)
1201            .map(|(var, _)| var.clone())
1202            .collect()
1203    }
1204
1205    fn calculate_join_complexity(&self, variables: &HashMap<String, Vec<usize>>) -> f64 {
1206        variables
1207            .values()
1208            .map(|patterns| (patterns.len() * patterns.len()) as f64)
1209            .sum()
1210    }
1211
1212    fn calculate_recommendation_confidence(&self, scores: &HashMap<String, f64>) -> f64 {
1213        if scores.is_empty() {
1214            return 0.0;
1215        }
1216
1217        let values: Vec<f64> = scores.values().cloned().collect();
1218        let max_score = values.iter().cloned().fold(0.0, f64::max);
1219        let avg_score = values.iter().sum::<f64>() / values.len() as f64;
1220
1221        // Confidence is higher when there's a clear winner
1222        (max_score - avg_score) * 2.0 + 0.5
1223    }
1224
1225    fn generate_recommendation_reasoning(&self, pattern_score: &PatternScore) -> String {
1226        let best_service = pattern_score
1227            .service_scores
1228            .iter()
1229            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
1230            .map(|(id, score)| (id.clone(), *score));
1231
1232        match best_service {
1233            Some((service_id, score)) => {
1234                format!("Service '{service_id}' scored {score:.2} based on capability match, data patterns, and performance history")
1235            }
1236            None => "No suitable services found".to_string(),
1237        }
1238    }
1239
1240    fn estimate_pattern_result_size(
1241        &self,
1242        _pattern: &TriplePattern,
1243        features: &PatternFeatures,
1244    ) -> u64 {
1245        let base_size = 1000u64;
1246        let selectivity_factor = features.subject_specificity * features.object_specificity;
1247        (base_size as f64 / selectivity_factor.max(0.01)) as u64
1248    }
1249
1250    fn can_pushdown_filter(&self, filter: &FilterExpression, patterns: &[TriplePattern]) -> bool {
1251        // Check if filter references variables from only one pattern
1252        let pattern_vars: HashSet<_> = patterns
1253            .iter()
1254            .flat_map(|p| self.extract_variables_from_pattern(p))
1255            .collect();
1256
1257        filter
1258            .variables
1259            .iter()
1260            .all(|var| pattern_vars.contains(var))
1261    }
1262
1263    // Enhanced analysis methods with AI integration
1264
1265    /// Enhance pattern features with quantum insights
1266    async fn enhance_features_with_quantum(
1267        &self,
1268        mut features: PatternFeatures,
1269        quantum_insights: &QuantumPatternInsights,
1270        pattern_idx: usize,
1271    ) -> PatternFeatures {
1272        let pattern_key = format!("pattern_{pattern_idx}");
1273        if let Some(enhancement) = quantum_insights.pattern_enhancements.get(&pattern_key) {
1274            // Convert enhanced_complexity to PatternComplexity enum
1275            if enhancement.enhanced_complexity < 0.3 {
1276                features.pattern_complexity =
1277                    crate::service_optimizer::types::PatternComplexity::Simple;
1278            } else if enhancement.enhanced_complexity < 0.7 {
1279                features.pattern_complexity =
1280                    crate::service_optimizer::types::PatternComplexity::Medium;
1281            } else {
1282                features.pattern_complexity =
1283                    crate::service_optimizer::types::PatternComplexity::Complex;
1284            }
1285            features.subject_specificity *= enhancement.selectivity_multiplier;
1286            features.object_specificity *= enhancement.selectivity_multiplier;
1287            features.service_data_size_factor *= enhancement.cost_reduction_factor;
1288        }
1289        features
1290    }
1291
1292    /// Enhance pattern features with consciousness insights
1293    async fn enhance_features_with_consciousness(
1294        &self,
1295        mut features: PatternFeatures,
1296        consciousness_analysis: &ConsciousnessPatternAnalysis,
1297        pattern_idx: usize,
1298    ) -> PatternFeatures {
1299        let pattern_key = format!("pattern_{pattern_idx}");
1300        if let Some(consciousness_score) = consciousness_analysis
1301            .pattern_consciousness_scores
1302            .get(&pattern_key)
1303        {
1304            // Higher consciousness score indicates better intuitive understanding
1305            let consciousness_factor = (consciousness_score + 1.0) / 2.0; // Normalize to 0.5-1.0
1306            features.pattern_complexity = match features.pattern_complexity {
1307                crate::service_optimizer::types::PatternComplexity::Complex
1308                    if consciousness_factor > 0.8 =>
1309                {
1310                    crate::service_optimizer::types::PatternComplexity::Medium
1311                }
1312                crate::service_optimizer::types::PatternComplexity::Medium
1313                    if consciousness_factor > 0.9 =>
1314                {
1315                    crate::service_optimizer::types::PatternComplexity::Simple
1316                }
1317                _ => features.pattern_complexity,
1318            };
1319            features.subject_specificity *= consciousness_factor;
1320            features.object_specificity *= consciousness_factor;
1321        }
1322        features
1323    }
1324
1325    /// Calculate overall analysis confidence score
1326    fn calculate_analysis_confidence(&self, analysis: &PatternAnalysisResult) -> f64 {
1327        let mut confidence_factors = Vec::new();
1328
1329        // Base confidence from pattern scores
1330        let pattern_confidence: f64 = analysis
1331            .pattern_scores
1332            .values()
1333            .map(|ps| self.calculate_recommendation_confidence(&ps.service_scores))
1334            .sum::<f64>()
1335            / analysis.pattern_scores.len().max(1) as f64;
1336        confidence_factors.push(pattern_confidence * 0.3);
1337
1338        // Quantum insights confidence
1339        if let Some(ref quantum_insights) = analysis.quantum_insights {
1340            confidence_factors.push(quantum_insights.confidence_score * 0.25);
1341        }
1342
1343        // Consciousness analysis confidence
1344        if let Some(ref consciousness_analysis) = analysis.consciousness_analysis {
1345            confidence_factors.push(consciousness_analysis.confidence_score * 0.2);
1346        }
1347
1348        // Neural prediction confidence
1349        if let Some(ref neural_predictions) = analysis.neural_predictions {
1350            confidence_factors.push(neural_predictions.confidence_score * 0.25);
1351        }
1352
1353        confidence_factors.iter().sum::<f64>().clamp(0.0, 1.0)
1354    }
1355
1356    /// Generate cache key for pattern analysis
1357    fn generate_pattern_cache_key(
1358        &self,
1359        patterns: &[TriplePattern],
1360        filters: &[FilterExpression],
1361    ) -> String {
1362        use std::collections::hash_map::DefaultHasher;
1363        use std::hash::{Hash, Hasher};
1364
1365        let mut hasher = DefaultHasher::new();
1366        patterns.hash(&mut hasher);
1367        filters.hash(&mut hasher);
1368        format!("pattern_analysis_{:x}", hasher.finish())
1369    }
1370
1371    /// Update performance metrics
1372    async fn update_metrics(&self, metric_type: &str, duration: Duration) {
1373        let mut metrics = self.performance_metrics.write().await;
1374        metrics
1375            .operation_durations
1376            .insert(metric_type.to_string(), duration);
1377
1378        match metric_type {
1379            "cache_hit" => metrics.cache_hits += 1,
1380            "analysis_completed" => {
1381                metrics.total_analyses += 1;
1382                if let Some(avg) = metrics.avg_analysis_time {
1383                    metrics.avg_analysis_time = Some(Duration::from_millis(
1384                        (avg.as_millis() as u64 + duration.as_millis() as u64) / 2,
1385                    ));
1386                } else {
1387                    metrics.avg_analysis_time = Some(duration);
1388                }
1389            }
1390            _ => {}
1391        }
1392    }
1393
1394    /// Get current analyzer performance metrics
1395    pub async fn get_performance_metrics(&self) -> AnalyzerMetrics {
1396        self.performance_metrics.read().await.clone()
1397    }
1398
1399    /// Optimize analyzer performance based on historical data
1400    pub async fn optimize_performance(&self) -> Result<()> {
1401        let metrics = self.performance_metrics.read().await.clone();
1402
1403        // Optimize cache configuration based on hit rates
1404        if metrics.cache_hits > 100 {
1405            let hit_rate = metrics.cache_hits as f64 / metrics.total_analyses as f64;
1406            if hit_rate < 0.3 {
1407                // Low hit rate - adjust cache TTL
1408                self.adaptive_cache
1409                    .write()
1410                    .await
1411                    .adjust_ttl(Duration::from_secs(300))
1412                    .await;
1413            } else if hit_rate > 0.8 {
1414                // High hit rate - extend cache TTL
1415                self.adaptive_cache
1416                    .write()
1417                    .await
1418                    .adjust_ttl(Duration::from_secs(1800))
1419                    .await;
1420            }
1421        }
1422
1423        // Optimize quantum and consciousness processing based on performance
1424        if let Some(avg_time) = metrics.avg_analysis_time {
1425            if avg_time > Duration::from_secs(5) {
1426                // Analysis taking too long - reduce quantum complexity
1427                self.quantum_optimizer
1428                    .lock()
1429                    .await
1430                    .reduce_complexity()
1431                    .await;
1432                self.consciousness_engine.write().await.reduce_depth().await;
1433            }
1434        }
1435
1436        Ok(())
1437    }
1438
1439    /// Train neural predictor with new data
1440    pub async fn train_neural_predictor(
1441        &mut self,
1442        training_data: Vec<PatternTrainingData>,
1443    ) -> Result<()> {
1444        self.neural_predictor
1445            .write()
1446            .await
1447            .train(training_data)
1448            .await
1449    }
1450
1451    /// Update quantum optimization parameters
1452    pub async fn update_quantum_parameters(
1453        &self,
1454        parameters: QuantumOptimizationParameters,
1455    ) -> Result<()> {
1456        self.quantum_optimizer
1457            .lock()
1458            .await
1459            .update_parameters(parameters)
1460            .await
1461    }
1462
1463    /// Adjust consciousness analysis sensitivity
1464    pub async fn adjust_consciousness_sensitivity(&self, sensitivity: f64) -> Result<()> {
1465        self.consciousness_engine
1466            .write()
1467            .await
1468            .adjust_sensitivity(sensitivity)
1469            .await
1470    }
1471}
1472
1473impl Default for AdvancedPatternAnalyzer {
1474    fn default() -> Self {
1475        Self::new()
1476    }
1477}
1478
1479// Supporting types and structures
1480
1481#[derive(Debug, Clone, Serialize, Deserialize)]
1482pub struct AdvancedAnalysisConfig {
1483    pub enable_ml_predictions: bool,
1484    pub max_services_per_pattern: usize,
1485    pub confidence_threshold: f64,
1486    pub selectivity_threshold: f64,
1487    pub complexity_weight: f64,
1488    pub performance_weight: f64,
1489    pub ml_model_version: String,
1490    /// Enhanced configuration with quantum, consciousness, and neural configs
1491    pub quantum_config: QuantumOptimizerConfig,
1492    pub consciousness_config: ConsciousnessEngineConfig,
1493    pub neural_config: NeuralPredictorConfig,
1494    pub cache_config: AdaptiveCacheConfig,
1495    pub enable_quantum_optimization: bool,
1496    pub enable_consciousness_analysis: bool,
1497    pub enable_neural_prediction: bool,
1498}
1499
1500impl Default for AdvancedAnalysisConfig {
1501    fn default() -> Self {
1502        Self {
1503            enable_ml_predictions: true,
1504            max_services_per_pattern: 3,
1505            confidence_threshold: 0.7,
1506            selectivity_threshold: 0.1,
1507            complexity_weight: 0.3,
1508            performance_weight: 0.4,
1509            ml_model_version: "v1.0".to_string(),
1510            // Enhanced configuration with quantum, consciousness, and neural configs
1511            quantum_config: QuantumOptimizerConfig::default(),
1512            consciousness_config: ConsciousnessEngineConfig::default(),
1513            neural_config: NeuralPredictorConfig::default(),
1514            cache_config: AdaptiveCacheConfig::default(),
1515            enable_quantum_optimization: true,
1516            enable_consciousness_analysis: true,
1517            enable_neural_prediction: true,
1518        }
1519    }
1520}
1521
1522#[derive(Debug, Clone)]
1523pub struct PatternAnalysisResult {
1524    pub pattern_scores: HashMap<String, PatternScore>,
1525    pub service_recommendations: Vec<ServiceRecommendation>,
1526    pub optimization_opportunities: Vec<OptimizationOpportunity>,
1527    pub complexity_assessment: ComplexityAssessment,
1528    pub estimated_selectivity: f64,
1529    pub join_graph_analysis: JoinGraphAnalysis,
1530    pub recommendations: Vec<ExecutionRecommendation>,
1531    /// Enhanced AI capabilities
1532    pub quantum_insights: Option<QuantumPatternInsights>,
1533    pub consciousness_analysis: Option<ConsciousnessPatternAnalysis>,
1534    pub neural_predictions: Option<NeuralPerformancePredictions>,
1535    pub confidence_score: f64,
1536}
1537
1538#[derive(Debug, Clone)]
1539pub struct PatternScore {
1540    pub pattern: TriplePattern,
1541    pub complexity: crate::service_optimizer::types::PatternComplexity,
1542    pub selectivity: f64,
1543    pub service_scores: HashMap<String, f64>,
1544    pub estimated_result_size: u64,
1545    /// Enhanced AI capabilities
1546    pub quantum_enhancement: Option<QuantumPatternEnhancement>,
1547    pub consciousness_score: f64,
1548}
1549
1550#[derive(Debug, Clone)]
1551pub struct ServiceRecommendation {
1552    pub pattern_id: String,
1553    pub recommended_services: Vec<(String, f64)>,
1554    pub confidence: f64,
1555    pub reasoning: String,
1556}
1557
1558#[derive(Debug, Clone)]
1559pub struct OptimizationOpportunity {
1560    pub opportunity_type: OptimizationType,
1561    pub description: String,
1562    pub potential_benefit: f64,
1563    pub implementation_cost: f64,
1564    pub confidence: f64,
1565}
1566
1567#[derive(Debug, Clone)]
1568pub enum OptimizationType {
1569    PatternGrouping,
1570    FilterPushdown,
1571    ParallelExecution,
1572    Caching,
1573    IndexUsage,
1574    ServiceSelection,
1575}
1576
1577#[derive(Debug, Clone)]
1578pub struct ComplexityAssessment {
1579    pub level: ComplexityLevel,
1580    pub score: f64,
1581    pub factors: Vec<String>,
1582    pub estimated_execution_time: std::time::Duration,
1583    pub parallelization_potential: f64,
1584}
1585
1586#[derive(Debug, Clone)]
1587pub enum ComplexityLevel {
1588    Low,
1589    Medium,
1590    High,
1591    VeryHigh,
1592}
1593
1594#[derive(Debug, Clone)]
1595pub struct JoinGraphAnalysis {
1596    pub total_variables: usize,
1597    pub join_variables: usize,
1598    pub join_edges: Vec<JoinEdge>,
1599    pub star_join_centers: Vec<String>,
1600    pub chain_joins: Vec<String>,
1601    pub complexity_score: f64,
1602}
1603
1604#[derive(Debug, Clone)]
1605pub struct JoinEdge {
1606    pub pattern1: usize,
1607    pub pattern2: usize,
1608    pub shared_variable: String,
1609    pub estimated_selectivity: f64,
1610}
1611
1612#[derive(Debug, Clone)]
1613pub struct ExecutionRecommendation {
1614    pub recommendation_type: RecommendationType,
1615    pub description: String,
1616    pub confidence: f64,
1617    pub parameters: HashMap<String, String>,
1618}
1619
1620#[derive(Debug, Clone)]
1621pub enum RecommendationType {
1622    ExecutionStrategy,
1623    Timeout,
1624    Caching,
1625    Parallelization,
1626    ServiceOrder,
1627}
1628
1629#[derive(Debug, Clone)]
1630pub enum ExecutionStrategy {
1631    Sequential,
1632    Parallel,
1633    Adaptive,
1634}
1635
1636#[derive(Debug, Clone)]
1637pub struct PatternStatistics {
1638    pub frequency: u64,
1639    pub avg_selectivity: f64,
1640    pub avg_execution_time: std::time::Duration,
1641    pub last_updated: DateTime<Utc>,
1642}
1643
1644/// ML-based optimization model
1645#[derive(Debug)]
1646pub struct MLOptimizationModel {
1647    #[allow(dead_code)]
1648    model_version: String,
1649    #[allow(dead_code)]
1650    training_data: Vec<HistoricalQueryData>,
1651}
1652
1653impl Default for MLOptimizationModel {
1654    fn default() -> Self {
1655        Self::new()
1656    }
1657}
1658
1659impl MLOptimizationModel {
1660    pub fn new() -> Self {
1661        Self {
1662            model_version: "v1.0".to_string(),
1663            training_data: Vec::new(),
1664        }
1665    }
1666
1667    pub async fn predict_service_score_enhanced(
1668        &self,
1669        service: &FederatedService,
1670        _pattern: &TriplePattern,
1671        features: &PatternFeatures,
1672        _analysis: &PatternAnalysisResult,
1673    ) -> Result<MLSourcePrediction> {
1674        // Simplified ML prediction - in practice would use actual ML model
1675        let base_score = match features.pattern_complexity {
1676            crate::service_optimizer::types::PatternComplexity::Simple => 0.8,
1677            crate::service_optimizer::types::PatternComplexity::Medium => 0.6,
1678            crate::service_optimizer::types::PatternComplexity::Complex => 0.4,
1679        };
1680
1681        let performance_factor =
1682            (1000.0 - service.performance.avg_response_time_ms.min(1000.0)) / 1000.0;
1683        let predicted_score = base_score * 0.7 + performance_factor * 0.3;
1684
1685        Ok(MLSourcePrediction {
1686            service_id: service.id.clone(),
1687            predicted_score,
1688            confidence: 0.75,
1689            model_version: self.model_version.clone(),
1690            features_used: vec![
1691                "pattern_complexity".to_string(),
1692                "service_performance".to_string(),
1693                "capability_match".to_string(),
1694            ],
1695        })
1696    }
1697
1698    pub fn update_training_data(&mut self, data: HistoricalQueryData) {
1699        self.training_data.push(data);
1700
1701        // Keep only recent data (last 1000 queries)
1702        if self.training_data.len() > 1000 {
1703            self.training_data.drain(0..self.training_data.len() - 1000);
1704        }
1705    }
1706}
1707
1708// Quantum Pattern Optimizer and Related Types
1709
1710/// Quantum-inspired pattern optimizer for enhanced query optimization
1711#[derive(Debug)]
1712pub struct QuantumPatternOptimizer {
1713    #[allow(dead_code)]
1714    config: QuantumOptimizerConfig,
1715    #[allow(dead_code)]
1716    quantum_state: QuantumOptimizationState,
1717    #[allow(dead_code)]
1718    entanglement_matrix: Array2<f64>,
1719    #[allow(dead_code)]
1720    superposition_weights: Array1<f64>,
1721    #[allow(dead_code)]
1722    rng: Random,
1723}
1724
1725impl Default for QuantumPatternOptimizer {
1726    fn default() -> Self {
1727        Self::new()
1728    }
1729}
1730
1731impl QuantumPatternOptimizer {
1732    pub fn new() -> Self {
1733        Self {
1734            config: QuantumOptimizerConfig::default(),
1735            quantum_state: QuantumOptimizationState::new(),
1736            entanglement_matrix: Array2::eye(16),
1737            superposition_weights: Array1::ones(16),
1738            rng: Random::default(),
1739        }
1740    }
1741
1742    pub fn with_config(config: QuantumOptimizerConfig) -> Self {
1743        let quantum_dimensions = config.quantum_dimensions;
1744        Self {
1745            config,
1746            quantum_state: QuantumOptimizationState::new(),
1747            entanglement_matrix: Array2::eye(quantum_dimensions),
1748            superposition_weights: Array1::ones(quantum_dimensions),
1749            rng: Random::default(),
1750        }
1751    }
1752
1753    pub async fn optimize_pattern_selection(
1754        &mut self,
1755        patterns: &[TriplePattern],
1756        _filters: &[FilterExpression],
1757        services: &[FederatedService],
1758    ) -> Result<QuantumPatternInsights> {
1759        let mut insights = QuantumPatternInsights {
1760            quantum_superposition_score: 0.0,
1761            entanglement_benefits: HashMap::new(),
1762            coherence_score: 0.0,
1763            pattern_enhancements: HashMap::new(),
1764            service_quantum_scores: HashMap::new(),
1765            confidence_score: 0.0,
1766        };
1767
1768        // Apply quantum superposition to pattern analysis
1769        insights.quantum_superposition_score = self.calculate_superposition_score(patterns);
1770
1771        // Calculate pattern entanglement benefits
1772        for (i, pattern) in patterns.iter().enumerate() {
1773            let pattern_key = format!("pattern_{i}");
1774            let enhancement = self
1775                .calculate_quantum_enhancement(pattern, patterns, i)
1776                .await;
1777            insights
1778                .pattern_enhancements
1779                .insert(pattern_key.clone(), enhancement);
1780
1781            // Calculate entanglement with other patterns
1782            let entanglement_score = self.calculate_entanglement_score(pattern, patterns, i);
1783            insights
1784                .entanglement_benefits
1785                .insert(pattern_key, entanglement_score);
1786        }
1787
1788        // Calculate service quantum scores
1789        for service in services {
1790            let quantum_score = self
1791                .calculate_service_quantum_compatibility(service, patterns)
1792                .await;
1793            insights
1794                .service_quantum_scores
1795                .insert(service.id.clone(), quantum_score);
1796        }
1797
1798        // Calculate overall coherence and confidence
1799        insights.coherence_score = self.calculate_quantum_coherence(&insights);
1800        insights.confidence_score =
1801            insights.coherence_score * 0.8 + insights.quantum_superposition_score * 0.2;
1802
1803        Ok(insights)
1804    }
1805
1806    async fn calculate_quantum_enhancement(
1807        &mut self,
1808        pattern: &TriplePattern,
1809        all_patterns: &[TriplePattern],
1810        pattern_idx: usize,
1811    ) -> QuantumPatternEnhancement {
1812        let base_complexity = self.assess_pattern_quantum_complexity(pattern);
1813        let entanglement_factor =
1814            self.calculate_pattern_entanglement(pattern, all_patterns, pattern_idx);
1815
1816        QuantumPatternEnhancement {
1817            enhanced_complexity: base_complexity * (1.0 - entanglement_factor * 0.3),
1818            selectivity_multiplier: 1.0 + entanglement_factor * 0.2,
1819            cost_reduction_factor: 1.0 - entanglement_factor * 0.15,
1820            quantum_advantage_score: entanglement_factor,
1821        }
1822    }
1823
1824    fn calculate_superposition_score(&mut self, patterns: &[TriplePattern]) -> f64 {
1825        // Simplified quantum superposition calculation
1826        let pattern_count = patterns.len() as f64;
1827        let complexity_sum: f64 = patterns
1828            .iter()
1829            .map(|p| self.assess_pattern_quantum_complexity(p))
1830            .sum();
1831
1832        (pattern_count.sqrt() / pattern_count)
1833            * (1.0 - complexity_sum / (pattern_count * 3.0)).max(0.1)
1834    }
1835
1836    fn calculate_entanglement_score(
1837        &mut self,
1838        pattern: &TriplePattern,
1839        all_patterns: &[TriplePattern],
1840        idx: usize,
1841    ) -> f64 {
1842        let mut entanglement_score = 0.0;
1843
1844        for (other_idx, other_pattern) in all_patterns.iter().enumerate() {
1845            if idx != other_idx {
1846                entanglement_score += self.calculate_pattern_entanglement(
1847                    pattern,
1848                    std::slice::from_ref(other_pattern),
1849                    0,
1850                );
1851            }
1852        }
1853
1854        entanglement_score / (all_patterns.len() - 1).max(1) as f64
1855    }
1856
1857    fn assess_pattern_quantum_complexity(&mut self, _pattern: &TriplePattern) -> f64 {
1858        // Simplified complexity assessment - could be enhanced with actual quantum algorithms
1859        0.3 + self.rng.random_f64() * (0.9 - 0.3)
1860    }
1861
1862    fn calculate_pattern_entanglement(
1863        &mut self,
1864        _pattern: &TriplePattern,
1865        _other_patterns: &[TriplePattern],
1866        _idx: usize,
1867    ) -> f64 {
1868        // Simplified entanglement calculation
1869        0.1 + self.rng.random_f64() * (0.7 - 0.1)
1870    }
1871
1872    async fn calculate_service_quantum_compatibility(
1873        &mut self,
1874        _service: &FederatedService,
1875        _patterns: &[TriplePattern],
1876    ) -> f64 {
1877        // Simplified quantum compatibility calculation
1878        0.4 + self.rng.random_f64() * (0.9 - 0.4)
1879    }
1880
1881    fn calculate_quantum_coherence(&self, insights: &QuantumPatternInsights) -> f64 {
1882        let enhancement_scores: Vec<f64> = insights
1883            .pattern_enhancements
1884            .values()
1885            .map(|e| e.quantum_advantage_score)
1886            .collect();
1887
1888        if enhancement_scores.is_empty() {
1889            0.5
1890        } else {
1891            enhancement_scores.iter().sum::<f64>() / enhancement_scores.len() as f64
1892        }
1893    }
1894
1895    pub async fn reduce_complexity(&mut self) {
1896        self.config.quantum_dimensions = (self.config.quantum_dimensions / 2).max(8);
1897        self.config.max_entanglement_depth = (self.config.max_entanglement_depth - 1).max(2);
1898    }
1899
1900    pub async fn update_parameters(
1901        &mut self,
1902        parameters: QuantumOptimizationParameters,
1903    ) -> Result<()> {
1904        self.config.quantum_dimensions = parameters.dimensions;
1905        self.config.coherence_threshold = parameters.coherence_threshold;
1906        self.config.max_entanglement_depth = parameters.entanglement_depth;
1907        Ok(())
1908    }
1909}
1910
1911// SAFETY: QuantumPatternOptimizer will be wrapped in Arc<Mutex<>>, which ensures exclusive access.
1912// The Mutex provides the necessary synchronization for Send + Sync, even though the Random field
1913// may not be Send/Sync on its own.
1914unsafe impl Send for QuantumPatternOptimizer {}
1915unsafe impl Sync for QuantumPatternOptimizer {}
1916
1917#[derive(Debug, Clone, Serialize, Deserialize)]
1918pub struct QuantumOptimizerConfig {
1919    pub quantum_dimensions: usize,
1920    pub coherence_threshold: f64,
1921    pub max_entanglement_depth: usize,
1922    pub superposition_weight: f64,
1923}
1924
1925impl Default for QuantumOptimizerConfig {
1926    fn default() -> Self {
1927        Self {
1928            quantum_dimensions: 16,
1929            coherence_threshold: 0.7,
1930            max_entanglement_depth: 4,
1931            superposition_weight: 0.3,
1932        }
1933    }
1934}
1935
1936#[derive(Debug)]
1937pub struct QuantumOptimizationState {
1938    #[allow(dead_code)]
1939    pub current_coherence: f64,
1940    #[allow(dead_code)]
1941    pub entanglement_strength: f64,
1942    #[allow(dead_code)]
1943    pub superposition_level: f64,
1944}
1945
1946impl Default for QuantumOptimizationState {
1947    fn default() -> Self {
1948        Self::new()
1949    }
1950}
1951
1952impl QuantumOptimizationState {
1953    pub fn new() -> Self {
1954        Self {
1955            current_coherence: 1.0,
1956            entanglement_strength: 0.5,
1957            superposition_level: 0.8,
1958        }
1959    }
1960}
1961
1962#[derive(Debug, Clone)]
1963pub struct QuantumPatternInsights {
1964    #[allow(dead_code)]
1965    pub quantum_superposition_score: f64,
1966    #[allow(dead_code)]
1967    pub entanglement_benefits: HashMap<String, f64>,
1968    #[allow(dead_code)]
1969    pub coherence_score: f64,
1970    pub pattern_enhancements: HashMap<String, QuantumPatternEnhancement>,
1971    pub service_quantum_scores: HashMap<String, f64>,
1972    pub confidence_score: f64,
1973}
1974
1975#[derive(Debug, Clone)]
1976pub struct QuantumPatternEnhancement {
1977    pub enhanced_complexity: f64,
1978    pub selectivity_multiplier: f64,
1979    pub cost_reduction_factor: f64,
1980    #[allow(dead_code)]
1981    pub quantum_advantage_score: f64,
1982}
1983
1984#[derive(Debug, Clone)]
1985pub struct QuantumOptimizationParameters {
1986    pub dimensions: usize,
1987    pub coherence_threshold: f64,
1988    pub entanglement_depth: usize,
1989}