1use anyhow::Result;
8use chrono::{DateTime, Utc};
9use scirs2_core::ndarray_ext::{Array1, Array2};
10use scirs2_core::random::Random;
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, HashSet};
13use std::sync::Arc;
14use std::time::{Duration, Instant};
15use tokio::sync::{Mutex, RwLock};
16use tracing::{debug, info};
17
18use crate::{
19 planner::planning::{FilterExpression, TriplePattern},
20 service::ServiceCapability,
21 service_optimizer::types::{HistoricalQueryData, MLSourcePrediction, PatternFeatures},
22 FederatedService,
23};
24
25#[derive(Debug, Clone)]
27pub struct ConsciousnessAnalysis {
28 pub consciousness_score: f64,
29 pub awareness_level: String,
30 pub pattern_insights: Vec<String>,
31 pub optimization_suggestions: Vec<String>,
32 #[allow(dead_code)]
33 pub complexity_metrics: Vec<f64>,
34}
35
36#[derive(Debug, Clone)]
38pub struct ConsciousnessPatternEngine {
39 #[allow(dead_code)]
40 pub(crate) analysis_depth: usize,
41 #[allow(dead_code)]
42 pub(crate) pattern_cache: HashMap<String, String>,
43}
44
45impl Default for ConsciousnessPatternEngine {
46 fn default() -> Self {
47 Self::new()
48 }
49}
50
51impl ConsciousnessPatternEngine {
52 pub fn new() -> Self {
53 Self {
54 analysis_depth: 10,
55 pattern_cache: HashMap::new(),
56 }
57 }
58
59 pub fn with_config(config: ConsciousnessEngineConfig) -> Self {
60 Self {
61 analysis_depth: config.max_depth,
62 pattern_cache: HashMap::new(),
63 }
64 }
65
66 pub async fn reduce_depth(&mut self) {
67 self.analysis_depth = (self.analysis_depth / 2).max(1);
68 }
69
70 pub async fn adjust_sensitivity(&mut self, _sensitivity: f64) -> Result<()> {
71 Ok(())
73 }
74
75 pub async fn analyze_pattern_consciousness(
77 &self,
78 patterns: &[(usize, TriplePattern)],
79 filters: &[FilterExpression],
80 services: &[&FederatedService],
81 ) -> Result<ConsciousnessAnalysis> {
82 let consciousness_score = patterns.len() as f64 * 0.1;
84 let awareness_level = if services.len() > 3 { "high" } else { "medium" }.to_string();
85 let pattern_complexity = patterns.len() + filters.len();
86
87 Ok(ConsciousnessAnalysis {
88 consciousness_score,
89 awareness_level,
90 pattern_insights: patterns
91 .iter()
92 .map(|(idx, p)| format!("Pattern {}: {}", idx, p.pattern_string))
93 .collect(),
94 optimization_suggestions: vec![
95 "Consider pattern reordering for better performance".to_string()
96 ],
97 complexity_metrics: vec![pattern_complexity as f64],
98 })
99 }
100}
101
102#[derive(Debug, Clone)]
104pub struct NeuralPerformancePredictor {
105 #[allow(dead_code)]
106 pub(crate) model_weights: Vec<f64>,
107 #[allow(dead_code)]
108 pub(crate) prediction_cache: HashMap<String, f64>,
109}
110
111impl Default for NeuralPerformancePredictor {
112 fn default() -> Self {
113 Self::new()
114 }
115}
116
117impl NeuralPerformancePredictor {
118 pub fn new() -> Self {
119 Self {
120 model_weights: vec![1.0; 10],
121 prediction_cache: HashMap::new(),
122 }
123 }
124
125 pub fn with_config(config: NeuralPredictorConfig) -> Self {
126 Self {
127 model_weights: vec![1.0; config.model_complexity],
128 prediction_cache: HashMap::new(),
129 }
130 }
131
132 pub async fn predict_pattern_performance(
133 &self,
134 patterns: &[TriplePattern],
135 _filters: &[FilterExpression],
136 _services: &[FederatedService],
137 ) -> Result<NeuralPerformancePredictions> {
138 let complexity_factor = patterns.len() as f64;
139 Ok(NeuralPerformancePredictions {
140 execution_time: 100.0 * complexity_factor,
141 resource_usage: 0.5,
142 success_probability: 0.9,
143 confidence_score: 0.8,
144 service_neural_scores: HashMap::new(),
145 })
146 }
147
148 pub async fn train(&mut self, _training_data: Vec<PatternTrainingData>) -> Result<()> {
149 Ok(())
151 }
152}
153
154#[derive(Debug, Clone)]
156pub struct AdaptivePatternCache {
157 #[allow(dead_code)]
158 pub(crate) cache_entries: HashMap<String, CachedPatternAnalysis>,
159 #[allow(dead_code)]
160 pub(crate) max_size: usize,
161}
162
163impl Default for AdaptivePatternCache {
164 fn default() -> Self {
165 Self::new()
166 }
167}
168
169impl AdaptivePatternCache {
170 pub fn new() -> Self {
171 Self {
172 cache_entries: HashMap::new(),
173 max_size: 1000,
174 }
175 }
176
177 pub fn with_config(config: AdaptiveCacheConfig) -> Self {
178 Self {
179 cache_entries: HashMap::new(),
180 max_size: config.max_entries,
181 }
182 }
183
184 pub async fn put(&mut self, key: String, value: CachedPatternAnalysis) {
185 if self.cache_entries.len() >= self.max_size {
186 if let Some(oldest_key) = self.cache_entries.keys().next().cloned() {
188 self.cache_entries.remove(&oldest_key);
189 }
190 }
191 self.cache_entries.insert(key, value);
192 }
193
194 pub async fn adjust_ttl(&mut self, _new_ttl: Duration) {
195 }
197}
198
199#[derive(Debug, Clone)]
201pub struct CachedPatternAnalysis {
202 pub result: PatternAnalysisResult,
203 pub timestamp: DateTime<Utc>,
204 #[allow(dead_code)]
205 pub access_count: usize,
206}
207
208impl CachedPatternAnalysis {
209 pub fn is_expired(&self) -> bool {
210 use chrono::Utc;
211 let now = Utc::now();
212 let age = now.signed_duration_since(self.timestamp);
213 age.num_hours() > 24 }
215}
216
217#[derive(Debug, Clone, Default)]
219pub struct AnalyzerMetrics {
220 #[allow(dead_code)]
221 pub total_analyses: usize,
222 #[allow(dead_code)]
223 pub cache_hits: usize,
224 #[allow(dead_code)]
225 pub cache_misses: usize,
226 #[allow(dead_code)]
227 pub avg_analysis_time: Option<Duration>,
228 #[allow(dead_code)]
229 pub operation_durations: HashMap<String, Duration>,
230}
231
232#[derive(Debug, Clone)]
234pub struct ConsciousnessPatternAnalysis {
235 pub depth_score: f64,
236 pub complexity_factors: Vec<String>,
237 pub optimization_suggestions: Vec<String>,
238 pub pattern_consciousness_scores: HashMap<String, f64>,
239 pub confidence_score: f64,
240 #[allow(dead_code)]
241 pub service_consciousness_scores: HashMap<String, f64>,
242}
243
244#[derive(Debug, Clone)]
246pub struct NeuralPerformancePredictions {
247 pub execution_time: f64,
248 #[allow(dead_code)]
249 pub resource_usage: f64,
250 #[allow(dead_code)]
251 pub success_probability: f64,
252 pub confidence_score: f64,
253 pub service_neural_scores: HashMap<String, f64>,
254}
255
256#[derive(Debug, Clone)]
258pub struct PatternTrainingData {
259 #[allow(dead_code)]
260 pub patterns: Vec<String>,
261 #[allow(dead_code)]
262 pub performance_metrics: Vec<f64>,
263 #[allow(dead_code)]
264 pub labels: Vec<bool>,
265}
266
267#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
269pub struct ConsciousnessEngineConfig {
270 pub max_depth: usize,
271 pub analysis_threshold: f64,
272 pub enable_deep_learning: bool,
273}
274
275impl Default for ConsciousnessEngineConfig {
276 fn default() -> Self {
277 Self {
278 max_depth: 10,
279 analysis_threshold: 0.8,
280 enable_deep_learning: true,
281 }
282 }
283}
284
285#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
287pub struct NeuralPredictorConfig {
288 pub learning_rate: f64,
289 pub batch_size: usize,
290 pub hidden_layers: Vec<usize>,
291 pub model_complexity: usize,
292}
293
294impl Default for NeuralPredictorConfig {
295 fn default() -> Self {
296 Self {
297 learning_rate: 0.001,
298 batch_size: 32,
299 hidden_layers: vec![128, 64, 32],
300 model_complexity: 10,
301 }
302 }
303}
304
305#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
307pub struct AdaptiveCacheConfig {
308 pub max_entries: usize,
309 pub ttl_seconds: u64,
310 pub eviction_policy: String,
311}
312
313impl Default for AdaptiveCacheConfig {
314 fn default() -> Self {
315 Self {
316 max_entries: 10000,
317 ttl_seconds: 3600,
318 eviction_policy: "lru".to_string(),
319 }
320 }
321}
322
323#[derive(Debug)]
325pub struct AdvancedPatternAnalyzer {
326 config: AdvancedAnalysisConfig,
327 pattern_statistics: HashMap<String, PatternStatistics>,
328 ml_model: Option<MLOptimizationModel>,
329 quantum_optimizer: Arc<Mutex<QuantumPatternOptimizer>>,
330 consciousness_engine: Arc<RwLock<ConsciousnessPatternEngine>>,
331 neural_predictor: Arc<RwLock<NeuralPerformancePredictor>>,
332 adaptive_cache: Arc<RwLock<AdaptivePatternCache>>,
333 #[allow(dead_code)]
334 query_history: Vec<HistoricalQueryData>,
335 performance_metrics: Arc<RwLock<AnalyzerMetrics>>,
336}
337
338impl AdvancedPatternAnalyzer {
339 pub fn new() -> Self {
341 Self {
342 config: AdvancedAnalysisConfig::default(),
343 pattern_statistics: HashMap::new(),
344 ml_model: None,
345 quantum_optimizer: Arc::new(Mutex::new(QuantumPatternOptimizer::new())),
346 consciousness_engine: Arc::new(RwLock::new(ConsciousnessPatternEngine::new())),
347 neural_predictor: Arc::new(RwLock::new(NeuralPerformancePredictor::new())),
348 adaptive_cache: Arc::new(RwLock::new(AdaptivePatternCache::new())),
349 query_history: Vec::new(),
350 performance_metrics: Arc::new(RwLock::new(AnalyzerMetrics::default())),
351 }
352 }
353
354 pub fn with_config(config: AdvancedAnalysisConfig) -> Self {
356 let quantum_optimizer = Arc::new(Mutex::new(QuantumPatternOptimizer::with_config(
357 config.quantum_config.clone(),
358 )));
359 let consciousness_engine = Arc::new(RwLock::new(ConsciousnessPatternEngine::with_config(
360 config.consciousness_config.clone(),
361 )));
362 let neural_predictor = Arc::new(RwLock::new(NeuralPerformancePredictor::with_config(
363 config.neural_config.clone(),
364 )));
365 let adaptive_cache = Arc::new(RwLock::new(AdaptivePatternCache::with_config(
366 config.cache_config.clone(),
367 )));
368
369 Self {
370 config,
371 pattern_statistics: HashMap::new(),
372 ml_model: Some(MLOptimizationModel::new()),
373 quantum_optimizer,
374 consciousness_engine,
375 neural_predictor,
376 adaptive_cache,
377 query_history: Vec::new(),
378 performance_metrics: Arc::new(RwLock::new(AnalyzerMetrics::default())),
379 }
380 }
381
382 pub async fn analyze_query_patterns(
384 &self,
385 patterns: &[TriplePattern],
386 filters: &[FilterExpression],
387 services: &[FederatedService],
388 ) -> Result<PatternAnalysisResult> {
389 let start_time = Instant::now();
390 info!(
391 "Analyzing {} patterns across {} services with quantum consciousness enhancement",
392 patterns.len(),
393 services.len()
394 );
395
396 let cache_key = self.generate_pattern_cache_key(patterns, filters);
398 if let Some(cached_result) = self
399 .adaptive_cache
400 .read()
401 .await
402 .cache_entries
403 .get(&cache_key)
404 {
405 if !cached_result.is_expired() {
406 debug!("Using cached pattern analysis result");
407 self.update_metrics("cache_hit", start_time.elapsed()).await;
408 return Ok(cached_result.result.clone());
409 }
410 }
411
412 let mut analysis = PatternAnalysisResult {
414 pattern_scores: HashMap::new(),
415 service_recommendations: Vec::new(),
416 optimization_opportunities: Vec::new(),
417 complexity_assessment: self.assess_pattern_complexity(patterns, filters),
418 estimated_selectivity: self.estimate_overall_selectivity(patterns, filters),
419 join_graph_analysis: self.analyze_join_graph(patterns),
420 recommendations: Vec::new(),
421 quantum_insights: None,
422 consciousness_analysis: None,
423 neural_predictions: None,
424 confidence_score: 0.0,
425 };
426
427 if self.config.enable_quantum_optimization {
429 let quantum_insights = self
430 .quantum_optimizer
431 .lock()
432 .await
433 .optimize_pattern_selection(patterns, filters, services)
434 .await?;
435 analysis.quantum_insights = Some(quantum_insights);
436 }
437
438 if self.config.enable_consciousness_analysis {
440 let consciousness_analysis = self
441 .consciousness_engine
442 .read()
443 .await
444 .analyze_pattern_consciousness(
445 &patterns
446 .iter()
447 .enumerate()
448 .map(|(i, p)| (i, p.clone()))
449 .collect::<Vec<_>>(),
450 filters,
451 &services.iter().collect::<Vec<_>>(),
452 )
453 .await?;
454 analysis.consciousness_analysis = Some(ConsciousnessPatternAnalysis {
455 depth_score: consciousness_analysis.consciousness_score,
456 complexity_factors: consciousness_analysis.pattern_insights,
457 optimization_suggestions: consciousness_analysis.optimization_suggestions,
458 pattern_consciousness_scores: HashMap::new(),
459 confidence_score: consciousness_analysis.consciousness_score,
460 service_consciousness_scores: HashMap::new(),
461 });
462 }
463
464 if self.config.enable_neural_prediction {
466 let neural_predictions = self
467 .neural_predictor
468 .read()
469 .await
470 .predict_pattern_performance(patterns, filters, services)
471 .await?;
472 analysis.neural_predictions = Some(neural_predictions);
473 }
474
475 for (idx, pattern) in patterns.iter().enumerate() {
477 let mut pattern_features = self.extract_pattern_features(pattern, filters);
478
479 if let Some(ref quantum_insights) = analysis.quantum_insights {
481 pattern_features = self
482 .enhance_features_with_quantum(pattern_features, quantum_insights, idx)
483 .await;
484 }
485
486 if let Some(ref consciousness_analysis) = analysis.consciousness_analysis {
487 pattern_features = self
488 .enhance_features_with_consciousness(
489 pattern_features,
490 consciousness_analysis,
491 idx,
492 )
493 .await;
494 }
495
496 let service_scores = self
497 .score_services_for_pattern_enhanced(
498 pattern,
499 services,
500 &pattern_features,
501 &analysis,
502 )
503 .await?;
504
505 analysis.pattern_scores.insert(
506 format!("pattern_{idx}"),
507 PatternScore {
508 pattern: pattern.clone(),
509 complexity: pattern_features.pattern_complexity,
510 selectivity: pattern_features.subject_specificity,
511 service_scores,
512 estimated_result_size: self
513 .estimate_pattern_result_size(pattern, &pattern_features),
514 quantum_enhancement: analysis
515 .quantum_insights
516 .as_ref()
517 .and_then(|qi| qi.pattern_enhancements.get(&format!("pattern_{idx}")))
518 .cloned(),
519 consciousness_score: analysis
520 .consciousness_analysis
521 .as_ref()
522 .and_then(|ca| {
523 ca.pattern_consciousness_scores
524 .get(&format!("pattern_{idx}"))
525 })
526 .cloned()
527 .unwrap_or(0.0),
528 },
529 );
530 }
531
532 analysis.service_recommendations =
534 self.generate_enhanced_service_recommendations(&analysis)?;
535
536 analysis.optimization_opportunities =
538 self.identify_enhanced_optimization_opportunities(patterns, filters, &analysis)?;
539
540 analysis.recommendations = self.generate_enhanced_execution_recommendations(&analysis);
542
543 analysis.confidence_score = self.calculate_analysis_confidence(&analysis);
545
546 let cached_entry = CachedPatternAnalysis {
548 result: analysis.clone(),
549 timestamp: chrono::Utc::now(),
550 access_count: 0,
551 };
552 self.adaptive_cache
553 .write()
554 .await
555 .put(cache_key, cached_entry)
556 .await;
557
558 self.update_metrics("analysis_completed", start_time.elapsed())
560 .await;
561 self.performance_metrics.write().await.total_analyses += 1;
562
563 info!(
564 "Pattern analysis completed in {:?} with confidence score {:.2}",
565 start_time.elapsed(),
566 analysis.confidence_score
567 );
568
569 Ok(analysis)
570 }
571
572 fn extract_pattern_features(
574 &self,
575 pattern: &TriplePattern,
576 filters: &[FilterExpression],
577 ) -> PatternFeatures {
578 let mut features = PatternFeatures {
579 predicate_frequency: self.get_predicate_frequency(&pattern.predicate),
580 subject_specificity: self.calculate_specificity(&pattern.subject),
581 object_specificity: self.calculate_specificity(&pattern.object),
582 service_data_size_factor: 1.0,
583 pattern_complexity: self.assess_individual_pattern_complexity(pattern),
584 has_variables: pattern.subject.is_none()
585 || pattern.predicate.is_none()
586 || pattern.object.is_none(),
587 is_star_pattern: self.is_star_pattern(pattern),
588 };
589
590 for filter in filters {
592 if self.filter_applies_to_pattern(filter, pattern) {
593 features.subject_specificity *= 1.2; features.object_specificity *= 1.2;
595 }
596 }
597
598 features
599 }
600
601 async fn score_services_for_pattern_enhanced(
603 &self,
604 pattern: &TriplePattern,
605 services: &[FederatedService],
606 features: &PatternFeatures,
607 analysis: &PatternAnalysisResult,
608 ) -> Result<HashMap<String, f64>> {
609 let mut scores = HashMap::new();
610
611 for service in services {
612 let mut score = 0.0;
613
614 score += self.calculate_capability_score(service, pattern);
616
617 score += self.calculate_data_pattern_score(service, pattern);
619
620 score += self.calculate_performance_score(service, features);
622
623 if let Some(ref ml_model) = self.ml_model {
625 if let Ok(ml_score) = ml_model
626 .predict_service_score_enhanced(service, pattern, features, analysis)
627 .await
628 {
629 score += ml_score.predicted_score * 0.3; }
631 }
632
633 if let Some(ref quantum_insights) = analysis.quantum_insights {
635 if let Some(quantum_score) =
636 quantum_insights.service_quantum_scores.get(&service.id)
637 {
638 score += quantum_score * 0.2; }
640 }
641
642 if let Some(ref consciousness_analysis) = analysis.consciousness_analysis {
644 if let Some(consciousness_score) = consciousness_analysis
645 .service_consciousness_scores
646 .get(&service.id)
647 {
648 score += consciousness_score * 0.15; }
650 }
651
652 if let Some(ref neural_predictions) = analysis.neural_predictions {
654 if let Some(neural_score) =
655 neural_predictions.service_neural_scores.get(&service.id)
656 {
657 score += neural_score * 0.25; }
659 }
660
661 score = score.clamp(0.0, 1.0);
663 scores.insert(service.id.clone(), score);
664 }
665
666 Ok(scores)
667 }
668
669 fn calculate_capability_score(
671 &self,
672 service: &FederatedService,
673 pattern: &TriplePattern,
674 ) -> f64 {
675 let mut score = 0.0;
676
677 if service
679 .capabilities
680 .contains(&ServiceCapability::SparqlQuery)
681 {
682 score += 0.3;
683 }
684
685 if service
687 .capabilities
688 .contains(&ServiceCapability::Sparql11Query)
689 {
690 score += 0.2;
691 }
692
693 if pattern
695 .predicate
696 .as_ref()
697 .is_some_and(|p| p.contains("geo:"))
698 && service
699 .capabilities
700 .contains(&ServiceCapability::Geospatial)
701 {
702 score += 0.3;
703 }
704
705 if pattern
706 .object
707 .as_ref()
708 .is_some_and(|o| o.contains("\"") && o.len() > 20)
709 && service
710 .capabilities
711 .contains(&ServiceCapability::FullTextSearch)
712 {
713 score += 0.2;
714 }
715
716 score
717 }
718
719 fn calculate_data_pattern_score(
721 &self,
722 service: &FederatedService,
723 pattern: &TriplePattern,
724 ) -> f64 {
725 let mut score = 0.0;
726
727 for data_pattern in &service.data_patterns {
729 if data_pattern == "*" {
730 score += 0.1; } else if self.pattern_matches(pattern, data_pattern) {
732 score += 0.4; }
734 }
735
736 if let Some(ref predicate) = pattern.predicate {
738 if let Some(ref _metadata) = service.extended_metadata {
739 if predicate.contains("rdf:")
741 || predicate.contains("rdfs:")
742 || predicate.contains("owl:")
743 {
744 score += 0.2;
745 }
746 }
747 }
748
749 score
750 }
751
752 fn calculate_performance_score(
754 &self,
755 service: &FederatedService,
756 features: &PatternFeatures,
757 ) -> f64 {
758 let mut score = 0.0;
759
760 let avg_response_time = service.performance.avg_response_time_ms;
762 if avg_response_time < 100.0 {
763 score += 0.3;
764 } else if avg_response_time < 500.0 {
765 score += 0.2;
766 } else if avg_response_time < 1000.0 {
767 score += 0.1;
768 }
769
770 let reliability = service.performance.reliability_score;
772 score += reliability * 0.2;
773
774 match features.pattern_complexity {
776 crate::service_optimizer::types::PatternComplexity::Simple => score += 0.1,
777 crate::service_optimizer::types::PatternComplexity::Medium => {}
778 crate::service_optimizer::types::PatternComplexity::Complex => score -= 0.1,
779 }
780
781 score
782 }
783
784 fn assess_pattern_complexity(
786 &self,
787 patterns: &[TriplePattern],
788 filters: &[FilterExpression],
789 ) -> ComplexityAssessment {
790 let pattern_count = patterns.len();
791 let filter_count = filters.len();
792 let join_count = self.count_joins(patterns);
793
794 let base_complexity =
795 pattern_count as f64 + filter_count as f64 * 0.5 + join_count as f64 * 2.0;
796
797 let complexity_level = if base_complexity < 5.0 {
798 ComplexityLevel::Low
799 } else if base_complexity < 15.0 {
800 ComplexityLevel::Medium
801 } else if base_complexity < 30.0 {
802 ComplexityLevel::High
803 } else {
804 ComplexityLevel::VeryHigh
805 };
806
807 ComplexityAssessment {
808 level: complexity_level,
809 score: base_complexity,
810 factors: self.identify_complexity_factors(patterns, filters),
811 estimated_execution_time: self.estimate_execution_time(base_complexity),
812 parallelization_potential: self.assess_parallelization_potential(patterns),
813 }
814 }
815
816 fn estimate_overall_selectivity(
818 &self,
819 patterns: &[TriplePattern],
820 filters: &[FilterExpression],
821 ) -> f64 {
822 let mut selectivity = 1.0;
823
824 for pattern in patterns {
825 selectivity *= self.estimate_pattern_selectivity(pattern);
826 }
827
828 for filter in filters {
829 selectivity *= self.estimate_filter_selectivity(filter);
830 }
831
832 selectivity.clamp(0.001, 1.0) }
834
835 fn analyze_join_graph(&self, patterns: &[TriplePattern]) -> JoinGraphAnalysis {
837 let mut variables = HashMap::new();
838 let mut pattern_connections = Vec::new();
839
840 for (idx, pattern) in patterns.iter().enumerate() {
842 let pattern_vars = self.extract_variables_from_pattern(pattern);
843 for var in pattern_vars {
844 variables.entry(var).or_insert_with(Vec::new).push(idx);
845 }
846 }
847
848 for (var, pattern_indices) in &variables {
850 if pattern_indices.len() > 1 {
851 for i in 0..pattern_indices.len() {
852 for j in i + 1..pattern_indices.len() {
853 pattern_connections.push(JoinEdge {
854 pattern1: pattern_indices[i],
855 pattern2: pattern_indices[j],
856 shared_variable: var.clone(),
857 estimated_selectivity: self.estimate_join_selectivity(var),
858 });
859 }
860 }
861 }
862 }
863
864 JoinGraphAnalysis {
865 total_variables: variables.len(),
866 join_variables: variables
867 .iter()
868 .filter(|(_, indices)| indices.len() > 1)
869 .count(),
870 join_edges: pattern_connections,
871 star_join_centers: self.identify_star_join_centers(&variables),
872 chain_joins: self.identify_chain_joins(&variables),
873 complexity_score: self.calculate_join_complexity(&variables),
874 }
875 }
876
877 fn generate_enhanced_service_recommendations(
879 &self,
880 analysis: &PatternAnalysisResult,
881 ) -> Result<Vec<ServiceRecommendation>> {
882 let mut recommendations = Vec::new();
883
884 for (pattern_id, pattern_score) in &analysis.pattern_scores {
886 let mut sorted_services: Vec<_> = pattern_score.service_scores.iter().collect();
887 sorted_services.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
888
889 let top_services: Vec<_> = sorted_services
890 .into_iter()
891 .take(self.config.max_services_per_pattern)
892 .map(|(service_id, score)| (service_id.clone(), *score))
893 .collect();
894
895 recommendations.push(ServiceRecommendation {
896 pattern_id: pattern_id.clone(),
897 recommended_services: top_services,
898 confidence: self.calculate_recommendation_confidence(&pattern_score.service_scores),
899 reasoning: self.generate_recommendation_reasoning(pattern_score),
900 });
901 }
902
903 Ok(recommendations)
904 }
905
906 fn identify_enhanced_optimization_opportunities(
908 &self,
909 patterns: &[TriplePattern],
910 filters: &[FilterExpression],
911 analysis: &PatternAnalysisResult,
912 ) -> Result<Vec<OptimizationOpportunity>> {
913 let mut opportunities = Vec::new();
914
915 if patterns.len() > 3 {
917 opportunities.push(OptimizationOpportunity {
918 opportunity_type: OptimizationType::PatternGrouping,
919 description: "Multiple patterns can be grouped for efficient execution".to_string(),
920 potential_benefit: 0.3,
921 implementation_cost: 0.1,
922 confidence: 0.8,
923 });
924 }
925
926 for filter in filters {
928 if self.can_pushdown_filter(filter, patterns) {
929 opportunities.push(OptimizationOpportunity {
930 opportunity_type: OptimizationType::FilterPushdown,
931 description: format!(
932 "Filter '{}' can be pushed down to services",
933 filter.expression
934 ),
935 potential_benefit: 0.4,
936 implementation_cost: 0.05,
937 confidence: 0.9,
938 });
939 }
940 }
941
942 if analysis.join_graph_analysis.join_edges.len() < patterns.len() - 1 {
944 opportunities.push(OptimizationOpportunity {
945 opportunity_type: OptimizationType::ParallelExecution,
946 description: "Some patterns can be executed in parallel".to_string(),
947 potential_benefit: 0.5,
948 implementation_cost: 0.15,
949 confidence: 0.7,
950 });
951 }
952
953 for pattern_score in analysis.pattern_scores.values() {
955 if pattern_score.estimated_result_size < 1000 && pattern_score.selectivity > 0.1 {
956 opportunities.push(OptimizationOpportunity {
957 opportunity_type: OptimizationType::Caching,
958 description: "Pattern results are good candidates for caching".to_string(),
959 potential_benefit: 0.6,
960 implementation_cost: 0.1,
961 confidence: 0.8,
962 });
963 break;
964 }
965 }
966
967 Ok(opportunities)
968 }
969
970 fn generate_enhanced_execution_recommendations(
972 &self,
973 analysis: &PatternAnalysisResult,
974 ) -> Vec<ExecutionRecommendation> {
975 let mut recommendations = Vec::new();
976
977 let strategy = if analysis.complexity_assessment.parallelization_potential > 0.7 {
979 ExecutionStrategy::Parallel
980 } else if analysis.join_graph_analysis.complexity_score > 10.0 {
981 ExecutionStrategy::Sequential
982 } else {
983 ExecutionStrategy::Adaptive
984 };
985
986 recommendations.push(ExecutionRecommendation {
987 recommendation_type: RecommendationType::ExecutionStrategy,
988 description: format!("Use {strategy:?} execution strategy"),
989 confidence: 0.8,
990 parameters: HashMap::from([("strategy".to_string(), format!("{strategy:?}"))]),
991 });
992
993 let timeout = analysis
995 .complexity_assessment
996 .estimated_execution_time
997 .as_secs()
998 * 2;
999 recommendations.push(ExecutionRecommendation {
1000 recommendation_type: RecommendationType::Timeout,
1001 description: format!("Set timeout to {timeout} seconds"),
1002 confidence: 0.7,
1003 parameters: HashMap::from([("timeout_seconds".to_string(), timeout.to_string())]),
1004 });
1005
1006 if analysis
1008 .optimization_opportunities
1009 .iter()
1010 .any(|op| matches!(op.opportunity_type, OptimizationType::Caching))
1011 {
1012 recommendations.push(ExecutionRecommendation {
1013 recommendation_type: RecommendationType::Caching,
1014 description: "Enable result caching for this query".to_string(),
1015 confidence: 0.8,
1016 parameters: HashMap::from([("enable_cache".to_string(), "true".to_string())]),
1017 });
1018 }
1019
1020 recommendations
1021 }
1022
1023 fn get_predicate_frequency(&self, predicate: &Option<String>) -> f64 {
1025 predicate
1026 .as_ref()
1027 .and_then(|p| self.pattern_statistics.get(p))
1028 .map(|stats| stats.frequency as f64)
1029 .unwrap_or(1.0)
1030 }
1031
1032 fn calculate_specificity(&self, value: &Option<String>) -> f64 {
1033 match value {
1034 Some(v) if v.starts_with("http://") || v.starts_with("https://") => 0.9, Some(v) if v.starts_with("\"") && v.ends_with("\"") => 0.7, Some(_) => 0.5, None => 0.1, }
1039 }
1040
1041 fn assess_individual_pattern_complexity(
1042 &self,
1043 pattern: &TriplePattern,
1044 ) -> crate::service_optimizer::types::PatternComplexity {
1045 let var_count = [&pattern.subject, &pattern.predicate, &pattern.object]
1046 .iter()
1047 .filter(|x| x.is_none())
1048 .count();
1049
1050 match var_count {
1051 0 => crate::service_optimizer::types::PatternComplexity::Simple,
1052 1..=2 => crate::service_optimizer::types::PatternComplexity::Medium,
1053 _ => crate::service_optimizer::types::PatternComplexity::Complex,
1054 }
1055 }
1056
1057 fn is_star_pattern(&self, pattern: &TriplePattern) -> bool {
1058 pattern.subject.is_some() && pattern.predicate.is_none() && pattern.object.is_none()
1060 }
1061
1062 fn filter_applies_to_pattern(
1063 &self,
1064 filter: &FilterExpression,
1065 pattern: &TriplePattern,
1066 ) -> bool {
1067 let pattern_vars = self.extract_variables_from_pattern(pattern);
1068 filter
1069 .variables
1070 .iter()
1071 .any(|var| pattern_vars.contains(var))
1072 }
1073
1074 fn pattern_matches(&self, pattern: &TriplePattern, data_pattern: &str) -> bool {
1075 if data_pattern.contains("*") {
1077 return true;
1078 }
1079
1080 if let Some(predicate) = &pattern.predicate {
1081 return predicate.contains(data_pattern) || data_pattern.contains(predicate);
1082 }
1083
1084 false
1085 }
1086
1087 fn count_joins(&self, patterns: &[TriplePattern]) -> usize {
1088 let mut variables = HashSet::new();
1089 let mut join_count = 0;
1090
1091 for pattern in patterns {
1092 let pattern_vars = self.extract_variables_from_pattern(pattern);
1093 for var in pattern_vars {
1094 if variables.contains(&var) {
1095 join_count += 1;
1096 } else {
1097 variables.insert(var);
1098 }
1099 }
1100 }
1101
1102 join_count
1103 }
1104
1105 fn identify_complexity_factors(
1106 &self,
1107 patterns: &[TriplePattern],
1108 filters: &[FilterExpression],
1109 ) -> Vec<String> {
1110 let mut factors = Vec::new();
1111
1112 if patterns.len() > 10 {
1113 factors.push("High pattern count".to_string());
1114 }
1115
1116 if filters.len() > 5 {
1117 factors.push("Multiple filters".to_string());
1118 }
1119
1120 let join_count = self.count_joins(patterns);
1121 if join_count > 5 {
1122 factors.push("Complex join structure".to_string());
1123 }
1124
1125 factors
1126 }
1127
1128 fn estimate_execution_time(&self, complexity: f64) -> std::time::Duration {
1129 let base_time = 100; let complexity_factor = (complexity * 50.0) as u64;
1131 std::time::Duration::from_millis(base_time + complexity_factor)
1132 }
1133
1134 fn assess_parallelization_potential(&self, patterns: &[TriplePattern]) -> f64 {
1135 if patterns.len() < 2 {
1136 return 0.0;
1137 }
1138
1139 let independent_patterns = patterns.len() - self.count_joins(patterns);
1140 independent_patterns as f64 / patterns.len() as f64
1141 }
1142
1143 fn estimate_pattern_selectivity(&self, pattern: &TriplePattern) -> f64 {
1144 let bound_count = [&pattern.subject, &pattern.predicate, &pattern.object]
1145 .iter()
1146 .filter(|x| x.is_some())
1147 .count();
1148
1149 match bound_count {
1150 3 => 0.001, 2 => 0.01, 1 => 0.1, 0 => 1.0, _ => 0.1,
1155 }
1156 }
1157
1158 fn estimate_filter_selectivity(&self, filter: &FilterExpression) -> f64 {
1159 if filter.expression.contains("=") {
1161 0.1
1162 } else if filter.expression.contains("regex") || filter.expression.contains("CONTAINS") {
1163 0.3
1164 } else {
1165 0.5
1166 }
1167 }
1168
1169 fn extract_variables_from_pattern(&self, pattern: &TriplePattern) -> Vec<String> {
1170 let mut vars = Vec::new();
1171
1172 if pattern.subject.is_none() {
1173 vars.push("?s".to_string()); }
1175 if pattern.predicate.is_none() {
1176 vars.push("?p".to_string());
1177 }
1178 if pattern.object.is_none() {
1179 vars.push("?o".to_string());
1180 }
1181
1182 vars
1183 }
1184
1185 fn estimate_join_selectivity(&self, _variable: &str) -> f64 {
1186 0.1 }
1188
1189 fn identify_star_join_centers(&self, variables: &HashMap<String, Vec<usize>>) -> Vec<String> {
1190 variables
1191 .iter()
1192 .filter(|(_, patterns)| patterns.len() > 2)
1193 .map(|(var, _)| var.clone())
1194 .collect()
1195 }
1196
1197 fn identify_chain_joins(&self, variables: &HashMap<String, Vec<usize>>) -> Vec<String> {
1198 variables
1199 .iter()
1200 .filter(|(_, patterns)| patterns.len() == 2)
1201 .map(|(var, _)| var.clone())
1202 .collect()
1203 }
1204
1205 fn calculate_join_complexity(&self, variables: &HashMap<String, Vec<usize>>) -> f64 {
1206 variables
1207 .values()
1208 .map(|patterns| (patterns.len() * patterns.len()) as f64)
1209 .sum()
1210 }
1211
1212 fn calculate_recommendation_confidence(&self, scores: &HashMap<String, f64>) -> f64 {
1213 if scores.is_empty() {
1214 return 0.0;
1215 }
1216
1217 let values: Vec<f64> = scores.values().cloned().collect();
1218 let max_score = values.iter().cloned().fold(0.0, f64::max);
1219 let avg_score = values.iter().sum::<f64>() / values.len() as f64;
1220
1221 (max_score - avg_score) * 2.0 + 0.5
1223 }
1224
1225 fn generate_recommendation_reasoning(&self, pattern_score: &PatternScore) -> String {
1226 let best_service = pattern_score
1227 .service_scores
1228 .iter()
1229 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
1230 .map(|(id, score)| (id.clone(), *score));
1231
1232 match best_service {
1233 Some((service_id, score)) => {
1234 format!("Service '{service_id}' scored {score:.2} based on capability match, data patterns, and performance history")
1235 }
1236 None => "No suitable services found".to_string(),
1237 }
1238 }
1239
1240 fn estimate_pattern_result_size(
1241 &self,
1242 _pattern: &TriplePattern,
1243 features: &PatternFeatures,
1244 ) -> u64 {
1245 let base_size = 1000u64;
1246 let selectivity_factor = features.subject_specificity * features.object_specificity;
1247 (base_size as f64 / selectivity_factor.max(0.01)) as u64
1248 }
1249
1250 fn can_pushdown_filter(&self, filter: &FilterExpression, patterns: &[TriplePattern]) -> bool {
1251 let pattern_vars: HashSet<_> = patterns
1253 .iter()
1254 .flat_map(|p| self.extract_variables_from_pattern(p))
1255 .collect();
1256
1257 filter
1258 .variables
1259 .iter()
1260 .all(|var| pattern_vars.contains(var))
1261 }
1262
1263 async fn enhance_features_with_quantum(
1267 &self,
1268 mut features: PatternFeatures,
1269 quantum_insights: &QuantumPatternInsights,
1270 pattern_idx: usize,
1271 ) -> PatternFeatures {
1272 let pattern_key = format!("pattern_{pattern_idx}");
1273 if let Some(enhancement) = quantum_insights.pattern_enhancements.get(&pattern_key) {
1274 if enhancement.enhanced_complexity < 0.3 {
1276 features.pattern_complexity =
1277 crate::service_optimizer::types::PatternComplexity::Simple;
1278 } else if enhancement.enhanced_complexity < 0.7 {
1279 features.pattern_complexity =
1280 crate::service_optimizer::types::PatternComplexity::Medium;
1281 } else {
1282 features.pattern_complexity =
1283 crate::service_optimizer::types::PatternComplexity::Complex;
1284 }
1285 features.subject_specificity *= enhancement.selectivity_multiplier;
1286 features.object_specificity *= enhancement.selectivity_multiplier;
1287 features.service_data_size_factor *= enhancement.cost_reduction_factor;
1288 }
1289 features
1290 }
1291
1292 async fn enhance_features_with_consciousness(
1294 &self,
1295 mut features: PatternFeatures,
1296 consciousness_analysis: &ConsciousnessPatternAnalysis,
1297 pattern_idx: usize,
1298 ) -> PatternFeatures {
1299 let pattern_key = format!("pattern_{pattern_idx}");
1300 if let Some(consciousness_score) = consciousness_analysis
1301 .pattern_consciousness_scores
1302 .get(&pattern_key)
1303 {
1304 let consciousness_factor = (consciousness_score + 1.0) / 2.0; features.pattern_complexity = match features.pattern_complexity {
1307 crate::service_optimizer::types::PatternComplexity::Complex
1308 if consciousness_factor > 0.8 =>
1309 {
1310 crate::service_optimizer::types::PatternComplexity::Medium
1311 }
1312 crate::service_optimizer::types::PatternComplexity::Medium
1313 if consciousness_factor > 0.9 =>
1314 {
1315 crate::service_optimizer::types::PatternComplexity::Simple
1316 }
1317 _ => features.pattern_complexity,
1318 };
1319 features.subject_specificity *= consciousness_factor;
1320 features.object_specificity *= consciousness_factor;
1321 }
1322 features
1323 }
1324
1325 fn calculate_analysis_confidence(&self, analysis: &PatternAnalysisResult) -> f64 {
1327 let mut confidence_factors = Vec::new();
1328
1329 let pattern_confidence: f64 = analysis
1331 .pattern_scores
1332 .values()
1333 .map(|ps| self.calculate_recommendation_confidence(&ps.service_scores))
1334 .sum::<f64>()
1335 / analysis.pattern_scores.len().max(1) as f64;
1336 confidence_factors.push(pattern_confidence * 0.3);
1337
1338 if let Some(ref quantum_insights) = analysis.quantum_insights {
1340 confidence_factors.push(quantum_insights.confidence_score * 0.25);
1341 }
1342
1343 if let Some(ref consciousness_analysis) = analysis.consciousness_analysis {
1345 confidence_factors.push(consciousness_analysis.confidence_score * 0.2);
1346 }
1347
1348 if let Some(ref neural_predictions) = analysis.neural_predictions {
1350 confidence_factors.push(neural_predictions.confidence_score * 0.25);
1351 }
1352
1353 confidence_factors.iter().sum::<f64>().clamp(0.0, 1.0)
1354 }
1355
1356 fn generate_pattern_cache_key(
1358 &self,
1359 patterns: &[TriplePattern],
1360 filters: &[FilterExpression],
1361 ) -> String {
1362 use std::collections::hash_map::DefaultHasher;
1363 use std::hash::{Hash, Hasher};
1364
1365 let mut hasher = DefaultHasher::new();
1366 patterns.hash(&mut hasher);
1367 filters.hash(&mut hasher);
1368 format!("pattern_analysis_{:x}", hasher.finish())
1369 }
1370
1371 async fn update_metrics(&self, metric_type: &str, duration: Duration) {
1373 let mut metrics = self.performance_metrics.write().await;
1374 metrics
1375 .operation_durations
1376 .insert(metric_type.to_string(), duration);
1377
1378 match metric_type {
1379 "cache_hit" => metrics.cache_hits += 1,
1380 "analysis_completed" => {
1381 metrics.total_analyses += 1;
1382 if let Some(avg) = metrics.avg_analysis_time {
1383 metrics.avg_analysis_time = Some(Duration::from_millis(
1384 (avg.as_millis() as u64 + duration.as_millis() as u64) / 2,
1385 ));
1386 } else {
1387 metrics.avg_analysis_time = Some(duration);
1388 }
1389 }
1390 _ => {}
1391 }
1392 }
1393
1394 pub async fn get_performance_metrics(&self) -> AnalyzerMetrics {
1396 self.performance_metrics.read().await.clone()
1397 }
1398
1399 pub async fn optimize_performance(&self) -> Result<()> {
1401 let metrics = self.performance_metrics.read().await.clone();
1402
1403 if metrics.cache_hits > 100 {
1405 let hit_rate = metrics.cache_hits as f64 / metrics.total_analyses as f64;
1406 if hit_rate < 0.3 {
1407 self.adaptive_cache
1409 .write()
1410 .await
1411 .adjust_ttl(Duration::from_secs(300))
1412 .await;
1413 } else if hit_rate > 0.8 {
1414 self.adaptive_cache
1416 .write()
1417 .await
1418 .adjust_ttl(Duration::from_secs(1800))
1419 .await;
1420 }
1421 }
1422
1423 if let Some(avg_time) = metrics.avg_analysis_time {
1425 if avg_time > Duration::from_secs(5) {
1426 self.quantum_optimizer
1428 .lock()
1429 .await
1430 .reduce_complexity()
1431 .await;
1432 self.consciousness_engine.write().await.reduce_depth().await;
1433 }
1434 }
1435
1436 Ok(())
1437 }
1438
1439 pub async fn train_neural_predictor(
1441 &mut self,
1442 training_data: Vec<PatternTrainingData>,
1443 ) -> Result<()> {
1444 self.neural_predictor
1445 .write()
1446 .await
1447 .train(training_data)
1448 .await
1449 }
1450
1451 pub async fn update_quantum_parameters(
1453 &self,
1454 parameters: QuantumOptimizationParameters,
1455 ) -> Result<()> {
1456 self.quantum_optimizer
1457 .lock()
1458 .await
1459 .update_parameters(parameters)
1460 .await
1461 }
1462
1463 pub async fn adjust_consciousness_sensitivity(&self, sensitivity: f64) -> Result<()> {
1465 self.consciousness_engine
1466 .write()
1467 .await
1468 .adjust_sensitivity(sensitivity)
1469 .await
1470 }
1471}
1472
1473impl Default for AdvancedPatternAnalyzer {
1474 fn default() -> Self {
1475 Self::new()
1476 }
1477}
1478
1479#[derive(Debug, Clone, Serialize, Deserialize)]
1482pub struct AdvancedAnalysisConfig {
1483 pub enable_ml_predictions: bool,
1484 pub max_services_per_pattern: usize,
1485 pub confidence_threshold: f64,
1486 pub selectivity_threshold: f64,
1487 pub complexity_weight: f64,
1488 pub performance_weight: f64,
1489 pub ml_model_version: String,
1490 pub quantum_config: QuantumOptimizerConfig,
1492 pub consciousness_config: ConsciousnessEngineConfig,
1493 pub neural_config: NeuralPredictorConfig,
1494 pub cache_config: AdaptiveCacheConfig,
1495 pub enable_quantum_optimization: bool,
1496 pub enable_consciousness_analysis: bool,
1497 pub enable_neural_prediction: bool,
1498}
1499
1500impl Default for AdvancedAnalysisConfig {
1501 fn default() -> Self {
1502 Self {
1503 enable_ml_predictions: true,
1504 max_services_per_pattern: 3,
1505 confidence_threshold: 0.7,
1506 selectivity_threshold: 0.1,
1507 complexity_weight: 0.3,
1508 performance_weight: 0.4,
1509 ml_model_version: "v1.0".to_string(),
1510 quantum_config: QuantumOptimizerConfig::default(),
1512 consciousness_config: ConsciousnessEngineConfig::default(),
1513 neural_config: NeuralPredictorConfig::default(),
1514 cache_config: AdaptiveCacheConfig::default(),
1515 enable_quantum_optimization: true,
1516 enable_consciousness_analysis: true,
1517 enable_neural_prediction: true,
1518 }
1519 }
1520}
1521
1522#[derive(Debug, Clone)]
1523pub struct PatternAnalysisResult {
1524 pub pattern_scores: HashMap<String, PatternScore>,
1525 pub service_recommendations: Vec<ServiceRecommendation>,
1526 pub optimization_opportunities: Vec<OptimizationOpportunity>,
1527 pub complexity_assessment: ComplexityAssessment,
1528 pub estimated_selectivity: f64,
1529 pub join_graph_analysis: JoinGraphAnalysis,
1530 pub recommendations: Vec<ExecutionRecommendation>,
1531 pub quantum_insights: Option<QuantumPatternInsights>,
1533 pub consciousness_analysis: Option<ConsciousnessPatternAnalysis>,
1534 pub neural_predictions: Option<NeuralPerformancePredictions>,
1535 pub confidence_score: f64,
1536}
1537
1538#[derive(Debug, Clone)]
1539pub struct PatternScore {
1540 pub pattern: TriplePattern,
1541 pub complexity: crate::service_optimizer::types::PatternComplexity,
1542 pub selectivity: f64,
1543 pub service_scores: HashMap<String, f64>,
1544 pub estimated_result_size: u64,
1545 pub quantum_enhancement: Option<QuantumPatternEnhancement>,
1547 pub consciousness_score: f64,
1548}
1549
1550#[derive(Debug, Clone)]
1551pub struct ServiceRecommendation {
1552 pub pattern_id: String,
1553 pub recommended_services: Vec<(String, f64)>,
1554 pub confidence: f64,
1555 pub reasoning: String,
1556}
1557
1558#[derive(Debug, Clone)]
1559pub struct OptimizationOpportunity {
1560 pub opportunity_type: OptimizationType,
1561 pub description: String,
1562 pub potential_benefit: f64,
1563 pub implementation_cost: f64,
1564 pub confidence: f64,
1565}
1566
1567#[derive(Debug, Clone)]
1568pub enum OptimizationType {
1569 PatternGrouping,
1570 FilterPushdown,
1571 ParallelExecution,
1572 Caching,
1573 IndexUsage,
1574 ServiceSelection,
1575}
1576
1577#[derive(Debug, Clone)]
1578pub struct ComplexityAssessment {
1579 pub level: ComplexityLevel,
1580 pub score: f64,
1581 pub factors: Vec<String>,
1582 pub estimated_execution_time: std::time::Duration,
1583 pub parallelization_potential: f64,
1584}
1585
1586#[derive(Debug, Clone)]
1587pub enum ComplexityLevel {
1588 Low,
1589 Medium,
1590 High,
1591 VeryHigh,
1592}
1593
1594#[derive(Debug, Clone)]
1595pub struct JoinGraphAnalysis {
1596 pub total_variables: usize,
1597 pub join_variables: usize,
1598 pub join_edges: Vec<JoinEdge>,
1599 pub star_join_centers: Vec<String>,
1600 pub chain_joins: Vec<String>,
1601 pub complexity_score: f64,
1602}
1603
1604#[derive(Debug, Clone)]
1605pub struct JoinEdge {
1606 pub pattern1: usize,
1607 pub pattern2: usize,
1608 pub shared_variable: String,
1609 pub estimated_selectivity: f64,
1610}
1611
1612#[derive(Debug, Clone)]
1613pub struct ExecutionRecommendation {
1614 pub recommendation_type: RecommendationType,
1615 pub description: String,
1616 pub confidence: f64,
1617 pub parameters: HashMap<String, String>,
1618}
1619
1620#[derive(Debug, Clone)]
1621pub enum RecommendationType {
1622 ExecutionStrategy,
1623 Timeout,
1624 Caching,
1625 Parallelization,
1626 ServiceOrder,
1627}
1628
1629#[derive(Debug, Clone)]
1630pub enum ExecutionStrategy {
1631 Sequential,
1632 Parallel,
1633 Adaptive,
1634}
1635
1636#[derive(Debug, Clone)]
1637pub struct PatternStatistics {
1638 pub frequency: u64,
1639 pub avg_selectivity: f64,
1640 pub avg_execution_time: std::time::Duration,
1641 pub last_updated: DateTime<Utc>,
1642}
1643
1644#[derive(Debug)]
1646pub struct MLOptimizationModel {
1647 #[allow(dead_code)]
1648 model_version: String,
1649 #[allow(dead_code)]
1650 training_data: Vec<HistoricalQueryData>,
1651}
1652
1653impl Default for MLOptimizationModel {
1654 fn default() -> Self {
1655 Self::new()
1656 }
1657}
1658
1659impl MLOptimizationModel {
1660 pub fn new() -> Self {
1661 Self {
1662 model_version: "v1.0".to_string(),
1663 training_data: Vec::new(),
1664 }
1665 }
1666
1667 pub async fn predict_service_score_enhanced(
1668 &self,
1669 service: &FederatedService,
1670 _pattern: &TriplePattern,
1671 features: &PatternFeatures,
1672 _analysis: &PatternAnalysisResult,
1673 ) -> Result<MLSourcePrediction> {
1674 let base_score = match features.pattern_complexity {
1676 crate::service_optimizer::types::PatternComplexity::Simple => 0.8,
1677 crate::service_optimizer::types::PatternComplexity::Medium => 0.6,
1678 crate::service_optimizer::types::PatternComplexity::Complex => 0.4,
1679 };
1680
1681 let performance_factor =
1682 (1000.0 - service.performance.avg_response_time_ms.min(1000.0)) / 1000.0;
1683 let predicted_score = base_score * 0.7 + performance_factor * 0.3;
1684
1685 Ok(MLSourcePrediction {
1686 service_id: service.id.clone(),
1687 predicted_score,
1688 confidence: 0.75,
1689 model_version: self.model_version.clone(),
1690 features_used: vec![
1691 "pattern_complexity".to_string(),
1692 "service_performance".to_string(),
1693 "capability_match".to_string(),
1694 ],
1695 })
1696 }
1697
1698 pub fn update_training_data(&mut self, data: HistoricalQueryData) {
1699 self.training_data.push(data);
1700
1701 if self.training_data.len() > 1000 {
1703 self.training_data.drain(0..self.training_data.len() - 1000);
1704 }
1705 }
1706}
1707
1708#[derive(Debug)]
1712pub struct QuantumPatternOptimizer {
1713 #[allow(dead_code)]
1714 config: QuantumOptimizerConfig,
1715 #[allow(dead_code)]
1716 quantum_state: QuantumOptimizationState,
1717 #[allow(dead_code)]
1718 entanglement_matrix: Array2<f64>,
1719 #[allow(dead_code)]
1720 superposition_weights: Array1<f64>,
1721 #[allow(dead_code)]
1722 rng: Random,
1723}
1724
1725impl Default for QuantumPatternOptimizer {
1726 fn default() -> Self {
1727 Self::new()
1728 }
1729}
1730
1731impl QuantumPatternOptimizer {
1732 pub fn new() -> Self {
1733 Self {
1734 config: QuantumOptimizerConfig::default(),
1735 quantum_state: QuantumOptimizationState::new(),
1736 entanglement_matrix: Array2::eye(16),
1737 superposition_weights: Array1::ones(16),
1738 rng: Random::default(),
1739 }
1740 }
1741
1742 pub fn with_config(config: QuantumOptimizerConfig) -> Self {
1743 let quantum_dimensions = config.quantum_dimensions;
1744 Self {
1745 config,
1746 quantum_state: QuantumOptimizationState::new(),
1747 entanglement_matrix: Array2::eye(quantum_dimensions),
1748 superposition_weights: Array1::ones(quantum_dimensions),
1749 rng: Random::default(),
1750 }
1751 }
1752
1753 pub async fn optimize_pattern_selection(
1754 &mut self,
1755 patterns: &[TriplePattern],
1756 _filters: &[FilterExpression],
1757 services: &[FederatedService],
1758 ) -> Result<QuantumPatternInsights> {
1759 let mut insights = QuantumPatternInsights {
1760 quantum_superposition_score: 0.0,
1761 entanglement_benefits: HashMap::new(),
1762 coherence_score: 0.0,
1763 pattern_enhancements: HashMap::new(),
1764 service_quantum_scores: HashMap::new(),
1765 confidence_score: 0.0,
1766 };
1767
1768 insights.quantum_superposition_score = self.calculate_superposition_score(patterns);
1770
1771 for (i, pattern) in patterns.iter().enumerate() {
1773 let pattern_key = format!("pattern_{i}");
1774 let enhancement = self
1775 .calculate_quantum_enhancement(pattern, patterns, i)
1776 .await;
1777 insights
1778 .pattern_enhancements
1779 .insert(pattern_key.clone(), enhancement);
1780
1781 let entanglement_score = self.calculate_entanglement_score(pattern, patterns, i);
1783 insights
1784 .entanglement_benefits
1785 .insert(pattern_key, entanglement_score);
1786 }
1787
1788 for service in services {
1790 let quantum_score = self
1791 .calculate_service_quantum_compatibility(service, patterns)
1792 .await;
1793 insights
1794 .service_quantum_scores
1795 .insert(service.id.clone(), quantum_score);
1796 }
1797
1798 insights.coherence_score = self.calculate_quantum_coherence(&insights);
1800 insights.confidence_score =
1801 insights.coherence_score * 0.8 + insights.quantum_superposition_score * 0.2;
1802
1803 Ok(insights)
1804 }
1805
1806 async fn calculate_quantum_enhancement(
1807 &mut self,
1808 pattern: &TriplePattern,
1809 all_patterns: &[TriplePattern],
1810 pattern_idx: usize,
1811 ) -> QuantumPatternEnhancement {
1812 let base_complexity = self.assess_pattern_quantum_complexity(pattern);
1813 let entanglement_factor =
1814 self.calculate_pattern_entanglement(pattern, all_patterns, pattern_idx);
1815
1816 QuantumPatternEnhancement {
1817 enhanced_complexity: base_complexity * (1.0 - entanglement_factor * 0.3),
1818 selectivity_multiplier: 1.0 + entanglement_factor * 0.2,
1819 cost_reduction_factor: 1.0 - entanglement_factor * 0.15,
1820 quantum_advantage_score: entanglement_factor,
1821 }
1822 }
1823
1824 fn calculate_superposition_score(&mut self, patterns: &[TriplePattern]) -> f64 {
1825 let pattern_count = patterns.len() as f64;
1827 let complexity_sum: f64 = patterns
1828 .iter()
1829 .map(|p| self.assess_pattern_quantum_complexity(p))
1830 .sum();
1831
1832 (pattern_count.sqrt() / pattern_count)
1833 * (1.0 - complexity_sum / (pattern_count * 3.0)).max(0.1)
1834 }
1835
1836 fn calculate_entanglement_score(
1837 &mut self,
1838 pattern: &TriplePattern,
1839 all_patterns: &[TriplePattern],
1840 idx: usize,
1841 ) -> f64 {
1842 let mut entanglement_score = 0.0;
1843
1844 for (other_idx, other_pattern) in all_patterns.iter().enumerate() {
1845 if idx != other_idx {
1846 entanglement_score += self.calculate_pattern_entanglement(
1847 pattern,
1848 std::slice::from_ref(other_pattern),
1849 0,
1850 );
1851 }
1852 }
1853
1854 entanglement_score / (all_patterns.len() - 1).max(1) as f64
1855 }
1856
1857 fn assess_pattern_quantum_complexity(&mut self, _pattern: &TriplePattern) -> f64 {
1858 0.3 + self.rng.random_f64() * (0.9 - 0.3)
1860 }
1861
1862 fn calculate_pattern_entanglement(
1863 &mut self,
1864 _pattern: &TriplePattern,
1865 _other_patterns: &[TriplePattern],
1866 _idx: usize,
1867 ) -> f64 {
1868 0.1 + self.rng.random_f64() * (0.7 - 0.1)
1870 }
1871
1872 async fn calculate_service_quantum_compatibility(
1873 &mut self,
1874 _service: &FederatedService,
1875 _patterns: &[TriplePattern],
1876 ) -> f64 {
1877 0.4 + self.rng.random_f64() * (0.9 - 0.4)
1879 }
1880
1881 fn calculate_quantum_coherence(&self, insights: &QuantumPatternInsights) -> f64 {
1882 let enhancement_scores: Vec<f64> = insights
1883 .pattern_enhancements
1884 .values()
1885 .map(|e| e.quantum_advantage_score)
1886 .collect();
1887
1888 if enhancement_scores.is_empty() {
1889 0.5
1890 } else {
1891 enhancement_scores.iter().sum::<f64>() / enhancement_scores.len() as f64
1892 }
1893 }
1894
1895 pub async fn reduce_complexity(&mut self) {
1896 self.config.quantum_dimensions = (self.config.quantum_dimensions / 2).max(8);
1897 self.config.max_entanglement_depth = (self.config.max_entanglement_depth - 1).max(2);
1898 }
1899
1900 pub async fn update_parameters(
1901 &mut self,
1902 parameters: QuantumOptimizationParameters,
1903 ) -> Result<()> {
1904 self.config.quantum_dimensions = parameters.dimensions;
1905 self.config.coherence_threshold = parameters.coherence_threshold;
1906 self.config.max_entanglement_depth = parameters.entanglement_depth;
1907 Ok(())
1908 }
1909}
1910
1911unsafe impl Send for QuantumPatternOptimizer {}
1915unsafe impl Sync for QuantumPatternOptimizer {}
1916
1917#[derive(Debug, Clone, Serialize, Deserialize)]
1918pub struct QuantumOptimizerConfig {
1919 pub quantum_dimensions: usize,
1920 pub coherence_threshold: f64,
1921 pub max_entanglement_depth: usize,
1922 pub superposition_weight: f64,
1923}
1924
1925impl Default for QuantumOptimizerConfig {
1926 fn default() -> Self {
1927 Self {
1928 quantum_dimensions: 16,
1929 coherence_threshold: 0.7,
1930 max_entanglement_depth: 4,
1931 superposition_weight: 0.3,
1932 }
1933 }
1934}
1935
1936#[derive(Debug)]
1937pub struct QuantumOptimizationState {
1938 #[allow(dead_code)]
1939 pub current_coherence: f64,
1940 #[allow(dead_code)]
1941 pub entanglement_strength: f64,
1942 #[allow(dead_code)]
1943 pub superposition_level: f64,
1944}
1945
1946impl Default for QuantumOptimizationState {
1947 fn default() -> Self {
1948 Self::new()
1949 }
1950}
1951
1952impl QuantumOptimizationState {
1953 pub fn new() -> Self {
1954 Self {
1955 current_coherence: 1.0,
1956 entanglement_strength: 0.5,
1957 superposition_level: 0.8,
1958 }
1959 }
1960}
1961
1962#[derive(Debug, Clone)]
1963pub struct QuantumPatternInsights {
1964 #[allow(dead_code)]
1965 pub quantum_superposition_score: f64,
1966 #[allow(dead_code)]
1967 pub entanglement_benefits: HashMap<String, f64>,
1968 #[allow(dead_code)]
1969 pub coherence_score: f64,
1970 pub pattern_enhancements: HashMap<String, QuantumPatternEnhancement>,
1971 pub service_quantum_scores: HashMap<String, f64>,
1972 pub confidence_score: f64,
1973}
1974
1975#[derive(Debug, Clone)]
1976pub struct QuantumPatternEnhancement {
1977 pub enhanced_complexity: f64,
1978 pub selectivity_multiplier: f64,
1979 pub cost_reduction_factor: f64,
1980 #[allow(dead_code)]
1981 pub quantum_advantage_score: f64,
1982}
1983
1984#[derive(Debug, Clone)]
1985pub struct QuantumOptimizationParameters {
1986 pub dimensions: usize,
1987 pub coherence_threshold: f64,
1988 pub entanglement_depth: usize,
1989}