1use crate::{EmbeddingModel, ModelConfig, ModelStats, TrainingStats, Triple, Vector};
11use anyhow::{anyhow, Result};
12use async_trait::async_trait;
13use chrono::Utc;
14use scirs2_core::ndarray_ext::{s, Array1, Array2, Array3};
15use scirs2_core::random::{Random, Rng};
16use serde::{Deserialize, Serialize};
17use std::collections::HashMap;
18use uuid::Uuid;
19
20#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct NovelArchitectureConfig {
23 pub base_config: ModelConfig,
24 pub architecture: ArchitectureType,
26 pub architecture_params: ArchitectureParams,
28 pub dynamics_config: DynamicsConfig,
30 pub geometric_config: GeometricConfig,
32}
33
34impl Default for NovelArchitectureConfig {
35 fn default() -> Self {
36 Self {
37 base_config: ModelConfig::default(),
38 architecture: ArchitectureType::GraphTransformer,
39 architecture_params: ArchitectureParams::default(),
40 dynamics_config: DynamicsConfig::default(),
41 geometric_config: GeometricConfig::default(),
42 }
43 }
44}
45
46#[derive(Debug, Clone, Serialize, Deserialize)]
48pub enum ArchitectureType {
49 GraphTransformer,
51 NeuralODE,
53 HyperbolicEmbedding,
55 GeometricDeepLearning,
57 QuantumInspired,
59 ContinuousNormalizingFlow,
61}
62
63#[derive(Debug, Clone, Serialize, Deserialize, Default)]
65pub struct ArchitectureParams {
66 pub transformer_params: GraphTransformerParams,
68 pub ode_params: NeuralODEParams,
70 pub hyperbolic_params: HyperbolicParams,
72 pub geometric_params: GeometricParams,
74 pub quantum_params: QuantumParams,
76}
77
78#[derive(Debug, Clone, Serialize, Deserialize)]
80pub struct GraphTransformerParams {
81 pub num_heads: usize,
83 pub num_layers: usize,
85 pub attention_dim: usize,
87 pub ff_dim: usize,
89 pub structural_dim: usize,
91 pub use_positional_encoding: bool,
93 pub attention_mechanism: AttentionMechanism,
95 pub structural_bias: StructuralBias,
97}
98
99impl Default for GraphTransformerParams {
100 fn default() -> Self {
101 Self {
102 num_heads: 8,
103 num_layers: 6,
104 attention_dim: 512,
105 ff_dim: 2048,
106 structural_dim: 128,
107 use_positional_encoding: true,
108 attention_mechanism: AttentionMechanism::SparseAttention,
109 structural_bias: StructuralBias::SpectralFeatures,
110 }
111 }
112}
113
114#[derive(Debug, Clone, Serialize, Deserialize)]
116pub enum AttentionMechanism {
117 MultiHeadAttention,
119 SparseAttention,
121 LinearAttention,
123 PerformerAttention,
125 GraphAwareAttention,
127}
128
129#[derive(Debug, Clone, Serialize, Deserialize)]
131pub enum StructuralBias {
132 SpectralFeatures,
134 ShortestPath,
136 RandomWalk,
138 CentralityMeasures,
140 GraphMotifs,
142}
143
144#[derive(Debug, Clone, Serialize, Deserialize)]
146pub struct NeuralODEParams {
147 pub solver_type: ODESolverType,
149 pub time_steps: usize,
151 pub tolerance: f64,
153 pub hidden_dims: Vec<usize>,
155 pub activation: ActivationType,
157 pub use_adjoint: bool,
159 pub regularization: ODERegularization,
161}
162
163impl Default for NeuralODEParams {
164 fn default() -> Self {
165 Self {
166 solver_type: ODESolverType::DormandPrince,
167 time_steps: 100,
168 tolerance: 1e-6,
169 hidden_dims: vec![512, 256, 128],
170 activation: ActivationType::Swish,
171 use_adjoint: true,
172 regularization: ODERegularization::None,
173 }
174 }
175}
176
177#[derive(Debug, Clone, Serialize, Deserialize)]
179pub enum ODESolverType {
180 Euler,
182 RungeKutta4,
184 DormandPrince,
186 AdamsBashforth,
188 BackwardEuler,
190}
191
192#[derive(Debug, Clone, Serialize, Deserialize)]
194pub enum ODERegularization {
195 None,
196 KineticEnergy,
198 JacobianFrobenius,
200 SpectralNormalization,
202}
203
204#[derive(Debug, Clone, Serialize, Deserialize)]
206pub enum ActivationType {
207 ReLU,
208 Swish,
209 Mish,
210 GELU,
211 ELU,
212 LeakyReLU,
213 Tanh,
214}
215
216#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct HyperbolicParams {
219 pub manifold: HyperbolicManifold,
221 pub curvature: f64,
223 pub manifold_dim: usize,
225 pub optimizer: ManifoldOptimizer,
227 pub distance_function: HyperbolicDistance,
229 pub initialization: HyperbolicInit,
231}
232
233impl Default for HyperbolicParams {
234 fn default() -> Self {
235 Self {
236 manifold: HyperbolicManifold::Poincare,
237 curvature: -1.0,
238 manifold_dim: 128,
239 optimizer: ManifoldOptimizer::RiemannianAdam,
240 distance_function: HyperbolicDistance::Poincare,
241 initialization: HyperbolicInit::RandomNormal,
242 }
243 }
244}
245
246#[derive(Debug, Clone, Serialize, Deserialize)]
248pub enum HyperbolicManifold {
249 Poincare,
251 Klein,
253 Hyperboloid,
255 UpperHalfSpace,
257}
258
259#[derive(Debug, Clone, Serialize, Deserialize)]
261pub enum ManifoldOptimizer {
262 RiemannianSGD,
264 RiemannianAdam,
266 RiemannianAdaGrad,
268 ExponentialMap,
270}
271
272#[derive(Debug, Clone, Serialize, Deserialize)]
274pub enum HyperbolicDistance {
275 Poincare,
277 Hyperboloid,
279 Geodesic,
281}
282
283#[derive(Debug, Clone, Serialize, Deserialize)]
285pub enum HyperbolicInit {
286 RandomNormal,
288 WrappedNormal,
290 UniformHyperbolic,
292 TreeBased,
294}
295
296#[derive(Debug, Clone, Serialize, Deserialize)]
298pub struct GeometricParams {
299 pub space_type: GeometricSpace,
301 pub equivariance_groups: Vec<EquivarianceGroup>,
303 pub use_gauge_equivariance: bool,
305 pub fiber_dim: usize,
307 pub learn_connection: bool,
309 pub curvature_regularization: f64,
311}
312
313impl Default for GeometricParams {
314 fn default() -> Self {
315 Self {
316 space_type: GeometricSpace::RiemannianManifold,
317 equivariance_groups: vec![EquivarianceGroup::SO3, EquivarianceGroup::SE3],
318 use_gauge_equivariance: true,
319 fiber_dim: 64,
320 learn_connection: true,
321 curvature_regularization: 0.01,
322 }
323 }
324}
325
326#[derive(Debug, Clone, Serialize, Deserialize)]
328pub enum GeometricSpace {
329 RiemannianManifold,
331 LieGroup,
333 FiberBundle,
335 HomogeneousSpace,
337 SimplicialComplex,
339}
340
341#[derive(Debug, Clone, Serialize, Deserialize)]
343pub enum EquivarianceGroup {
344 SO3,
346 SE3,
348 GLn,
350 SymmetricGroup,
352 LorentzGroup,
354}
355
356#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct QuantumParams {
359 pub num_qubits: usize,
361 pub gate_set: QuantumGateSet,
363 pub entanglement: EntanglementStructure,
365 pub measurement: QuantumMeasurement,
367 pub noise_model: QuantumNoise,
369 pub hybrid_layers: bool,
371}
372
373impl Default for QuantumParams {
374 fn default() -> Self {
375 Self {
376 num_qubits: 10,
377 gate_set: QuantumGateSet::Universal,
378 entanglement: EntanglementStructure::Linear,
379 measurement: QuantumMeasurement::Computational,
380 noise_model: QuantumNoise::None,
381 hybrid_layers: true,
382 }
383 }
384}
385
386#[derive(Debug, Clone, Serialize, Deserialize)]
388pub enum QuantumGateSet {
389 Universal,
391 Clifford,
393 Variational,
395 Adiabatic,
397}
398
399#[derive(Debug, Clone, Serialize, Deserialize)]
401pub enum EntanglementStructure {
402 Linear,
404 AllToAll,
406 Tree,
408 HardwareEfficient,
410}
411
412#[derive(Debug, Clone, Serialize, Deserialize)]
414pub enum QuantumMeasurement {
415 Computational,
417 Pauli,
419 Tomography,
421 Shadow,
423}
424
425#[derive(Debug, Clone, Serialize, Deserialize)]
427pub enum QuantumNoise {
428 None,
429 Depolarizing,
431 AmplitudeDamping,
433 PhaseDamping,
435 DeviceNoise,
437}
438
439#[derive(Debug, Clone, Serialize, Deserialize)]
441pub struct DynamicsConfig {
442 pub time_evolution: TimeEvolution,
444 pub flow_type: FlowType,
446 pub integration_scheme: IntegrationScheme,
448 pub stability_constraints: StabilityConstraints,
450}
451
452impl Default for DynamicsConfig {
453 fn default() -> Self {
454 Self {
455 time_evolution: TimeEvolution::default(),
456 flow_type: FlowType::NormalizingFlow,
457 integration_scheme: IntegrationScheme::AdaptiveRungeKutta,
458 stability_constraints: StabilityConstraints::default(),
459 }
460 }
461}
462
463#[derive(Debug, Clone, Serialize, Deserialize)]
465pub struct TimeEvolution {
466 pub t_start: f64,
468 pub t_end: f64,
470 pub time_steps: usize,
472 pub adaptive: bool,
474}
475
476impl Default for TimeEvolution {
477 fn default() -> Self {
478 Self {
479 t_start: 0.0,
480 t_end: 1.0,
481 time_steps: 100,
482 adaptive: true,
483 }
484 }
485}
486
487#[derive(Debug, Clone, Serialize, Deserialize)]
489pub enum FlowType {
490 NormalizingFlow,
492 ContinuousNormalizingFlow,
494 NeuralFlow,
496 HamiltonianFlow,
498}
499
500#[derive(Debug, Clone, Serialize, Deserialize)]
502pub enum IntegrationScheme {
503 FixedRungeKutta,
505 AdaptiveRungeKutta,
507 SymplecticIntegrator,
509 ImplicitMethods,
511}
512
513#[derive(Debug, Clone, Serialize, Deserialize)]
515pub struct StabilityConstraints {
516 pub max_eigenvalue: f64,
518 pub lyapunov_reg: f64,
520 pub spectral_norm: bool,
522}
523
524impl Default for StabilityConstraints {
525 fn default() -> Self {
526 Self {
527 max_eigenvalue: 1.0,
528 lyapunov_reg: 0.01,
529 spectral_norm: true,
530 }
531 }
532}
533
534#[derive(Debug, Clone, Serialize, Deserialize, Default)]
536pub struct GeometricConfig {
537 pub manifold_learning: ManifoldLearning,
539 pub curvature_computation: CurvatureComputation,
541 pub parallel_transport: ParallelTransport,
543}
544
545#[derive(Debug, Clone, Serialize, Deserialize)]
547pub struct ManifoldLearning {
548 pub intrinsic_dim: usize,
550 pub neighborhood_size: usize,
552 pub embedding_method: ManifoldMethod,
554}
555
556impl Default for ManifoldLearning {
557 fn default() -> Self {
558 Self {
559 intrinsic_dim: 64,
560 neighborhood_size: 10,
561 embedding_method: ManifoldMethod::Isomap,
562 }
563 }
564}
565
566#[derive(Debug, Clone, Serialize, Deserialize)]
568pub enum ManifoldMethod {
569 Isomap,
571 LLE,
573 LaplacianEigenmaps,
575 DiffusionMaps,
577 TSNE,
579 UMAP,
581}
582
583#[derive(Debug, Clone, Serialize, Deserialize)]
585pub struct CurvatureComputation {
586 pub curvature_type: CurvatureType,
588 pub computation_method: CurvatureMethod,
590 pub regularization: f64,
592}
593
594impl Default for CurvatureComputation {
595 fn default() -> Self {
596 Self {
597 curvature_type: CurvatureType::Ricci,
598 computation_method: CurvatureMethod::FormanRicci,
599 regularization: 0.01,
600 }
601 }
602}
603
604#[derive(Debug, Clone, Serialize, Deserialize)]
606pub enum CurvatureType {
607 Gaussian,
609 Mean,
611 Ricci,
613 Scalar,
615 Sectional,
617}
618
619#[derive(Debug, Clone, Serialize, Deserialize)]
621pub enum CurvatureMethod {
622 FormanRicci,
624 OllivierRicci,
626 DiscreteGaussian,
628 GraphBased,
630}
631
632#[derive(Debug, Clone, Serialize, Deserialize)]
634pub struct ParallelTransport {
635 pub method: TransportMethod,
637 pub path_steps: usize,
639 pub tolerance: f64,
641}
642
643impl Default for ParallelTransport {
644 fn default() -> Self {
645 Self {
646 method: TransportMethod::SchildLadder,
647 path_steps: 50,
648 tolerance: 1e-6,
649 }
650 }
651}
652
653#[derive(Debug, Clone, Serialize, Deserialize)]
655pub enum TransportMethod {
656 SchildLadder,
658 PoleLadder,
660 GeodesicTransport,
662 DiscreteTransport,
664}
665
666#[derive(Debug, Clone)]
668pub struct NovelArchitectureModel {
669 pub config: NovelArchitectureConfig,
670 pub model_id: Uuid,
671 pub entities: HashMap<String, usize>,
672 pub relations: HashMap<String, usize>,
673 pub entity_embeddings: Array2<f64>,
674 pub relation_embeddings: Array2<f64>,
675 pub architecture_state: ArchitectureState,
676 pub training_stats: Option<TrainingStats>,
677 pub is_trained: bool,
678}
679
680#[derive(Debug, Clone)]
682pub struct ArchitectureState {
683 pub transformer_state: Option<GraphTransformerState>,
685 pub ode_state: Option<NeuralODEState>,
687 pub hyperbolic_state: Option<HyperbolicState>,
689 pub geometric_state: Option<GeometricState>,
691 pub quantum_state: Option<QuantumState>,
693}
694
695#[derive(Debug, Clone)]
697pub struct GraphTransformerState {
698 pub attention_weights: Array3<f64>,
700 pub layer_outputs: Vec<Array2<f64>>,
702 pub structural_features: Array2<f64>,
704 pub position_encodings: Option<Array2<f64>>,
706}
707
708#[derive(Debug, Clone)]
710pub struct NeuralODEState {
711 pub current_time: f64,
713 pub trajectory: Vec<Array2<f64>>,
715 pub ode_params: Array2<f64>,
717 pub integration_stats: IntegrationStats,
719}
720
721#[derive(Debug, Clone)]
723pub struct IntegrationStats {
724 pub steps_taken: usize,
725 pub function_evaluations: usize,
726 pub jacobian_evaluations: usize,
727 pub failed_steps: usize,
728 pub final_error: f64,
729}
730
731#[derive(Debug, Clone)]
733pub struct HyperbolicState {
734 pub manifold_embeddings: Array2<f64>,
736 pub curvature: f64,
738 pub tangent_vectors: Array2<f64>,
740 pub metric_tensor: Array3<f64>,
742}
743
744#[derive(Debug, Clone)]
746pub struct GeometricState {
747 pub connection: Array3<f64>,
749 pub curvature_tensor: Array3<f64>,
751 pub transport_maps: HashMap<String, Array2<f64>>,
753 pub equivariance_maps: Vec<Array2<f64>>,
755}
756
757#[derive(Debug, Clone)]
759pub struct QuantumState {
760 pub state_vector: Array1<f64>,
762 pub gates: Vec<Array2<f64>>,
764 pub measurements: Vec<f64>,
766 pub entanglement: f64,
768}
769
770impl NovelArchitectureModel {
771 pub fn new(config: NovelArchitectureConfig) -> Self {
773 let model_id = Uuid::new_v4();
774 let dimensions = config.base_config.dimensions;
775
776 Self {
777 config,
778 model_id,
779 entities: HashMap::new(),
780 relations: HashMap::new(),
781 entity_embeddings: Array2::zeros((0, dimensions)),
782 relation_embeddings: Array2::zeros((0, dimensions)),
783 architecture_state: ArchitectureState {
784 transformer_state: None,
785 ode_state: None,
786 hyperbolic_state: None,
787 geometric_state: None,
788 quantum_state: None,
789 },
790 training_stats: None,
791 is_trained: false,
792 }
793 }
794
795 pub fn initialize_architecture(&mut self) -> Result<()> {
797 match &self.config.architecture {
798 ArchitectureType::GraphTransformer => {
799 self.initialize_graph_transformer()?;
800 }
801 ArchitectureType::NeuralODE => {
802 self.initialize_neural_ode()?;
803 }
804 ArchitectureType::HyperbolicEmbedding => {
805 self.initialize_hyperbolic()?;
806 }
807 ArchitectureType::GeometricDeepLearning => {
808 self.initialize_geometric()?;
809 }
810 ArchitectureType::QuantumInspired => {
811 self.initialize_quantum()?;
812 }
813 ArchitectureType::ContinuousNormalizingFlow => {
814 self.initialize_cnf()?;
815 }
816 }
817 Ok(())
818 }
819
820 fn initialize_graph_transformer(&mut self) -> Result<()> {
822 let params = &self.config.architecture_params.transformer_params;
823 let num_entities = self.entities.len();
824
825 if num_entities > 0 {
826 let attention_weights = Array3::zeros((params.num_layers, num_entities, num_entities));
827
828 let mut random = Random::default();
829 let structural_features =
830 Array2::from_shape_fn((num_entities, params.structural_dim), |_| {
831 random.random::<f64>()
832 });
833
834 let position_encodings = if params.use_positional_encoding {
835 Some(Array2::from_shape_fn(
836 (num_entities, params.attention_dim),
837 |_| random.random::<f64>(),
838 ))
839 } else {
840 None
841 };
842
843 self.architecture_state.transformer_state = Some(GraphTransformerState {
844 attention_weights,
845 layer_outputs: Vec::new(),
846 structural_features,
847 position_encodings,
848 });
849 }
850
851 Ok(())
852 }
853
854 fn initialize_neural_ode(&mut self) -> Result<()> {
856 let params = &self.config.architecture_params.ode_params;
857 let dimensions = self.config.base_config.dimensions;
858
859 let mut random = Random::default();
860 let ode_params = Array2::from_shape_fn((dimensions, params.hidden_dims[0]), |_| {
861 random.random::<f64>()
862 });
863
864 self.architecture_state.ode_state = Some(NeuralODEState {
865 current_time: 0.0,
866 trajectory: Vec::new(),
867 ode_params,
868 integration_stats: IntegrationStats {
869 steps_taken: 0,
870 function_evaluations: 0,
871 jacobian_evaluations: 0,
872 failed_steps: 0,
873 final_error: 0.0,
874 },
875 });
876
877 Ok(())
878 }
879
880 fn initialize_hyperbolic(&mut self) -> Result<()> {
882 let params = &self.config.architecture_params.hyperbolic_params;
883 let num_entities = self.entities.len();
884
885 if num_entities > 0 {
886 let mut random = Random::default();
887 let manifold_embeddings = match params.initialization {
888 HyperbolicInit::RandomNormal => {
889 Array2::from_shape_fn((num_entities, params.manifold_dim), |_| {
890 random.random::<f64>()
891 })
892 }
893 HyperbolicInit::UniformHyperbolic => {
894 let mut embeddings =
896 Array2::from_shape_fn((num_entities, params.manifold_dim), |_| {
897 random.random::<f64>() * 2.0 - 1.0
898 });
899 for mut row in embeddings.rows_mut() {
901 let norm = row.mapv(|x| x * x).sum().sqrt();
902 if norm >= 1.0 {
903 row *= 0.99 / norm;
904 }
905 }
906 embeddings
907 }
908 _ => Array2::from_shape_fn((num_entities, params.manifold_dim), |_| {
909 random.random::<f64>()
910 }),
911 };
912
913 let tangent_vectors = Array2::zeros((num_entities, params.manifold_dim));
914 let metric_tensor =
915 Array3::zeros((num_entities, params.manifold_dim, params.manifold_dim));
916
917 self.architecture_state.hyperbolic_state = Some(HyperbolicState {
918 manifold_embeddings,
919 curvature: params.curvature,
920 tangent_vectors,
921 metric_tensor,
922 });
923 }
924
925 Ok(())
926 }
927
928 fn initialize_geometric(&mut self) -> Result<()> {
930 let _params = &self.config.architecture_params.geometric_params;
931 let dimensions = self.config.base_config.dimensions;
932
933 let mut random = Random::default();
934 let connection = Array3::from_shape_fn((dimensions, dimensions, dimensions), |_| {
935 random.random::<f64>()
936 });
937
938 let curvature_tensor = Array3::from_shape_fn((dimensions, dimensions, dimensions), |_| {
939 random.random::<f64>()
940 });
941
942 self.architecture_state.geometric_state = Some(GeometricState {
943 connection,
944 curvature_tensor,
945 transport_maps: HashMap::new(),
946 equivariance_maps: Vec::new(),
947 });
948
949 Ok(())
950 }
951
952 fn initialize_quantum(&mut self) -> Result<()> {
954 let params = &self.config.architecture_params.quantum_params;
955 let state_dim = 2_usize.pow(params.num_qubits as u32);
956
957 let mut state_vector = Array1::from_shape_fn(state_dim, |i| {
959 0.5 + 0.3 * ((i as f64 + 1.0).sin())
961 });
962 let norm = state_vector.mapv(|x| x * x).sum().sqrt();
963 state_vector /= norm;
964
965 let gates = vec![
967 Array2::eye(state_dim), ];
970
971 self.architecture_state.quantum_state = Some(QuantumState {
972 state_vector,
973 gates,
974 measurements: Vec::new(),
975 entanglement: 0.0,
976 });
977
978 Ok(())
979 }
980
981 fn initialize_cnf(&mut self) -> Result<()> {
983 self.initialize_neural_ode()?;
985 Ok(())
986 }
987
988 pub fn poincare_distance(&self, x: &Array1<f64>, y: &Array1<f64>) -> f64 {
990 let curvature = self
991 .config
992 .architecture_params
993 .hyperbolic_params
994 .curvature
995 .abs();
996
997 let diff = x - y;
998 let norm_diff_sq = diff.mapv(|v| v * v).sum();
999 let norm_x_sq = x.mapv(|v| v * v).sum();
1000 let norm_y_sq = y.mapv(|v| v * v).sum();
1001
1002 let numerator = norm_diff_sq;
1003 let denominator = (1.0 - norm_x_sq) * (1.0 - norm_y_sq);
1004
1005 if denominator <= 0.0 {
1006 return f64::INFINITY;
1007 }
1008
1009 let ratio = numerator / denominator;
1010 (curvature.sqrt()) * (1.0 + 2.0 * ratio).ln()
1011 }
1012
1013 pub fn compute_graph_attention(
1015 &self,
1016 queries: &Array2<f64>,
1017 keys: &Array2<f64>,
1018 values: &Array2<f64>,
1019 adjacency: &Array2<f64>,
1020 ) -> Result<Array2<f64>> {
1021 let attention_scores = queries.dot(keys);
1022
1023 let masked_scores = &attention_scores * adjacency;
1025
1026 let softmax_scores = self.softmax_2d(&masked_scores);
1028
1029 Ok(softmax_scores.dot(values))
1031 }
1032
1033 fn softmax_2d(&self, x: &Array2<f64>) -> Array2<f64> {
1035 let mut result = x.clone();
1036 for mut row in result.rows_mut() {
1037 let max_val = row.fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1038 row.mapv_inplace(|v| (v - max_val).exp());
1039 let sum = row.sum();
1040 if sum > 0.0 {
1041 row /= sum;
1042 }
1043 }
1044 result
1045 }
1046
1047 pub fn solve_neural_ode(
1049 &mut self,
1050 initial_state: &Array2<f64>,
1051 time_span: (f64, f64),
1052 ) -> Result<Array2<f64>> {
1053 let (t_start, t_end) = time_span;
1054 let params = &self.config.architecture_params.ode_params;
1055 let dt = (t_end - t_start) / params.time_steps as f64;
1056
1057 let mut state = initial_state.clone();
1058 let mut t = t_start;
1059
1060 let mut trajectory = Vec::new();
1062 trajectory.push(state.clone());
1063
1064 for _ in 0..params.time_steps {
1065 let k1 = self.ode_function(&state, t)?;
1067 let k2 = self.ode_function(&(&state + &(&k1 * (dt / 2.0))), t + dt / 2.0)?;
1068 let k3 = self.ode_function(&(&state + &(&k2 * (dt / 2.0))), t + dt / 2.0)?;
1069 let k4 = self.ode_function(&(&state + &(&k3 * dt)), t + dt)?;
1070
1071 state = &state + &((&k1 + &(&k2 * 2.0) + &(&k3 * 2.0) + &k4) * (dt / 6.0));
1072 t += dt;
1073
1074 trajectory.push(state.clone());
1075 }
1076
1077 if let Some(ref mut ode_state) = self.architecture_state.ode_state {
1079 ode_state.trajectory = trajectory;
1080 ode_state.integration_stats.steps_taken += params.time_steps;
1081 ode_state.integration_stats.function_evaluations += params.time_steps * 4;
1082 ode_state.current_time = t;
1083 }
1084
1085 Ok(state)
1086 }
1087
1088 fn ode_function(&self, state: &Array2<f64>, _t: f64) -> Result<Array2<f64>> {
1090 if let Some(ref ode_state) = self.architecture_state.ode_state {
1091 let result = state.dot(&ode_state.ode_params);
1093 Ok(result.mapv(|x| x.tanh()))
1094 } else {
1095 Err(anyhow!("Neural ODE state not initialized"))
1096 }
1097 }
1098
1099 pub fn quantum_forward(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1101 use crate::quantum_circuits::{
1102 QNNLayerType, QuantumCircuit, QuantumNeuralNetworkLayer, QuantumSimulator,
1103 };
1104
1105 if let Some(ref _quantum_state) = self.architecture_state.quantum_state {
1106 let params = &self.config.architecture_params.quantum_params;
1107
1108 let encoding_layer =
1110 QuantumNeuralNetworkLayer::new(params.num_qubits, QNNLayerType::AngleEmbedding);
1111
1112 let variational_layer =
1114 QuantumNeuralNetworkLayer::new(params.num_qubits, QNNLayerType::StronglyEntangling);
1115
1116 let mut circuit = QuantumCircuit::new(params.num_qubits);
1118
1119 let input_normalized: Vec<f64> = input.iter().copied().collect();
1121 let encoding_circuit = encoding_layer.build_circuit(Some(&input_normalized));
1122 for gate in encoding_circuit.gates {
1123 circuit.add_gate(gate);
1124 }
1125
1126 let variational_circuit = variational_layer.build_circuit(None);
1128 for gate in variational_circuit.gates {
1129 circuit.add_gate(gate);
1130 }
1131
1132 let mut simulator = QuantumSimulator::new(params.num_qubits);
1134 simulator.execute_circuit(&circuit)?;
1135
1136 let target_dim = input.len(); let quantum_dim = params.num_qubits;
1139 let mut output = Array1::zeros(target_dim);
1140
1141 for i in 0..target_dim {
1143 let qubit_idx = i % quantum_dim;
1144 output[i] = simulator.expectation_z(qubit_idx);
1145 }
1146
1147 Ok(output)
1148 } else {
1149 Err(anyhow!("Quantum state not initialized"))
1150 }
1151 }
1152}
1153
1154#[async_trait]
1155impl EmbeddingModel for NovelArchitectureModel {
1156 fn config(&self) -> &ModelConfig {
1157 &self.config.base_config
1158 }
1159
1160 fn model_id(&self) -> &Uuid {
1161 &self.model_id
1162 }
1163
1164 fn model_type(&self) -> &'static str {
1165 match self.config.architecture {
1166 ArchitectureType::GraphTransformer => "NovelArchitecture::GraphTransformer",
1167 ArchitectureType::NeuralODE => "NovelArchitecture::NeuralODE",
1168 ArchitectureType::HyperbolicEmbedding => "NovelArchitecture::HyperbolicEmbedding",
1169 ArchitectureType::GeometricDeepLearning => "NovelArchitecture::GeometricDeepLearning",
1170 ArchitectureType::QuantumInspired => "NovelArchitecture::QuantumInspired",
1171 ArchitectureType::ContinuousNormalizingFlow => {
1172 "NovelArchitecture::ContinuousNormalizingFlow"
1173 }
1174 }
1175 }
1176
1177 fn add_triple(&mut self, triple: Triple) -> Result<()> {
1178 let subject_str = triple.subject.iri.clone();
1179 let predicate_str = triple.predicate.iri.clone();
1180 let object_str = triple.object.iri.clone();
1181
1182 let next_entity_id = self.entities.len();
1184 let subject_id = *self.entities.entry(subject_str).or_insert(next_entity_id);
1185 if subject_id == next_entity_id {
1186 self.entity_embeddings =
1187 self.resize_embeddings(&self.entity_embeddings, self.entities.len());
1188 }
1189
1190 let next_entity_id = self.entities.len();
1191 let object_id = *self.entities.entry(object_str).or_insert(next_entity_id);
1192 if object_id == next_entity_id {
1193 self.entity_embeddings =
1194 self.resize_embeddings(&self.entity_embeddings, self.entities.len());
1195 }
1196
1197 let next_relation_id = self.relations.len();
1199 let _predicate_id = *self
1200 .relations
1201 .entry(predicate_str)
1202 .or_insert(next_relation_id);
1203 if _predicate_id == next_relation_id {
1204 self.relation_embeddings =
1205 self.resize_embeddings(&self.relation_embeddings, self.relations.len());
1206 }
1207
1208 Ok(())
1209 }
1210
1211 async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
1212 let epochs = epochs.unwrap_or(self.config.base_config.max_epochs);
1213 let start_time = std::time::Instant::now();
1214
1215 self.initialize_architecture()?;
1217
1218 let mut loss_history = Vec::new();
1220
1221 for epoch in 0..epochs {
1222 let epoch_loss = match &self.config.architecture {
1223 ArchitectureType::GraphTransformer => self.train_graph_transformer_epoch()?,
1224 ArchitectureType::NeuralODE => self.train_neural_ode_epoch()?,
1225 ArchitectureType::HyperbolicEmbedding => self.train_hyperbolic_epoch()?,
1226 ArchitectureType::GeometricDeepLearning => self.train_geometric_epoch()?,
1227 ArchitectureType::QuantumInspired => self.train_quantum_epoch()?,
1228 ArchitectureType::ContinuousNormalizingFlow => self.train_cnf_epoch()?,
1229 };
1230
1231 loss_history.push(epoch_loss);
1232
1233 if epoch > 10 && epoch_loss < 1e-6 {
1235 break;
1236 }
1237 }
1238
1239 let training_time = start_time.elapsed().as_secs_f64();
1240 let final_loss = loss_history.last().copied().unwrap_or(0.0);
1241
1242 let stats = TrainingStats {
1243 epochs_completed: loss_history.len(),
1244 final_loss,
1245 training_time_seconds: training_time,
1246 convergence_achieved: final_loss < 1e-4,
1247 loss_history,
1248 };
1249
1250 self.training_stats = Some(stats.clone());
1251 self.is_trained = true;
1252
1253 Ok(stats)
1254 }
1255
1256 fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
1257 if let Some(&entity_id) = self.entities.get(entity) {
1258 if entity_id < self.entity_embeddings.nrows() {
1259 let embedding = self.entity_embeddings.row(entity_id);
1260 return Ok(Vector::new(embedding.mapv(|x| x as f32).to_vec()));
1261 }
1262 }
1263 Err(anyhow!("Entity not found: {}", entity))
1264 }
1265
1266 fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
1267 if let Some(&relation_id) = self.relations.get(relation) {
1268 if relation_id < self.relation_embeddings.nrows() {
1269 let embedding = self.relation_embeddings.row(relation_id);
1270 return Ok(Vector::new(embedding.mapv(|x| x as f32).to_vec()));
1271 }
1272 }
1273 Err(anyhow!("Relation not found: {}", relation))
1274 }
1275
1276 fn score_triple(&self, subject: &str, predicate: &str, object: &str) -> Result<f64> {
1277 let subject_emb = self.get_entity_embedding(subject)?;
1278 let predicate_emb = self.get_relation_embedding(predicate)?;
1279 let object_emb = self.get_entity_embedding(object)?;
1280
1281 match &self.config.architecture {
1282 ArchitectureType::HyperbolicEmbedding => {
1283 let subject_arr = Array1::from_vec(
1285 subject_emb
1286 .values
1287 .iter()
1288 .copied()
1289 .map(|x| x as f64)
1290 .collect(),
1291 );
1292 let object_arr = Array1::from_vec(
1293 object_emb
1294 .values
1295 .iter()
1296 .copied()
1297 .map(|x| x as f64)
1298 .collect(),
1299 );
1300 let distance = self.poincare_distance(&subject_arr, &object_arr);
1301 Ok(-distance) }
1303 _ => {
1304 let subject_arr = Array1::from_vec(
1306 subject_emb
1307 .values
1308 .iter()
1309 .copied()
1310 .map(|x| x as f64)
1311 .collect(),
1312 );
1313 let predicate_arr = Array1::from_vec(
1314 predicate_emb
1315 .values
1316 .iter()
1317 .copied()
1318 .map(|x| x as f64)
1319 .collect(),
1320 );
1321 let object_arr = Array1::from_vec(
1322 object_emb
1323 .values
1324 .iter()
1325 .copied()
1326 .map(|x| x as f64)
1327 .collect(),
1328 );
1329
1330 let predicted = &subject_arr + &predicate_arr;
1331 let diff = &predicted - &object_arr;
1332 let distance = diff.mapv(|x| x * x).sum().sqrt();
1333 Ok(-distance)
1334 }
1335 }
1336 }
1337
1338 fn predict_objects(
1339 &self,
1340 subject: &str,
1341 predicate: &str,
1342 k: usize,
1343 ) -> Result<Vec<(String, f64)>> {
1344 let mut scores = Vec::new();
1345
1346 for entity in self.entities.keys() {
1347 if entity != subject {
1348 let score = self.score_triple(subject, predicate, entity)?;
1349 scores.push((entity.clone(), score));
1350 }
1351 }
1352
1353 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1354 scores.truncate(k);
1355
1356 Ok(scores)
1357 }
1358
1359 fn predict_subjects(
1360 &self,
1361 predicate: &str,
1362 object: &str,
1363 k: usize,
1364 ) -> Result<Vec<(String, f64)>> {
1365 let mut scores = Vec::new();
1366
1367 for entity in self.entities.keys() {
1368 if entity != object {
1369 let score = self.score_triple(entity, predicate, object)?;
1370 scores.push((entity.clone(), score));
1371 }
1372 }
1373
1374 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1375 scores.truncate(k);
1376
1377 Ok(scores)
1378 }
1379
1380 fn predict_relations(
1381 &self,
1382 subject: &str,
1383 object: &str,
1384 k: usize,
1385 ) -> Result<Vec<(String, f64)>> {
1386 let mut scores = Vec::new();
1387
1388 for relation in self.relations.keys() {
1389 let score = self.score_triple(subject, relation, object)?;
1390 scores.push((relation.clone(), score));
1391 }
1392
1393 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1394 scores.truncate(k);
1395
1396 Ok(scores)
1397 }
1398
1399 fn get_entities(&self) -> Vec<String> {
1400 self.entities.keys().cloned().collect()
1401 }
1402
1403 fn get_relations(&self) -> Vec<String> {
1404 self.relations.keys().cloned().collect()
1405 }
1406
1407 fn get_stats(&self) -> ModelStats {
1408 ModelStats {
1409 num_entities: self.entities.len(),
1410 num_relations: self.relations.len(),
1411 num_triples: 0, dimensions: self.config.base_config.dimensions,
1413 is_trained: self.is_trained,
1414 model_type: self.model_type().to_string(),
1415 creation_time: Utc::now(),
1416 last_training_time: if self.is_trained {
1417 Some(Utc::now())
1418 } else {
1419 None
1420 },
1421 }
1422 }
1423
1424 fn save(&self, _path: &str) -> Result<()> {
1425 Ok(())
1427 }
1428
1429 fn load(&mut self, _path: &str) -> Result<()> {
1430 Ok(())
1432 }
1433
1434 fn clear(&mut self) {
1435 self.entities.clear();
1436 self.relations.clear();
1437 self.entity_embeddings = Array2::zeros((0, self.config.base_config.dimensions));
1438 self.relation_embeddings = Array2::zeros((0, self.config.base_config.dimensions));
1439 self.is_trained = false;
1440 self.training_stats = None;
1441 }
1442
1443 fn is_trained(&self) -> bool {
1444 self.is_trained
1445 }
1446
1447 async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
1448 let mut results = Vec::new();
1450
1451 for text in texts {
1452 match &self.config.architecture {
1453 ArchitectureType::QuantumInspired => {
1454 let input = Array1::from_vec(
1456 text.chars()
1457 .take(self.config.base_config.dimensions)
1458 .map(|c| (c as u8 as f64) / 255.0)
1459 .collect(),
1460 );
1461
1462 let mut padded_input = Array1::zeros(self.config.base_config.dimensions);
1464 let copy_len = input.len().min(self.config.base_config.dimensions);
1465 padded_input
1466 .slice_mut(s![..copy_len])
1467 .assign(&input.slice(s![..copy_len]));
1468
1469 match self.quantum_forward(&padded_input) {
1470 Ok(quantum_output) => {
1471 results.push(quantum_output.mapv(|x| x as f32).to_vec());
1472 }
1473 _ => {
1474 results.push(vec![0.0; self.config.base_config.dimensions]);
1475 }
1476 }
1477 }
1478 _ => {
1479 let mut embedding = vec![0.0f32; self.config.base_config.dimensions];
1481 for (i, c) in text.chars().enumerate() {
1482 if i >= self.config.base_config.dimensions {
1483 break;
1484 }
1485 embedding[i] = (c as u8 as f32) / 255.0;
1486 }
1487 results.push(embedding);
1488 }
1489 }
1490 }
1491
1492 Ok(results)
1493 }
1494}
1495
1496impl NovelArchitectureModel {
1497 fn resize_embeddings(&self, embeddings: &Array2<f64>, new_size: usize) -> Array2<f64> {
1499 let dimensions = self.config.base_config.dimensions;
1500 let mut random = Random::default();
1501 let mut new_embeddings =
1502 Array2::from_shape_fn((new_size, dimensions), |_| random.gen_range(-1.0..1.0));
1503
1504 let copy_rows = embeddings.nrows().min(new_size);
1505 if copy_rows > 0 {
1506 new_embeddings
1507 .slice_mut(s![..copy_rows, ..])
1508 .assign(&embeddings.slice(s![..copy_rows, ..]));
1509 }
1510
1511 new_embeddings
1512 }
1513
1514 fn train_graph_transformer_epoch(&mut self) -> Result<f64> {
1516 if self.entities.is_empty() {
1517 return Ok(0.0);
1518 }
1519
1520 let num_entities = self.entities.len();
1522 let adjacency = Array2::eye(num_entities); if let Some(ref mut transformer_state) = self.architecture_state.transformer_state {
1525 for layer in 0..transformer_state.attention_weights.shape()[0] {
1527 let mut layer_attention =
1528 transformer_state
1529 .attention_weights
1530 .slice_mut(s![layer, .., ..]);
1531 layer_attention.assign(&adjacency);
1532 }
1533
1534 transformer_state.layer_outputs.clear();
1536 transformer_state
1537 .layer_outputs
1538 .push(self.entity_embeddings.clone());
1539 }
1540
1541 Ok(0.1) }
1543
1544 fn train_neural_ode_epoch(&mut self) -> Result<f64> {
1546 if self.entities.is_empty() {
1547 return Ok(0.0);
1548 }
1549
1550 let embeddings = self.entity_embeddings.clone();
1552 let _final_state = self.solve_neural_ode(&embeddings, (0.0, 1.0))?;
1553
1554 Ok(0.1) }
1556
1557 fn train_hyperbolic_epoch(&mut self) -> Result<f64> {
1559 if self.entities.is_empty() {
1560 return Ok(0.0);
1561 }
1562
1563 if let Some(ref mut hyperbolic_state) = self.architecture_state.hyperbolic_state {
1565 for mut row in hyperbolic_state.manifold_embeddings.rows_mut() {
1567 let norm = row.mapv(|x| x * x).sum().sqrt();
1568 if norm >= 1.0 {
1569 row *= 0.99 / norm;
1570 }
1571 }
1572 }
1573
1574 Ok(0.1) }
1576
1577 fn train_geometric_epoch(&mut self) -> Result<f64> {
1579 if self.entities.is_empty() {
1580 return Ok(0.0);
1581 }
1582
1583 if let Some(ref mut geometric_state) = self.architecture_state.geometric_state {
1585 geometric_state.connection *= 0.99; }
1588
1589 Ok(0.1) }
1591
1592 fn train_quantum_epoch(&mut self) -> Result<f64> {
1594 if self.entities.is_empty() {
1595 return Ok(0.0);
1596 }
1597
1598 if let Some(ref mut quantum_state) = self.architecture_state.quantum_state {
1600 let norm = quantum_state.state_vector.mapv(|x| x * x).sum().sqrt();
1602 if norm > 0.0 {
1603 quantum_state.state_vector /= norm;
1604 }
1605 }
1606
1607 Ok(0.1) }
1609
1610 fn train_cnf_epoch(&mut self) -> Result<f64> {
1612 self.train_neural_ode_epoch()
1614 }
1615}
1616
1617#[cfg(test)]
1618mod tests {
1619 use super::*;
1620 use crate::NamedNode;
1621
1622 #[test]
1623 fn test_novel_architecture_config_default() {
1624 let config = NovelArchitectureConfig::default();
1625 assert_eq!(config.base_config.dimensions, 100);
1626 assert!(matches!(
1627 config.architecture,
1628 ArchitectureType::GraphTransformer
1629 ));
1630 }
1631
1632 #[test]
1633 fn test_graph_transformer_params() {
1634 let params = GraphTransformerParams::default();
1635 assert_eq!(params.num_heads, 8);
1636 assert_eq!(params.num_layers, 6);
1637 assert_eq!(params.attention_dim, 512);
1638 }
1639
1640 #[test]
1641 fn test_hyperbolic_params() {
1642 let params = HyperbolicParams::default();
1643 assert_eq!(params.curvature, -1.0);
1644 assert_eq!(params.manifold_dim, 128);
1645 assert!(matches!(params.manifold, HyperbolicManifold::Poincare));
1646 }
1647
1648 #[test]
1649 fn test_neural_ode_params() {
1650 let params = NeuralODEParams::default();
1651 assert_eq!(params.time_steps, 100);
1652 assert_eq!(params.tolerance, 1e-6);
1653 assert!(matches!(params.solver_type, ODESolverType::DormandPrince));
1654 }
1655
1656 #[test]
1657 fn test_quantum_params() {
1658 let params = QuantumParams::default();
1659 assert_eq!(params.num_qubits, 10);
1660 assert!(matches!(params.gate_set, QuantumGateSet::Universal));
1661 assert!(params.hybrid_layers);
1662 }
1663
1664 #[test]
1665 fn test_novel_architecture_model_creation() {
1666 let config = NovelArchitectureConfig::default();
1667 let model = NovelArchitectureModel::new(config);
1668
1669 assert_eq!(model.entities.len(), 0);
1670 assert_eq!(model.relations.len(), 0);
1671 assert!(!model.is_trained);
1672 }
1673
1674 #[test]
1675 fn test_poincare_distance() {
1676 let config = NovelArchitectureConfig {
1677 architecture: ArchitectureType::HyperbolicEmbedding,
1678 ..Default::default()
1679 };
1680 let model = NovelArchitectureModel::new(config);
1681
1682 let x = Array1::from_vec(vec![0.1, 0.2]);
1683 let y = Array1::from_vec(vec![0.3, 0.4]);
1684
1685 let distance = model.poincare_distance(&x, &y);
1686 assert!(distance > 0.0);
1687 assert!(distance.is_finite());
1688 }
1689
1690 #[test]
1691 fn test_quantum_forward() {
1692 let config = NovelArchitectureConfig {
1694 architecture: ArchitectureType::QuantumInspired,
1695 base_config: ModelConfig {
1696 dimensions: 3, ..Default::default()
1698 },
1699 architecture_params: ArchitectureParams {
1700 quantum_params: QuantumParams {
1701 num_qubits: 3, ..Default::default()
1703 },
1704 ..Default::default()
1705 },
1706 ..Default::default()
1707 };
1708 let mut model = NovelArchitectureModel::new(config);
1709
1710 model.initialize_architecture().unwrap();
1712
1713 let input = Array1::from_vec(vec![0.5, 0.3, 0.8]);
1714 let output = model.quantum_forward(&input).unwrap();
1715
1716 assert_eq!(output.len(), input.len());
1717
1718 const TOLERANCE: f64 = 1e-10;
1720 assert!(output
1721 .iter()
1722 .all(|&x| (-1.0 - TOLERANCE..=1.0 + TOLERANCE).contains(&x)));
1723 }
1724
1725 #[tokio::test]
1726 async fn test_novel_architecture_training() {
1727 let config = NovelArchitectureConfig::default();
1728 let mut model = NovelArchitectureModel::new(config);
1729
1730 let triple = Triple::new(
1732 NamedNode::new("http://example.org/alice").unwrap(),
1733 NamedNode::new("http://example.org/knows").unwrap(),
1734 NamedNode::new("http://example.org/bob").unwrap(),
1735 );
1736 model.add_triple(triple).unwrap();
1737
1738 let stats = model.train(Some(5)).await.unwrap();
1739 assert_eq!(stats.epochs_completed, 5);
1740 assert!(model.is_trained());
1741 }
1742
1743 #[test]
1744 fn test_softmax_2d() {
1745 let config = NovelArchitectureConfig::default();
1746 let model = NovelArchitectureModel::new(config);
1747
1748 let input = Array2::from_shape_vec((2, 3), vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).unwrap();
1749 let output = model.softmax_2d(&input);
1750
1751 for row in output.rows() {
1753 let sum: f64 = row.sum();
1754 assert!((sum - 1.0).abs() < 1e-6);
1755 }
1756 }
1757
1758 #[test]
1759 fn test_architecture_initialization() {
1760 let mut model = NovelArchitectureModel::new(NovelArchitectureConfig {
1761 architecture: ArchitectureType::GraphTransformer,
1762 ..Default::default()
1763 });
1764
1765 let triple = Triple::new(
1767 NamedNode::new("http://example.org/alice").unwrap(),
1768 NamedNode::new("http://example.org/knows").unwrap(),
1769 NamedNode::new("http://example.org/bob").unwrap(),
1770 );
1771 model.add_triple(triple).unwrap();
1772
1773 model.initialize_architecture().unwrap();
1774 assert!(model.architecture_state.transformer_state.is_some());
1775 }
1776
1777 #[tokio::test]
1778 async fn test_novel_architecture_encoding() {
1779 let config = NovelArchitectureConfig {
1780 architecture: ArchitectureType::QuantumInspired,
1781 base_config: crate::ModelConfig {
1782 dimensions: 16, ..Default::default()
1784 },
1785 ..Default::default()
1786 };
1787 let mut model = NovelArchitectureModel::new(config);
1788 model.initialize_architecture().unwrap();
1789
1790 let texts = vec!["hello".to_string(), "world".to_string()];
1791 let embeddings = model.encode(&texts).await.unwrap();
1792
1793 assert_eq!(embeddings.len(), 2);
1794 assert_eq!(embeddings[0].len(), model.config.base_config.dimensions);
1795 }
1796}