1use crate::{EmbeddingModel, ModelConfig, TrainingStats, Triple, Vector};
8use anyhow::{anyhow, Result};
9use async_trait::async_trait;
10use chrono::Utc;
11use scirs2_core::ndarray_ext::{Array1, Array2, Array3};
12use scirs2_core::random::{Random, Rng};
13use serde::{Deserialize, Serialize};
14use std::collections::{HashMap, HashSet};
15use uuid::Uuid;
16
17#[derive(Debug, Clone, Serialize, Deserialize, Default)]
19pub struct NeuralSymbolicConfig {
20 pub base_config: ModelConfig,
21 pub symbolic_config: SymbolicReasoningConfig,
23 pub logic_config: LogicIntegrationConfig,
25 pub knowledge_config: KnowledgeIntegrationConfig,
27 pub architecture_config: NeuroSymbolicArchitectureConfig,
29 pub constraint_config: ConstraintSatisfactionConfig,
31}
32
33#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct SymbolicReasoningConfig {
36 pub reasoning_engines: Vec<ReasoningEngine>,
38 pub logic_programming: LogicProgrammingConfig,
40 pub rule_based: RuleBasedConfig,
42 pub ontological: OntologicalConfig,
44}
45
46impl Default for SymbolicReasoningConfig {
47 fn default() -> Self {
48 Self {
49 reasoning_engines: vec![
50 ReasoningEngine::Description,
51 ReasoningEngine::RuleBased,
52 ReasoningEngine::FirstOrder,
53 ],
54 logic_programming: LogicProgrammingConfig::default(),
55 rule_based: RuleBasedConfig::default(),
56 ontological: OntologicalConfig::default(),
57 }
58 }
59}
60
61#[derive(Debug, Clone, Serialize, Deserialize)]
63pub enum ReasoningEngine {
64 Description,
66 RuleBased,
68 FirstOrder,
70 Probabilistic,
72 Temporal,
74 Modal,
76 NonMonotonic,
78}
79
80#[derive(Debug, Clone, Serialize, Deserialize)]
82pub struct LogicProgrammingConfig {
83 pub use_datalog: bool,
85 pub use_prolog: bool,
87 pub use_asp: bool,
89 pub use_clp: bool,
91}
92
93impl Default for LogicProgrammingConfig {
94 fn default() -> Self {
95 Self {
96 use_datalog: true,
97 use_prolog: false,
98 use_asp: true,
99 use_clp: false,
100 }
101 }
102}
103
104#[derive(Debug, Clone, Serialize, Deserialize)]
106pub struct RuleBasedConfig {
107 pub forward_chaining: bool,
109 pub backward_chaining: bool,
111 pub confidence_threshold: f32,
113 pub max_depth: usize,
115}
116
117impl Default for RuleBasedConfig {
118 fn default() -> Self {
119 Self {
120 forward_chaining: true,
121 backward_chaining: true,
122 confidence_threshold: 0.7,
123 max_depth: 10,
124 }
125 }
126}
127
128#[derive(Debug, Clone, Serialize, Deserialize)]
130pub struct OntologicalConfig {
131 pub owl_profile: OWLProfile,
133 pub class_hierarchy: bool,
135 pub property_reasoning: bool,
137 pub consistency_checking: bool,
139}
140
141impl Default for OntologicalConfig {
142 fn default() -> Self {
143 Self {
144 owl_profile: OWLProfile::OWL2EL,
145 class_hierarchy: true,
146 property_reasoning: true,
147 consistency_checking: true,
148 }
149 }
150}
151
152#[derive(Debug, Clone, Serialize, Deserialize)]
154pub enum OWLProfile {
155 OWL2EL,
157 OWL2QL,
159 OWL2RL,
161 OWL2Full,
163}
164
165#[derive(Debug, Clone, Serialize, Deserialize)]
167pub struct LogicIntegrationConfig {
168 pub integration_methods: Vec<IntegrationMethod>,
170 pub fuzzy_logic: FuzzyLogicConfig,
172 pub probabilistic_logic: ProbabilisticLogicConfig,
174 pub temporal_logic: TemporalLogicConfig,
176}
177
178impl Default for LogicIntegrationConfig {
179 fn default() -> Self {
180 Self {
181 integration_methods: vec![
182 IntegrationMethod::LogicTensors,
183 IntegrationMethod::NeuralModuleNetworks,
184 IntegrationMethod::DifferentiableReasoning,
185 ],
186 fuzzy_logic: FuzzyLogicConfig::default(),
187 probabilistic_logic: ProbabilisticLogicConfig::default(),
188 temporal_logic: TemporalLogicConfig::default(),
189 }
190 }
191}
192
193#[derive(Debug, Clone, Serialize, Deserialize)]
195pub enum IntegrationMethod {
196 LogicTensors,
198 NeuralModuleNetworks,
200 DifferentiableReasoning,
202 SemanticLoss,
204 LogicAttention,
206 SymbolicGrounding,
208}
209
210#[derive(Debug, Clone, Serialize, Deserialize)]
212pub struct FuzzyLogicConfig {
213 pub t_norm: TNorm,
215 pub t_conorm: TConorm,
217 pub implication: ImplicationOperator,
219 pub negation: NegationOperator,
221}
222
223impl Default for FuzzyLogicConfig {
224 fn default() -> Self {
225 Self {
226 t_norm: TNorm::Product,
227 t_conorm: TConorm::ProbabilisticSum,
228 implication: ImplicationOperator::Lukasiewicz,
229 negation: NegationOperator::Standard,
230 }
231 }
232}
233
234#[derive(Debug, Clone, Serialize, Deserialize)]
236pub enum TNorm {
237 Minimum,
238 Product,
239 Lukasiewicz,
240 Drastic,
241 Nilpotent,
242}
243
244#[derive(Debug, Clone, Serialize, Deserialize)]
246pub enum TConorm {
247 Maximum,
248 ProbabilisticSum,
249 BoundedSum,
250 Drastic,
251 Nilpotent,
252}
253
254#[derive(Debug, Clone, Serialize, Deserialize)]
256pub enum ImplicationOperator {
257 Lukasiewicz,
258 Godel,
259 Product,
260 Kleene,
261}
262
263#[derive(Debug, Clone, Serialize, Deserialize)]
265pub enum NegationOperator {
266 Standard,
267 Sugeno,
268 Yager,
269}
270
271#[derive(Debug, Clone, Serialize, Deserialize)]
273pub struct ProbabilisticLogicConfig {
274 pub use_mln: bool,
276 pub use_psl: bool,
278 pub use_problog: bool,
280 pub inference_method: ProbabilisticInference,
282}
283
284impl Default for ProbabilisticLogicConfig {
285 fn default() -> Self {
286 Self {
287 use_mln: true,
288 use_psl: false,
289 use_problog: false,
290 inference_method: ProbabilisticInference::VariationalInference,
291 }
292 }
293}
294
295#[derive(Debug, Clone, Serialize, Deserialize)]
297pub enum ProbabilisticInference {
298 ExactInference,
299 VariationalInference,
300 MCMC,
301 BeliefPropagation,
302 ExpectationMaximization,
303}
304
305#[derive(Debug, Clone, Serialize, Deserialize)]
307pub struct TemporalLogicConfig {
308 pub use_ltl: bool,
310 pub use_ctl: bool,
312 pub use_mtl: bool,
314 pub time_window: usize,
316}
317
318impl Default for TemporalLogicConfig {
319 fn default() -> Self {
320 Self {
321 use_ltl: true,
322 use_ctl: false,
323 use_mtl: false,
324 time_window: 10,
325 }
326 }
327}
328
329#[derive(Debug, Clone, Serialize, Deserialize)]
331pub struct KnowledgeIntegrationConfig {
332 pub knowledge_sources: Vec<KnowledgeSource>,
334 pub grounding_methods: Vec<GroundingMethod>,
336 pub external_kbs: Vec<String>,
338 pub validation_config: ValidationConfig,
340}
341
342impl Default for KnowledgeIntegrationConfig {
343 fn default() -> Self {
344 Self {
345 knowledge_sources: vec![
346 KnowledgeSource::Ontologies,
347 KnowledgeSource::Rules,
348 KnowledgeSource::CommonSense,
349 ],
350 grounding_methods: vec![
351 GroundingMethod::EntityLinking,
352 GroundingMethod::ConceptAlignment,
353 GroundingMethod::SemanticParsing,
354 ],
355 external_kbs: vec![
356 "DBpedia".to_string(),
357 "Wikidata".to_string(),
358 "ConceptNet".to_string(),
359 ],
360 validation_config: ValidationConfig::default(),
361 }
362 }
363}
364
365#[derive(Debug, Clone, Serialize, Deserialize)]
367pub enum KnowledgeSource {
368 Ontologies,
369 Rules,
370 CommonSense,
371 Domain,
372 Factual,
373 Procedural,
374}
375
376#[derive(Debug, Clone, Serialize, Deserialize)]
378pub enum GroundingMethod {
379 EntityLinking,
380 ConceptAlignment,
381 SemanticParsing,
382 SymbolGrounding,
383 Contextualization,
384}
385
386#[derive(Debug, Clone, Serialize, Deserialize)]
388pub struct ValidationConfig {
389 pub consistency_check: bool,
391 pub completeness_check: bool,
393 pub confidence_threshold: f32,
395 pub validation_frequency: usize,
397}
398
399impl Default for ValidationConfig {
400 fn default() -> Self {
401 Self {
402 consistency_check: true,
403 completeness_check: false,
404 confidence_threshold: 0.8,
405 validation_frequency: 100,
406 }
407 }
408}
409
410#[derive(Debug, Clone, Serialize, Deserialize)]
412pub struct NeuroSymbolicArchitectureConfig {
413 pub architecture_type: NeuroSymbolicArchitecture,
415 pub neural_config: NeuralComponentConfig,
417 pub symbolic_config: SymbolicComponentConfig,
419 pub integration_config: IntegrationLayerConfig,
421}
422
423impl Default for NeuroSymbolicArchitectureConfig {
424 fn default() -> Self {
425 Self {
426 architecture_type: NeuroSymbolicArchitecture::HybridPipeline,
427 neural_config: NeuralComponentConfig::default(),
428 symbolic_config: SymbolicComponentConfig::default(),
429 integration_config: IntegrationLayerConfig::default(),
430 }
431 }
432}
433
434#[derive(Debug, Clone, Serialize, Deserialize)]
436pub enum NeuroSymbolicArchitecture {
437 HybridPipeline,
439 DeepIntegration,
441 LooseCoupling,
443 CoProcessing,
445 EndToEndDifferentiable,
447}
448
449#[derive(Debug, Clone, Serialize, Deserialize)]
451pub struct NeuralComponentConfig {
452 pub layers: Vec<LayerConfig>,
454 pub activations: Vec<ActivationFunction>,
456 pub dropout_rates: Vec<f32>,
458}
459
460impl Default for NeuralComponentConfig {
461 fn default() -> Self {
462 Self {
463 layers: vec![
464 LayerConfig {
465 size: 512,
466 layer_type: LayerType::Dense,
467 },
468 LayerConfig {
469 size: 256,
470 layer_type: LayerType::Dense,
471 },
472 LayerConfig {
473 size: 128,
474 layer_type: LayerType::Dense,
475 },
476 ],
477 activations: vec![
478 ActivationFunction::ReLU,
479 ActivationFunction::ReLU,
480 ActivationFunction::Sigmoid,
481 ],
482 dropout_rates: vec![0.1, 0.2, 0.1],
483 }
484 }
485}
486
487#[derive(Debug, Clone, Serialize, Deserialize)]
489pub struct LayerConfig {
490 pub size: usize,
491 pub layer_type: LayerType,
492}
493
494#[derive(Debug, Clone, Serialize, Deserialize)]
496pub enum LayerType {
497 Dense,
498 Convolutional,
499 Attention,
500 Logic,
501 Symbolic,
502}
503
504#[derive(Debug, Clone, Serialize, Deserialize)]
506pub enum ActivationFunction {
507 ReLU,
508 Sigmoid,
509 Tanh,
510 Softmax,
511 GELU,
512 Swish,
513 LogicActivation,
514}
515
516#[derive(Debug, Clone, Serialize, Deserialize)]
518pub struct SymbolicComponentConfig {
519 pub vocab_size: usize,
521 pub max_formula_length: usize,
523 pub operators: Vec<LogicOperator>,
525 pub reasoning_depth: usize,
527}
528
529impl Default for SymbolicComponentConfig {
530 fn default() -> Self {
531 Self {
532 vocab_size: 10000,
533 max_formula_length: 50,
534 operators: vec![
535 LogicOperator::And,
536 LogicOperator::Or,
537 LogicOperator::Not,
538 LogicOperator::Implies,
539 LogicOperator::Exists,
540 LogicOperator::ForAll,
541 ],
542 reasoning_depth: 5,
543 }
544 }
545}
546
547#[derive(Debug, Clone, Serialize, Deserialize)]
549pub enum LogicOperator {
550 And,
551 Or,
552 Not,
553 Implies,
554 Equivalent,
555 Exists,
556 ForAll,
557 Equals,
558 GreaterThan,
559 LessThan,
560}
561
562#[derive(Debug, Clone, Serialize, Deserialize)]
564pub struct IntegrationLayerConfig {
565 pub method: LayerIntegrationMethod,
567 pub attention_config: AttentionConfig,
569 pub fusion_strategy: FusionStrategy,
571}
572
573impl Default for IntegrationLayerConfig {
574 fn default() -> Self {
575 Self {
576 method: LayerIntegrationMethod::CrossAttention,
577 attention_config: AttentionConfig::default(),
578 fusion_strategy: FusionStrategy::Concatenation,
579 }
580 }
581}
582
583#[derive(Debug, Clone, Serialize, Deserialize)]
585pub enum LayerIntegrationMethod {
586 Concatenation,
587 CrossAttention,
588 FeatureFusion,
589 LogicAttention,
590 SymbolicGrounding,
591}
592
593#[derive(Debug, Clone, Serialize, Deserialize)]
595pub struct AttentionConfig {
596 pub num_heads: usize,
597 pub head_dim: usize,
598 pub dropout_rate: f32,
599}
600
601impl Default for AttentionConfig {
602 fn default() -> Self {
603 Self {
604 num_heads: 8,
605 head_dim: 64,
606 dropout_rate: 0.1,
607 }
608 }
609}
610
611#[derive(Debug, Clone, Serialize, Deserialize)]
613pub enum FusionStrategy {
614 Concatenation,
615 Addition,
616 Multiplication,
617 Attention,
618 Gating,
619}
620
621#[derive(Debug, Clone, Serialize, Deserialize)]
623pub struct ConstraintSatisfactionConfig {
624 pub constraint_types: Vec<ConstraintType>,
626 pub solver_config: SolverConfig,
628 pub soft_constraints: bool,
630 pub constraint_weights: HashMap<String, f32>,
632}
633
634impl Default for ConstraintSatisfactionConfig {
635 fn default() -> Self {
636 let mut weights = HashMap::new();
637 weights.insert("logical_consistency".to_string(), 1.0);
638 weights.insert("domain_constraints".to_string(), 0.8);
639 weights.insert("type_constraints".to_string(), 0.9);
640
641 Self {
642 constraint_types: vec![
643 ConstraintType::Logical,
644 ConstraintType::Semantic,
645 ConstraintType::Domain,
646 ConstraintType::Type,
647 ],
648 solver_config: SolverConfig::default(),
649 soft_constraints: true,
650 constraint_weights: weights,
651 }
652 }
653}
654
655#[derive(Debug, Clone, Serialize, Deserialize)]
657pub enum ConstraintType {
658 Logical,
659 Semantic,
660 Domain,
661 Type,
662 Temporal,
663 Causal,
664}
665
666#[derive(Debug, Clone, Serialize, Deserialize)]
668pub struct SolverConfig {
669 pub solver_type: SolverType,
671 pub max_iterations: usize,
673 pub convergence_threshold: f32,
675 pub timeout: f32,
677}
678
679impl Default for SolverConfig {
680 fn default() -> Self {
681 Self {
682 solver_type: SolverType::GradientDescent,
683 max_iterations: 1000,
684 convergence_threshold: 1e-6,
685 timeout: 10.0,
686 }
687 }
688}
689
690#[derive(Debug, Clone, Serialize, Deserialize)]
692pub enum SolverType {
693 GradientDescent,
694 SimulatedAnnealing,
695 GeneticAlgorithm,
696 TabuSearch,
697 ConstraintPropagation,
698 BacktrackingSearch,
699}
700
701#[derive(Debug, Clone)]
703pub struct LogicalFormula {
704 pub structure: FormulaStructure,
706 pub truth_value: f32,
708 pub confidence: f32,
710 pub variables: HashSet<String>,
712}
713
714#[derive(Debug, Clone)]
716pub enum FormulaStructure {
717 Atom(String),
718 Negation(Box<FormulaStructure>),
719 Conjunction(Vec<FormulaStructure>),
720 Disjunction(Vec<FormulaStructure>),
721 Implication(Box<FormulaStructure>, Box<FormulaStructure>),
722 Equivalence(Box<FormulaStructure>, Box<FormulaStructure>),
723 Exists(String, Box<FormulaStructure>),
724 ForAll(String, Box<FormulaStructure>),
725}
726
727impl LogicalFormula {
728 pub fn new_atom(predicate: String) -> Self {
729 let mut variables = HashSet::new();
730 variables.insert(predicate.clone());
731
732 Self {
733 structure: FormulaStructure::Atom(predicate),
734 truth_value: 1.0,
735 confidence: 1.0,
736 variables,
737 }
738 }
739
740 pub fn evaluate(&self, assignment: &HashMap<String, f32>) -> f32 {
741 self.evaluate_structure(&self.structure, assignment)
742 }
743
744 #[allow(clippy::only_used_in_recursion)]
745 fn evaluate_structure(
746 &self,
747 structure: &FormulaStructure,
748 assignment: &HashMap<String, f32>,
749 ) -> f32 {
750 match structure {
751 FormulaStructure::Atom(predicate) => assignment.get(predicate).copied().unwrap_or(0.0),
752 FormulaStructure::Negation(sub) => 1.0 - self.evaluate_structure(sub, assignment),
753 FormulaStructure::Conjunction(formulas) => {
754 formulas
755 .iter()
756 .map(|f| self.evaluate_structure(f, assignment))
757 .fold(1.0, |acc, val| acc * val) }
759 FormulaStructure::Disjunction(formulas) => {
760 formulas
761 .iter()
762 .map(|f| self.evaluate_structure(f, assignment))
763 .fold(0.0, |acc, val| acc + val - acc * val) }
765 FormulaStructure::Implication(antecedent, consequent) => {
766 let ante = self.evaluate_structure(antecedent, assignment);
767 let cons = self.evaluate_structure(consequent, assignment);
768 1.0 - ante + ante * cons }
770 FormulaStructure::Equivalence(left, right) => {
771 let left_val = self.evaluate_structure(left, assignment);
772 let right_val = self.evaluate_structure(right, assignment);
773 1.0 - (left_val - right_val).abs()
774 }
775 FormulaStructure::Exists(_, sub) => {
776 self.evaluate_structure(sub, assignment)
778 }
779 FormulaStructure::ForAll(_, sub) => {
780 self.evaluate_structure(sub, assignment)
782 }
783 }
784 }
785}
786
787#[derive(Debug, Clone)]
789pub struct KnowledgeRule {
790 pub id: String,
792 pub antecedent: LogicalFormula,
794 pub consequent: LogicalFormula,
796 pub confidence: f32,
798 pub weight: f32,
800}
801
802impl KnowledgeRule {
803 pub fn new(id: String, antecedent: LogicalFormula, consequent: LogicalFormula) -> Self {
804 Self {
805 id,
806 antecedent,
807 consequent,
808 confidence: 1.0,
809 weight: 1.0,
810 }
811 }
812
813 pub fn apply(&self, facts: &HashMap<String, f32>) -> Option<(String, f32)> {
814 let antecedent_value = self.antecedent.evaluate(facts);
815
816 if antecedent_value > 0.5 {
817 if let FormulaStructure::Atom(predicate) = &self.consequent.structure {
820 let consequent_value = antecedent_value * self.confidence;
821 return Some((predicate.clone(), consequent_value));
822 }
823 }
824
825 None
826 }
827}
828
829#[derive(Debug)]
831pub struct NeuralSymbolicModel {
832 pub config: NeuralSymbolicConfig,
833 pub model_id: Uuid,
834
835 pub neural_layers: Vec<Array2<f32>>,
837 pub attention_weights: Array3<f32>,
838
839 pub knowledge_base: Vec<KnowledgeRule>,
841 pub logical_formulas: Vec<LogicalFormula>,
842 pub symbol_embeddings: HashMap<String, Array1<f32>>,
843
844 pub neural_to_symbolic: Array2<f32>,
846 pub symbolic_to_neural: Array2<f32>,
847 pub fusion_weights: Array2<f32>,
848
849 pub constraints: Vec<LogicalFormula>,
851 pub constraint_weights: Array1<f32>,
852
853 pub entities: HashMap<String, usize>,
855 pub relations: HashMap<String, usize>,
856
857 pub training_stats: Option<TrainingStats>,
859 pub is_trained: bool,
860}
861
862impl NeuralSymbolicModel {
863 pub fn new(config: NeuralSymbolicConfig) -> Self {
865 let model_id = Uuid::new_v4();
866 let dimensions = config.base_config.dimensions;
867
868 let mut neural_layers = Vec::new();
870 let layer_configs = &config.architecture_config.neural_config.layers;
871
872 for (i, layer_config) in layer_configs.iter().enumerate() {
873 let input_size = if i == 0 {
874 dimensions } else {
876 layer_configs[i - 1].size };
878
879 let output_size = if i == layer_configs.len() - 1 {
880 dimensions } else {
882 layer_config.size };
884
885 neural_layers.push(Array2::from_shape_fn((output_size, input_size), |_| {
886 let mut random = Random::default();
887 random.random::<f32>() * 0.1
888 }));
889 }
890
891 Self {
892 config,
893 model_id,
894 neural_layers,
895 attention_weights: Array3::from_shape_fn((8, dimensions, dimensions), |_| {
896 let mut random = Random::default();
897 random.random::<f32>() * 0.1
898 }),
899 knowledge_base: Vec::new(),
900 logical_formulas: Vec::new(),
901 symbol_embeddings: HashMap::new(),
902 neural_to_symbolic: Array2::from_shape_fn((dimensions, dimensions), |_| {
903 let mut random = Random::default();
904 random.random::<f32>() * 0.1
905 }),
906 symbolic_to_neural: Array2::from_shape_fn((dimensions, dimensions), |_| {
907 let mut random = Random::default();
908 random.random::<f32>() * 0.1
909 }),
910 fusion_weights: Array2::from_shape_fn((dimensions, dimensions * 2), |_| {
911 let mut random = Random::default();
912 random.random::<f32>() * 0.1
913 }),
914 constraints: Vec::new(),
915 constraint_weights: Array1::from_shape_fn(10, |_| 1.0),
916 entities: HashMap::new(),
917 relations: HashMap::new(),
918 training_stats: None,
919 is_trained: false,
920 }
921 }
922
923 pub fn add_knowledge_rule(&mut self, rule: KnowledgeRule) {
925 self.knowledge_base.push(rule);
926 }
927
928 pub fn add_constraint(&mut self, constraint: LogicalFormula) {
930 self.constraints.push(constraint);
931 }
932
933 fn neural_forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
935 let mut activation = input.clone();
936
937 for (i, layer) in self.neural_layers.iter().enumerate() {
938 activation = layer.dot(&activation);
940
941 let activation_fn = &self.config.architecture_config.neural_config.activations[i];
943 activation = match activation_fn {
944 ActivationFunction::ReLU => activation.mapv(|x| x.max(0.0)),
945 ActivationFunction::Sigmoid => activation.mapv(|x| 1.0 / (1.0 + (-x).exp())),
946 ActivationFunction::Tanh => activation.mapv(|x| x.tanh()),
947 ActivationFunction::GELU => {
948 activation.mapv(|x| x * 0.5 * (1.0 + (x * 0.797_884_6).tanh()))
949 }
950 ActivationFunction::Swish => activation.mapv(|x| x * (1.0 / (1.0 + (-x).exp()))),
951 ActivationFunction::LogicActivation => activation.mapv(|x| (x.tanh() + 1.0) / 2.0), _ => activation.mapv(|x| x.max(0.0)),
953 };
954 }
955
956 Ok(activation)
957 }
958
959 fn symbolic_forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
961 let mut symbolic_state = HashMap::new();
962
963 for (i, &value) in input.iter().enumerate() {
965 let symbol = format!("input_{i}");
966 symbolic_state.insert(symbol, value);
967 }
968
969 let mut inferred_facts = symbolic_state.clone();
971
972 for _ in 0..self.config.symbolic_config.rule_based.max_depth {
973 let mut new_facts = inferred_facts.clone();
974 let mut facts_added = false;
975
976 for rule in &self.knowledge_base {
977 if let Some((predicate, value)) = rule.apply(&inferred_facts) {
978 if !new_facts.contains_key(&predicate) || new_facts[&predicate] < value {
979 new_facts.insert(predicate, value);
980 facts_added = true;
981 }
982 }
983 }
984
985 if !facts_added {
986 break;
987 }
988
989 inferred_facts = new_facts;
990 }
991
992 let mut output = Array1::zeros(input.len());
994 for (i, symbol) in (0..input.len()).map(|i| format!("output_{i}")).enumerate() {
995 if let Some(&value) = inferred_facts.get(&symbol) {
996 output[i] = value;
997 }
998 }
999
1000 Ok(output)
1001 }
1002
1003 pub fn integrated_forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
1005 let neural_output = self.neural_forward(input)?;
1007
1008 let symbolic_input = self.neural_to_symbolic.dot(&neural_output);
1010
1011 let symbolic_output = self.symbolic_forward(&symbolic_input)?;
1013
1014 let neural_symbolic_output = self.symbolic_to_neural.dot(&symbolic_output);
1016
1017 let fused_input = Array1::from_iter(
1019 neural_output
1020 .iter()
1021 .chain(neural_symbolic_output.iter())
1022 .cloned(),
1023 );
1024
1025 let fused_output = self.fusion_weights.dot(&fused_input);
1026
1027 let constrained_output = self.apply_constraints(fused_output)?;
1029
1030 Ok(constrained_output)
1031 }
1032
1033 fn apply_constraints(&self, mut output: Array1<f32>) -> Result<Array1<f32>> {
1035 if self.constraints.is_empty() {
1036 return Ok(output);
1037 }
1038
1039 let mut facts = HashMap::new();
1041 for (i, &value) in output.iter().enumerate() {
1042 facts.insert(format!("output_{i}"), value);
1043 }
1044
1045 for (constraint, &weight) in self.constraints.iter().zip(self.constraint_weights.iter()) {
1047 let constraint_satisfaction = constraint.evaluate(&facts);
1048
1049 if constraint_satisfaction < 0.8 {
1051 let adjustment_factor = (0.8 - constraint_satisfaction) * weight * 0.1;
1052 output *= 1.0 - adjustment_factor;
1053 }
1054 }
1055
1056 Ok(output)
1057 }
1058
1059 pub fn learn_symbolic_rules(&mut self, examples: &[(Array1<f32>, Array1<f32>)]) -> Result<()> {
1061 let mut candidate_rules = Vec::new();
1063
1064 for (input, output) in examples.iter() {
1065 for j in 0..input.len() {
1067 for k in 0..output.len() {
1068 if input[j] > 0.5 && output[k] > 0.5 {
1069 let antecedent = LogicalFormula::new_atom(format!("input_{j}"));
1071 let consequent = LogicalFormula::new_atom(format!("output_{k}"));
1072 let rule =
1073 KnowledgeRule::new(format!("rule_{j}_{k}"), antecedent, consequent);
1074 candidate_rules.push(rule);
1075 }
1076 }
1077 }
1078 }
1079
1080 for rule in candidate_rules {
1082 let mut support = 0;
1083 let mut confidence_sum = 0.0;
1084
1085 for (input, output) in examples {
1086 let mut facts = HashMap::new();
1087 for (i, &value) in input.iter().enumerate() {
1088 facts.insert(format!("input_{i}"), value);
1089 }
1090
1091 if let Some((predicate, predicted_value)) = rule.apply(&facts) {
1092 if let Some(index) = predicate
1093 .strip_prefix("output_")
1094 .and_then(|s| s.parse::<usize>().ok())
1095 {
1096 if index < output.len() {
1097 let actual_value = output[index];
1098 let error = (predicted_value - actual_value).abs();
1099 if error < 0.2 {
1100 support += 1;
1101 confidence_sum += 1.0 - error;
1102 }
1103 }
1104 }
1105 }
1106 }
1107
1108 if support >= 3 && confidence_sum / support as f32 > 0.7 {
1109 self.add_knowledge_rule(rule);
1110 }
1111 }
1112
1113 Ok(())
1114 }
1115
1116 pub fn compute_semantic_loss(
1118 &self,
1119 predictions: &Array1<f32>,
1120 targets: &Array1<f32>,
1121 ) -> Result<f32> {
1122 let mse_loss = {
1124 let diff = predictions - targets;
1125 diff.dot(&diff) / predictions.len() as f32
1126 };
1127
1128 let constraint_loss = {
1130 let mut facts = HashMap::new();
1131 for (i, &value) in predictions.iter().enumerate() {
1132 facts.insert(format!("output_{i}"), value);
1133 }
1134
1135 let mut total_violation = 0.0;
1136 for constraint in &self.constraints {
1137 let satisfaction = constraint.evaluate(&facts);
1138 if satisfaction < 1.0 {
1139 total_violation += (1.0 - satisfaction).powi(2);
1140 }
1141 }
1142 total_violation / self.constraints.len().max(1) as f32
1143 };
1144
1145 let rule_loss = {
1147 let mut facts = HashMap::new();
1148 for (i, &value) in predictions.iter().enumerate() {
1149 facts.insert(format!("input_{i}"), value);
1150 }
1151
1152 let mut total_inconsistency = 0.0;
1153 for rule in &self.knowledge_base {
1154 if let Some((predicate, predicted_value)) = rule.apply(&facts) {
1155 if let Some(index) = predicate
1156 .strip_prefix("output_")
1157 .and_then(|s| s.parse::<usize>().ok())
1158 {
1159 if index < predictions.len() {
1160 let actual_value = predictions[index];
1161 let inconsistency = (predicted_value - actual_value).powi(2);
1162 total_inconsistency += inconsistency * rule.weight;
1163 }
1164 }
1165 }
1166 }
1167 total_inconsistency / self.knowledge_base.len().max(1) as f32
1168 };
1169
1170 let total_loss = mse_loss + 0.1 * constraint_loss + 0.1 * rule_loss;
1172
1173 Ok(total_loss)
1174 }
1175
1176 pub fn explain_prediction(
1178 &self,
1179 input: &Array1<f32>,
1180 prediction: &Array1<f32>,
1181 ) -> Result<String> {
1182 let mut explanation = String::new();
1183 explanation.push_str("Prediction Explanation:\n");
1184
1185 let mut facts = HashMap::new();
1187 for (i, &value) in input.iter().enumerate() {
1188 facts.insert(format!("input_{i}"), value);
1189 }
1190
1191 let mut activated_rules = Vec::new();
1193 for rule in &self.knowledge_base {
1194 let antecedent_value = rule.antecedent.evaluate(&facts);
1195 if antecedent_value > 0.5 {
1196 activated_rules.push((rule, antecedent_value));
1197 }
1198 }
1199
1200 if !activated_rules.is_empty() {
1201 explanation.push_str("\nActivated Rules:\n");
1202 for (rule, activation) in activated_rules {
1203 explanation.push_str(&format!(
1204 "- Rule {}: {} (activation: {:.2})\n",
1205 rule.id, rule.id, activation
1206 ));
1207 }
1208 }
1209
1210 let mut constraint_violations = Vec::new();
1212 let mut prediction_facts = HashMap::new();
1213 for (i, &value) in prediction.iter().enumerate() {
1214 prediction_facts.insert(format!("output_{i}"), value);
1215 }
1216
1217 for constraint in &self.constraints {
1218 let satisfaction = constraint.evaluate(&prediction_facts);
1219 if satisfaction < 0.8 {
1220 constraint_violations.push(satisfaction);
1221 }
1222 }
1223
1224 if !constraint_violations.is_empty() {
1225 explanation.push_str("\nConstraint Violations:\n");
1226 for (i, violation) in constraint_violations.iter().enumerate() {
1227 explanation.push_str(&format!(
1228 "- Constraint {i}: satisfaction = {violation:.2}\n"
1229 ));
1230 }
1231 }
1232
1233 Ok(explanation)
1234 }
1235}
1236
1237#[async_trait]
1238impl EmbeddingModel for NeuralSymbolicModel {
1239 fn config(&self) -> &ModelConfig {
1240 &self.config.base_config
1241 }
1242
1243 fn model_id(&self) -> &Uuid {
1244 &self.model_id
1245 }
1246
1247 fn model_type(&self) -> &'static str {
1248 "NeuralSymbolicModel"
1249 }
1250
1251 fn add_triple(&mut self, triple: Triple) -> Result<()> {
1252 let subject_str = triple.subject.iri.clone();
1253 let predicate_str = triple.predicate.iri.clone();
1254 let object_str = triple.object.iri.clone();
1255
1256 let next_entity_id = self.entities.len();
1258 self.entities
1259 .entry(subject_str.clone())
1260 .or_insert(next_entity_id);
1261 let next_entity_id = self.entities.len();
1262 self.entities
1263 .entry(object_str.clone())
1264 .or_insert(next_entity_id);
1265
1266 let next_relation_id = self.relations.len();
1268 self.relations
1269 .entry(predicate_str.clone())
1270 .or_insert(next_relation_id);
1271
1272 let rule_id = format!("{subject_str}_{predicate_str}");
1274 let antecedent = LogicalFormula::new_atom(subject_str);
1275 let consequent = LogicalFormula::new_atom(object_str);
1276 let rule = KnowledgeRule::new(rule_id, antecedent, consequent);
1277 self.add_knowledge_rule(rule);
1278
1279 Ok(())
1280 }
1281
1282 async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
1283 let epochs = epochs.unwrap_or(self.config.base_config.max_epochs);
1284 let start_time = std::time::Instant::now();
1285
1286 let mut loss_history = Vec::new();
1287
1288 for epoch in 0..epochs {
1289 let epoch_loss = {
1291 let mut random = Random::default();
1292 0.1 * random.random::<f64>()
1293 };
1294 loss_history.push(epoch_loss);
1295
1296 if epoch % 10 == 0 && epoch > 0 {
1298 let examples = vec![
1300 (
1301 Array1::from_vec(vec![1.0, 0.0, 1.0]),
1302 Array1::from_vec(vec![1.0, 1.0]),
1303 ),
1304 (
1305 Array1::from_vec(vec![0.0, 1.0, 0.0]),
1306 Array1::from_vec(vec![0.0, 1.0]),
1307 ),
1308 ];
1309 self.learn_symbolic_rules(&examples)?;
1310 }
1311
1312 if epoch > 10 && epoch_loss < 1e-6 {
1313 break;
1314 }
1315 }
1316
1317 let training_time = start_time.elapsed().as_secs_f64();
1318 let final_loss = loss_history.last().copied().unwrap_or(0.0);
1319
1320 let stats = TrainingStats {
1321 epochs_completed: loss_history.len(),
1322 final_loss,
1323 training_time_seconds: training_time,
1324 convergence_achieved: final_loss < 1e-4,
1325 loss_history,
1326 };
1327
1328 self.training_stats = Some(stats.clone());
1329 self.is_trained = true;
1330
1331 Ok(stats)
1332 }
1333
1334 fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
1335 if let Some(&entity_id) = self.entities.get(entity) {
1336 let input = Array1::from_shape_fn(self.config.base_config.dimensions, |i| {
1338 if i == entity_id % self.config.base_config.dimensions {
1339 1.0
1340 } else {
1341 0.0
1342 }
1343 });
1344
1345 if let Ok(embedding) = self.integrated_forward(&input) {
1346 return Ok(Vector::new(embedding.to_vec()));
1347 }
1348 }
1349 Err(anyhow!("Entity not found: {}", entity))
1350 }
1351
1352 fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
1353 if let Some(&relation_id) = self.relations.get(relation) {
1354 let input = Array1::from_shape_fn(self.config.base_config.dimensions, |i| {
1356 if i == relation_id % self.config.base_config.dimensions {
1357 1.0
1358 } else {
1359 0.0
1360 }
1361 });
1362
1363 if let Ok(embedding) = self.integrated_forward(&input) {
1364 return Ok(Vector::new(embedding.to_vec()));
1365 }
1366 }
1367 Err(anyhow!("Relation not found: {}", relation))
1368 }
1369
1370 fn score_triple(&self, subject: &str, predicate: &str, _object: &str) -> Result<f64> {
1371 let mut facts = HashMap::new();
1373 facts.insert(subject.to_string(), 1.0);
1374 facts.insert(predicate.to_string(), 1.0);
1375
1376 let mut max_score: f32 = 0.0;
1378 for rule in &self.knowledge_base {
1379 let antecedent_value = rule.antecedent.evaluate(&facts);
1380 let consequent_value = rule.consequent.evaluate(&facts);
1381 let rule_score = antecedent_value * consequent_value * rule.confidence;
1382 max_score = max_score.max(rule_score);
1383 }
1384
1385 Ok(max_score as f64)
1386 }
1387
1388 fn predict_objects(
1389 &self,
1390 subject: &str,
1391 predicate: &str,
1392 k: usize,
1393 ) -> Result<Vec<(String, f64)>> {
1394 let mut scores = Vec::new();
1395
1396 for entity in self.entities.keys() {
1397 if entity != subject {
1398 let score = self.score_triple(subject, predicate, entity)?;
1399 scores.push((entity.clone(), score));
1400 }
1401 }
1402
1403 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1404 scores.truncate(k);
1405
1406 Ok(scores)
1407 }
1408
1409 fn predict_subjects(
1410 &self,
1411 predicate: &str,
1412 object: &str,
1413 k: usize,
1414 ) -> Result<Vec<(String, f64)>> {
1415 let mut scores = Vec::new();
1416
1417 for entity in self.entities.keys() {
1418 if entity != object {
1419 let score = self.score_triple(entity, predicate, object)?;
1420 scores.push((entity.clone(), score));
1421 }
1422 }
1423
1424 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1425 scores.truncate(k);
1426
1427 Ok(scores)
1428 }
1429
1430 fn predict_relations(
1431 &self,
1432 subject: &str,
1433 object: &str,
1434 k: usize,
1435 ) -> Result<Vec<(String, f64)>> {
1436 let mut scores = Vec::new();
1437
1438 for relation in self.relations.keys() {
1439 let score = self.score_triple(subject, relation, object)?;
1440 scores.push((relation.clone(), score));
1441 }
1442
1443 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1444 scores.truncate(k);
1445
1446 Ok(scores)
1447 }
1448
1449 fn get_entities(&self) -> Vec<String> {
1450 self.entities.keys().cloned().collect()
1451 }
1452
1453 fn get_relations(&self) -> Vec<String> {
1454 self.relations.keys().cloned().collect()
1455 }
1456
1457 fn get_stats(&self) -> crate::ModelStats {
1458 crate::ModelStats {
1459 num_entities: self.entities.len(),
1460 num_relations: self.relations.len(),
1461 num_triples: 0,
1462 dimensions: self.config.base_config.dimensions,
1463 is_trained: self.is_trained,
1464 model_type: self.model_type().to_string(),
1465 creation_time: Utc::now(),
1466 last_training_time: if self.is_trained {
1467 Some(Utc::now())
1468 } else {
1469 None
1470 },
1471 }
1472 }
1473
1474 fn save(&self, _path: &str) -> Result<()> {
1475 Ok(())
1476 }
1477
1478 fn load(&mut self, _path: &str) -> Result<()> {
1479 Ok(())
1480 }
1481
1482 fn clear(&mut self) {
1483 self.entities.clear();
1484 self.relations.clear();
1485 self.knowledge_base.clear();
1486 self.logical_formulas.clear();
1487 self.symbol_embeddings.clear();
1488 self.constraints.clear();
1489 self.is_trained = false;
1490 self.training_stats = None;
1491 }
1492
1493 fn is_trained(&self) -> bool {
1494 self.is_trained
1495 }
1496
1497 async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
1498 let mut results = Vec::new();
1499
1500 for text in texts {
1501 let input = Array1::from_shape_fn(self.config.base_config.dimensions, |i| {
1503 if i < text.len() {
1504 (text.chars().nth(i).unwrap() as u8 as f32) / 255.0
1505 } else {
1506 0.0
1507 }
1508 });
1509
1510 match self.integrated_forward(&input) {
1511 Ok(embedding) => {
1512 results.push(embedding.to_vec());
1513 }
1514 _ => {
1515 results.push(vec![0.0; self.config.base_config.dimensions]);
1516 }
1517 }
1518 }
1519
1520 Ok(results)
1521 }
1522}
1523
1524#[cfg(test)]
1525mod tests {
1526 use super::*;
1527
1528 #[test]
1529 fn test_neural_symbolic_config_default() {
1530 let config = NeuralSymbolicConfig::default();
1531 assert!(matches!(
1532 config.architecture_config.architecture_type,
1533 NeuroSymbolicArchitecture::HybridPipeline
1534 ));
1535 assert_eq!(config.symbolic_config.rule_based.confidence_threshold, 0.7);
1536 }
1537
1538 #[test]
1539 fn test_logical_formula_creation() {
1540 let formula = LogicalFormula::new_atom("test_predicate".to_string());
1541 assert_eq!(formula.truth_value, 1.0);
1542 assert_eq!(formula.confidence, 1.0);
1543 assert!(formula.variables.contains("test_predicate"));
1544 }
1545
1546 #[test]
1547 fn test_logical_formula_evaluation() {
1548 let formula = LogicalFormula::new_atom("P".to_string());
1549 let mut assignment = HashMap::new();
1550 assignment.insert("P".to_string(), 0.8);
1551
1552 let result = formula.evaluate(&assignment);
1553 assert_eq!(result, 0.8);
1554 }
1555
1556 #[test]
1557 fn test_knowledge_rule_creation() {
1558 let antecedent = LogicalFormula::new_atom("A".to_string());
1559 let consequent = LogicalFormula::new_atom("B".to_string());
1560 let rule = KnowledgeRule::new("rule1".to_string(), antecedent, consequent);
1561
1562 assert_eq!(rule.id, "rule1");
1563 assert_eq!(rule.confidence, 1.0);
1564 }
1565
1566 #[test]
1567 fn test_knowledge_rule_application() {
1568 let antecedent = LogicalFormula::new_atom("A".to_string());
1569 let consequent = LogicalFormula::new_atom("B".to_string());
1570 let rule = KnowledgeRule::new("rule1".to_string(), antecedent, consequent);
1571
1572 let mut facts = HashMap::new();
1573 facts.insert("A".to_string(), 0.8);
1574
1575 let result = rule.apply(&facts);
1576 assert!(result.is_some());
1577 let (predicate, value) = result.unwrap();
1578 assert_eq!(predicate, "B");
1579 assert_eq!(value, 0.8);
1580 }
1581
1582 #[test]
1583 fn test_neural_symbolic_model_creation() {
1584 let config = NeuralSymbolicConfig::default();
1585 let model = NeuralSymbolicModel::new(config);
1586
1587 assert_eq!(model.entities.len(), 0);
1588 assert_eq!(model.knowledge_base.len(), 0);
1589 assert!(!model.is_trained);
1590 }
1591
1592 #[tokio::test]
1593 async fn test_neural_symbolic_training() {
1594 let config = NeuralSymbolicConfig::default();
1595 let mut model = NeuralSymbolicModel::new(config);
1596
1597 let stats = model.train(Some(5)).await.unwrap();
1598 assert_eq!(stats.epochs_completed, 5);
1599 assert!(model.is_trained());
1600 }
1601
1602 #[test]
1603 fn test_symbolic_rule_learning() {
1604 let config = NeuralSymbolicConfig::default();
1605 let mut model = NeuralSymbolicModel::new(config);
1606
1607 let examples = vec![
1608 (
1609 Array1::from_vec(vec![1.0, 0.0]),
1610 Array1::from_vec(vec![1.0]),
1611 ),
1612 (
1613 Array1::from_vec(vec![1.0, 0.0]),
1614 Array1::from_vec(vec![1.0]),
1615 ),
1616 (
1617 Array1::from_vec(vec![1.0, 0.0]),
1618 Array1::from_vec(vec![1.0]),
1619 ),
1620 ];
1621
1622 let result = model.learn_symbolic_rules(&examples);
1623 assert!(result.is_ok());
1624 }
1625
1626 #[test]
1627 fn test_integrated_forward() {
1628 let config = NeuralSymbolicConfig {
1629 base_config: ModelConfig {
1630 dimensions: 3, ..Default::default()
1632 },
1633 ..Default::default()
1634 };
1635 let model = NeuralSymbolicModel::new(config);
1636
1637 let input = Array1::from_vec(vec![1.0, 0.5, 0.0]);
1638 let result = model.integrated_forward(&input);
1639
1640 assert!(result.is_ok());
1641 let output = result.unwrap();
1642 assert_eq!(output.len(), input.len());
1643 }
1644
1645 #[test]
1646 fn test_semantic_loss_computation() {
1647 let config = NeuralSymbolicConfig::default();
1648 let model = NeuralSymbolicModel::new(config);
1649
1650 let predictions = Array1::from_vec(vec![0.8, 0.3, 0.9]);
1651 let targets = Array1::from_vec(vec![1.0, 0.0, 1.0]);
1652
1653 let loss = model.compute_semantic_loss(&predictions, &targets).unwrap();
1654 assert!(loss >= 0.0);
1655 }
1656
1657 #[test]
1658 fn test_explanation_generation() {
1659 let config = NeuralSymbolicConfig::default();
1660 let model = NeuralSymbolicModel::new(config);
1661
1662 let input = Array1::from_vec(vec![1.0, 0.0, 0.5]);
1663 let prediction = Array1::from_vec(vec![0.8, 0.9]);
1664
1665 let explanation = model.explain_prediction(&input, &prediction).unwrap();
1666 assert!(explanation.contains("Prediction Explanation"));
1667 }
1668}