oxirs_embed/
neural_symbolic_integration.rs

1//! Neural-Symbolic Integration
2//!
3//! This module implements neural-symbolic integration for combining
4//! neural learning with symbolic reasoning, logic-based constraints,
5//! and knowledge-guided embeddings.
6
7use crate::{EmbeddingModel, ModelConfig, TrainingStats, Triple, Vector};
8use anyhow::{anyhow, Result};
9use async_trait::async_trait;
10use chrono::Utc;
11use scirs2_core::ndarray_ext::{Array1, Array2, Array3};
12use scirs2_core::random::{Random, Rng};
13use serde::{Deserialize, Serialize};
14use std::collections::{HashMap, HashSet};
15use uuid::Uuid;
16
17/// Configuration for neural-symbolic integration
18#[derive(Debug, Clone, Serialize, Deserialize, Default)]
19pub struct NeuralSymbolicConfig {
20    pub base_config: ModelConfig,
21    /// Symbolic reasoning configuration
22    pub symbolic_config: SymbolicReasoningConfig,
23    /// Logic integration configuration
24    pub logic_config: LogicIntegrationConfig,
25    /// Knowledge integration configuration
26    pub knowledge_config: KnowledgeIntegrationConfig,
27    /// Neuro-symbolic architecture configuration
28    pub architecture_config: NeuroSymbolicArchitectureConfig,
29    /// Constraint satisfaction configuration
30    pub constraint_config: ConstraintSatisfactionConfig,
31}
32
33/// Symbolic reasoning configuration
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct SymbolicReasoningConfig {
36    /// Reasoning engines to use
37    pub reasoning_engines: Vec<ReasoningEngine>,
38    /// Logic programming settings
39    pub logic_programming: LogicProgrammingConfig,
40    /// Rule-based reasoning settings
41    pub rule_based: RuleBasedConfig,
42    /// Ontological reasoning settings
43    pub ontological: OntologicalConfig,
44}
45
46impl Default for SymbolicReasoningConfig {
47    fn default() -> Self {
48        Self {
49            reasoning_engines: vec![
50                ReasoningEngine::Description,
51                ReasoningEngine::RuleBased,
52                ReasoningEngine::FirstOrder,
53            ],
54            logic_programming: LogicProgrammingConfig::default(),
55            rule_based: RuleBasedConfig::default(),
56            ontological: OntologicalConfig::default(),
57        }
58    }
59}
60
61/// Reasoning engine types
62#[derive(Debug, Clone, Serialize, Deserialize)]
63pub enum ReasoningEngine {
64    /// Description Logic
65    Description,
66    /// Rule-based reasoning
67    RuleBased,
68    /// First-order logic
69    FirstOrder,
70    /// Probabilistic logic
71    Probabilistic,
72    /// Temporal logic
73    Temporal,
74    /// Modal logic
75    Modal,
76    /// Non-monotonic reasoning
77    NonMonotonic,
78}
79
80/// Logic programming configuration
81#[derive(Debug, Clone, Serialize, Deserialize)]
82pub struct LogicProgrammingConfig {
83    /// Use Datalog
84    pub use_datalog: bool,
85    /// Use Prolog-style resolution
86    pub use_prolog: bool,
87    /// Answer set programming
88    pub use_asp: bool,
89    /// Constraint logic programming
90    pub use_clp: bool,
91}
92
93impl Default for LogicProgrammingConfig {
94    fn default() -> Self {
95        Self {
96            use_datalog: true,
97            use_prolog: false,
98            use_asp: true,
99            use_clp: false,
100        }
101    }
102}
103
104/// Rule-based reasoning configuration
105#[derive(Debug, Clone, Serialize, Deserialize)]
106pub struct RuleBasedConfig {
107    /// Forward chaining
108    pub forward_chaining: bool,
109    /// Backward chaining
110    pub backward_chaining: bool,
111    /// Rule confidence thresholds
112    pub confidence_threshold: f32,
113    /// Maximum inference depth
114    pub max_depth: usize,
115}
116
117impl Default for RuleBasedConfig {
118    fn default() -> Self {
119        Self {
120            forward_chaining: true,
121            backward_chaining: true,
122            confidence_threshold: 0.7,
123            max_depth: 10,
124        }
125    }
126}
127
128/// Ontological reasoning configuration
129#[derive(Debug, Clone, Serialize, Deserialize)]
130pub struct OntologicalConfig {
131    /// OWL reasoning levels
132    pub owl_profile: OWLProfile,
133    /// Use class hierarchy reasoning
134    pub class_hierarchy: bool,
135    /// Use property reasoning
136    pub property_reasoning: bool,
137    /// Use consistency checking
138    pub consistency_checking: bool,
139}
140
141impl Default for OntologicalConfig {
142    fn default() -> Self {
143        Self {
144            owl_profile: OWLProfile::OWL2EL,
145            class_hierarchy: true,
146            property_reasoning: true,
147            consistency_checking: true,
148        }
149    }
150}
151
152/// OWL profiles for ontological reasoning
153#[derive(Debug, Clone, Serialize, Deserialize)]
154pub enum OWLProfile {
155    /// OWL 2 EL (Existential Language)
156    OWL2EL,
157    /// OWL 2 QL (Query Language)
158    OWL2QL,
159    /// OWL 2 RL (Rule Language)
160    OWL2RL,
161    /// Full OWL 2
162    OWL2Full,
163}
164
165/// Logic integration configuration
166#[derive(Debug, Clone, Serialize, Deserialize)]
167pub struct LogicIntegrationConfig {
168    /// Integration methods
169    pub integration_methods: Vec<IntegrationMethod>,
170    /// Fuzzy logic settings
171    pub fuzzy_logic: FuzzyLogicConfig,
172    /// Probabilistic logic settings
173    pub probabilistic_logic: ProbabilisticLogicConfig,
174    /// Temporal logic settings
175    pub temporal_logic: TemporalLogicConfig,
176}
177
178impl Default for LogicIntegrationConfig {
179    fn default() -> Self {
180        Self {
181            integration_methods: vec![
182                IntegrationMethod::LogicTensors,
183                IntegrationMethod::NeuralModuleNetworks,
184                IntegrationMethod::DifferentiableReasoning,
185            ],
186            fuzzy_logic: FuzzyLogicConfig::default(),
187            probabilistic_logic: ProbabilisticLogicConfig::default(),
188            temporal_logic: TemporalLogicConfig::default(),
189        }
190    }
191}
192
193/// Integration methods for neural-symbolic systems
194#[derive(Debug, Clone, Serialize, Deserialize)]
195pub enum IntegrationMethod {
196    /// Logic Tensor Networks
197    LogicTensors,
198    /// Neural Module Networks
199    NeuralModuleNetworks,
200    /// Differentiable reasoning
201    DifferentiableReasoning,
202    /// Semantic loss functions
203    SemanticLoss,
204    /// Logic-guided attention
205    LogicAttention,
206    /// Symbolic grounding
207    SymbolicGrounding,
208}
209
210/// Fuzzy logic configuration
211#[derive(Debug, Clone, Serialize, Deserialize)]
212pub struct FuzzyLogicConfig {
213    /// T-norm for conjunction
214    pub t_norm: TNorm,
215    /// T-conorm for disjunction
216    pub t_conorm: TConorm,
217    /// Implication operator
218    pub implication: ImplicationOperator,
219    /// Negation operator
220    pub negation: NegationOperator,
221}
222
223impl Default for FuzzyLogicConfig {
224    fn default() -> Self {
225        Self {
226            t_norm: TNorm::Product,
227            t_conorm: TConorm::ProbabilisticSum,
228            implication: ImplicationOperator::Lukasiewicz,
229            negation: NegationOperator::Standard,
230        }
231    }
232}
233
234/// T-norms for fuzzy conjunction
235#[derive(Debug, Clone, Serialize, Deserialize)]
236pub enum TNorm {
237    Minimum,
238    Product,
239    Lukasiewicz,
240    Drastic,
241    Nilpotent,
242}
243
244/// T-conorms for fuzzy disjunction
245#[derive(Debug, Clone, Serialize, Deserialize)]
246pub enum TConorm {
247    Maximum,
248    ProbabilisticSum,
249    BoundedSum,
250    Drastic,
251    Nilpotent,
252}
253
254/// Implication operators
255#[derive(Debug, Clone, Serialize, Deserialize)]
256pub enum ImplicationOperator {
257    Lukasiewicz,
258    Godel,
259    Product,
260    Kleene,
261}
262
263/// Negation operators
264#[derive(Debug, Clone, Serialize, Deserialize)]
265pub enum NegationOperator {
266    Standard,
267    Sugeno,
268    Yager,
269}
270
271/// Probabilistic logic configuration
272#[derive(Debug, Clone, Serialize, Deserialize)]
273pub struct ProbabilisticLogicConfig {
274    /// Use Markov Logic Networks
275    pub use_mln: bool,
276    /// Use Probabilistic Soft Logic
277    pub use_psl: bool,
278    /// Use ProbLog
279    pub use_problog: bool,
280    /// Inference method
281    pub inference_method: ProbabilisticInference,
282}
283
284impl Default for ProbabilisticLogicConfig {
285    fn default() -> Self {
286        Self {
287            use_mln: true,
288            use_psl: false,
289            use_problog: false,
290            inference_method: ProbabilisticInference::VariationalInference,
291        }
292    }
293}
294
295/// Probabilistic inference methods
296#[derive(Debug, Clone, Serialize, Deserialize)]
297pub enum ProbabilisticInference {
298    ExactInference,
299    VariationalInference,
300    MCMC,
301    BeliefPropagation,
302    ExpectationMaximization,
303}
304
305/// Temporal logic configuration
306#[derive(Debug, Clone, Serialize, Deserialize)]
307pub struct TemporalLogicConfig {
308    /// Linear Temporal Logic
309    pub use_ltl: bool,
310    /// Computation Tree Logic
311    pub use_ctl: bool,
312    /// Metric Temporal Logic
313    pub use_mtl: bool,
314    /// Time window size
315    pub time_window: usize,
316}
317
318impl Default for TemporalLogicConfig {
319    fn default() -> Self {
320        Self {
321            use_ltl: true,
322            use_ctl: false,
323            use_mtl: false,
324            time_window: 10,
325        }
326    }
327}
328
329/// Knowledge integration configuration
330#[derive(Debug, Clone, Serialize, Deserialize)]
331pub struct KnowledgeIntegrationConfig {
332    /// Knowledge sources
333    pub knowledge_sources: Vec<KnowledgeSource>,
334    /// Knowledge grounding methods
335    pub grounding_methods: Vec<GroundingMethod>,
336    /// External knowledge bases
337    pub external_kbs: Vec<String>,
338    /// Knowledge validation
339    pub validation_config: ValidationConfig,
340}
341
342impl Default for KnowledgeIntegrationConfig {
343    fn default() -> Self {
344        Self {
345            knowledge_sources: vec![
346                KnowledgeSource::Ontologies,
347                KnowledgeSource::Rules,
348                KnowledgeSource::CommonSense,
349            ],
350            grounding_methods: vec![
351                GroundingMethod::EntityLinking,
352                GroundingMethod::ConceptAlignment,
353                GroundingMethod::SemanticParsing,
354            ],
355            external_kbs: vec![
356                "DBpedia".to_string(),
357                "Wikidata".to_string(),
358                "ConceptNet".to_string(),
359            ],
360            validation_config: ValidationConfig::default(),
361        }
362    }
363}
364
365/// Knowledge sources
366#[derive(Debug, Clone, Serialize, Deserialize)]
367pub enum KnowledgeSource {
368    Ontologies,
369    Rules,
370    CommonSense,
371    Domain,
372    Factual,
373    Procedural,
374}
375
376/// Grounding methods
377#[derive(Debug, Clone, Serialize, Deserialize)]
378pub enum GroundingMethod {
379    EntityLinking,
380    ConceptAlignment,
381    SemanticParsing,
382    SymbolGrounding,
383    Contextualization,
384}
385
386/// Knowledge validation configuration
387#[derive(Debug, Clone, Serialize, Deserialize)]
388pub struct ValidationConfig {
389    /// Consistency checking
390    pub consistency_check: bool,
391    /// Completeness checking
392    pub completeness_check: bool,
393    /// Confidence thresholds
394    pub confidence_threshold: f32,
395    /// Validation frequency
396    pub validation_frequency: usize,
397}
398
399impl Default for ValidationConfig {
400    fn default() -> Self {
401        Self {
402            consistency_check: true,
403            completeness_check: false,
404            confidence_threshold: 0.8,
405            validation_frequency: 100,
406        }
407    }
408}
409
410/// Neuro-symbolic architecture configuration
411#[derive(Debug, Clone, Serialize, Deserialize)]
412pub struct NeuroSymbolicArchitectureConfig {
413    /// Architecture type
414    pub architecture_type: NeuroSymbolicArchitecture,
415    /// Neural component configuration
416    pub neural_config: NeuralComponentConfig,
417    /// Symbolic component configuration
418    pub symbolic_config: SymbolicComponentConfig,
419    /// Integration layer configuration
420    pub integration_config: IntegrationLayerConfig,
421}
422
423impl Default for NeuroSymbolicArchitectureConfig {
424    fn default() -> Self {
425        Self {
426            architecture_type: NeuroSymbolicArchitecture::HybridPipeline,
427            neural_config: NeuralComponentConfig::default(),
428            symbolic_config: SymbolicComponentConfig::default(),
429            integration_config: IntegrationLayerConfig::default(),
430        }
431    }
432}
433
434/// Neuro-symbolic architecture types
435#[derive(Debug, Clone, Serialize, Deserialize)]
436pub enum NeuroSymbolicArchitecture {
437    /// Neural and symbolic components in pipeline
438    HybridPipeline,
439    /// Tightly integrated components
440    DeepIntegration,
441    /// Loosely coupled components
442    LooseCoupling,
443    /// Neural-symbolic co-processing
444    CoProcessing,
445    /// End-to-end differentiable
446    EndToEndDifferentiable,
447}
448
449/// Neural component configuration
450#[derive(Debug, Clone, Serialize, Deserialize)]
451pub struct NeuralComponentConfig {
452    /// Neural network layers
453    pub layers: Vec<LayerConfig>,
454    /// Activation functions
455    pub activations: Vec<ActivationFunction>,
456    /// Dropout rates
457    pub dropout_rates: Vec<f32>,
458}
459
460impl Default for NeuralComponentConfig {
461    fn default() -> Self {
462        Self {
463            layers: vec![
464                LayerConfig {
465                    size: 512,
466                    layer_type: LayerType::Dense,
467                },
468                LayerConfig {
469                    size: 256,
470                    layer_type: LayerType::Dense,
471                },
472                LayerConfig {
473                    size: 128,
474                    layer_type: LayerType::Dense,
475                },
476            ],
477            activations: vec![
478                ActivationFunction::ReLU,
479                ActivationFunction::ReLU,
480                ActivationFunction::Sigmoid,
481            ],
482            dropout_rates: vec![0.1, 0.2, 0.1],
483        }
484    }
485}
486
487/// Layer configuration
488#[derive(Debug, Clone, Serialize, Deserialize)]
489pub struct LayerConfig {
490    pub size: usize,
491    pub layer_type: LayerType,
492}
493
494/// Layer types
495#[derive(Debug, Clone, Serialize, Deserialize)]
496pub enum LayerType {
497    Dense,
498    Convolutional,
499    Attention,
500    Logic,
501    Symbolic,
502}
503
504/// Activation functions
505#[derive(Debug, Clone, Serialize, Deserialize)]
506pub enum ActivationFunction {
507    ReLU,
508    Sigmoid,
509    Tanh,
510    Softmax,
511    GELU,
512    Swish,
513    LogicActivation,
514}
515
516/// Symbolic component configuration
517#[derive(Debug, Clone, Serialize, Deserialize)]
518pub struct SymbolicComponentConfig {
519    /// Symbol vocabulary size
520    pub vocab_size: usize,
521    /// Maximum formula length
522    pub max_formula_length: usize,
523    /// Logic operators
524    pub operators: Vec<LogicOperator>,
525    /// Reasoning depth
526    pub reasoning_depth: usize,
527}
528
529impl Default for SymbolicComponentConfig {
530    fn default() -> Self {
531        Self {
532            vocab_size: 10000,
533            max_formula_length: 50,
534            operators: vec![
535                LogicOperator::And,
536                LogicOperator::Or,
537                LogicOperator::Not,
538                LogicOperator::Implies,
539                LogicOperator::Exists,
540                LogicOperator::ForAll,
541            ],
542            reasoning_depth: 5,
543        }
544    }
545}
546
547/// Logic operators
548#[derive(Debug, Clone, Serialize, Deserialize)]
549pub enum LogicOperator {
550    And,
551    Or,
552    Not,
553    Implies,
554    Equivalent,
555    Exists,
556    ForAll,
557    Equals,
558    GreaterThan,
559    LessThan,
560}
561
562/// Integration layer configuration
563#[derive(Debug, Clone, Serialize, Deserialize)]
564pub struct IntegrationLayerConfig {
565    /// Integration method
566    pub method: LayerIntegrationMethod,
567    /// Attention mechanisms
568    pub attention_config: AttentionConfig,
569    /// Fusion strategies
570    pub fusion_strategy: FusionStrategy,
571}
572
573impl Default for IntegrationLayerConfig {
574    fn default() -> Self {
575        Self {
576            method: LayerIntegrationMethod::CrossAttention,
577            attention_config: AttentionConfig::default(),
578            fusion_strategy: FusionStrategy::Concatenation,
579        }
580    }
581}
582
583/// Layer integration methods
584#[derive(Debug, Clone, Serialize, Deserialize)]
585pub enum LayerIntegrationMethod {
586    Concatenation,
587    CrossAttention,
588    FeatureFusion,
589    LogicAttention,
590    SymbolicGrounding,
591}
592
593/// Attention configuration
594#[derive(Debug, Clone, Serialize, Deserialize)]
595pub struct AttentionConfig {
596    pub num_heads: usize,
597    pub head_dim: usize,
598    pub dropout_rate: f32,
599}
600
601impl Default for AttentionConfig {
602    fn default() -> Self {
603        Self {
604            num_heads: 8,
605            head_dim: 64,
606            dropout_rate: 0.1,
607        }
608    }
609}
610
611/// Fusion strategies
612#[derive(Debug, Clone, Serialize, Deserialize)]
613pub enum FusionStrategy {
614    Concatenation,
615    Addition,
616    Multiplication,
617    Attention,
618    Gating,
619}
620
621/// Constraint satisfaction configuration
622#[derive(Debug, Clone, Serialize, Deserialize)]
623pub struct ConstraintSatisfactionConfig {
624    /// Constraint types
625    pub constraint_types: Vec<ConstraintType>,
626    /// Solver configuration
627    pub solver_config: SolverConfig,
628    /// Soft constraint handling
629    pub soft_constraints: bool,
630    /// Constraint weights
631    pub constraint_weights: HashMap<String, f32>,
632}
633
634impl Default for ConstraintSatisfactionConfig {
635    fn default() -> Self {
636        let mut weights = HashMap::new();
637        weights.insert("logical_consistency".to_string(), 1.0);
638        weights.insert("domain_constraints".to_string(), 0.8);
639        weights.insert("type_constraints".to_string(), 0.9);
640
641        Self {
642            constraint_types: vec![
643                ConstraintType::Logical,
644                ConstraintType::Semantic,
645                ConstraintType::Domain,
646                ConstraintType::Type,
647            ],
648            solver_config: SolverConfig::default(),
649            soft_constraints: true,
650            constraint_weights: weights,
651        }
652    }
653}
654
655/// Constraint types
656#[derive(Debug, Clone, Serialize, Deserialize)]
657pub enum ConstraintType {
658    Logical,
659    Semantic,
660    Domain,
661    Type,
662    Temporal,
663    Causal,
664}
665
666/// Solver configuration
667#[derive(Debug, Clone, Serialize, Deserialize)]
668pub struct SolverConfig {
669    /// Solver type
670    pub solver_type: SolverType,
671    /// Maximum iterations
672    pub max_iterations: usize,
673    /// Convergence threshold
674    pub convergence_threshold: f32,
675    /// Timeout in seconds
676    pub timeout: f32,
677}
678
679impl Default for SolverConfig {
680    fn default() -> Self {
681        Self {
682            solver_type: SolverType::GradientDescent,
683            max_iterations: 1000,
684            convergence_threshold: 1e-6,
685            timeout: 10.0,
686        }
687    }
688}
689
690/// Solver types for constraint satisfaction
691#[derive(Debug, Clone, Serialize, Deserialize)]
692pub enum SolverType {
693    GradientDescent,
694    SimulatedAnnealing,
695    GeneticAlgorithm,
696    TabuSearch,
697    ConstraintPropagation,
698    BacktrackingSearch,
699}
700
701/// Logical formula representation
702#[derive(Debug, Clone)]
703pub struct LogicalFormula {
704    /// Formula structure
705    pub structure: FormulaStructure,
706    /// Truth value (for fuzzy logic)
707    pub truth_value: f32,
708    /// Confidence score
709    pub confidence: f32,
710    /// Variables involved
711    pub variables: HashSet<String>,
712}
713
714/// Formula structure
715#[derive(Debug, Clone)]
716pub enum FormulaStructure {
717    Atom(String),
718    Negation(Box<FormulaStructure>),
719    Conjunction(Vec<FormulaStructure>),
720    Disjunction(Vec<FormulaStructure>),
721    Implication(Box<FormulaStructure>, Box<FormulaStructure>),
722    Equivalence(Box<FormulaStructure>, Box<FormulaStructure>),
723    Exists(String, Box<FormulaStructure>),
724    ForAll(String, Box<FormulaStructure>),
725}
726
727impl LogicalFormula {
728    pub fn new_atom(predicate: String) -> Self {
729        let mut variables = HashSet::new();
730        variables.insert(predicate.clone());
731
732        Self {
733            structure: FormulaStructure::Atom(predicate),
734            truth_value: 1.0,
735            confidence: 1.0,
736            variables,
737        }
738    }
739
740    pub fn evaluate(&self, assignment: &HashMap<String, f32>) -> f32 {
741        self.evaluate_structure(&self.structure, assignment)
742    }
743
744    #[allow(clippy::only_used_in_recursion)]
745    fn evaluate_structure(
746        &self,
747        structure: &FormulaStructure,
748        assignment: &HashMap<String, f32>,
749    ) -> f32 {
750        match structure {
751            FormulaStructure::Atom(predicate) => assignment.get(predicate).copied().unwrap_or(0.0),
752            FormulaStructure::Negation(sub) => 1.0 - self.evaluate_structure(sub, assignment),
753            FormulaStructure::Conjunction(formulas) => {
754                formulas
755                    .iter()
756                    .map(|f| self.evaluate_structure(f, assignment))
757                    .fold(1.0, |acc, val| acc * val) // Product T-norm
758            }
759            FormulaStructure::Disjunction(formulas) => {
760                formulas
761                    .iter()
762                    .map(|f| self.evaluate_structure(f, assignment))
763                    .fold(0.0, |acc, val| acc + val - acc * val) // Probabilistic sum
764            }
765            FormulaStructure::Implication(antecedent, consequent) => {
766                let ante = self.evaluate_structure(antecedent, assignment);
767                let cons = self.evaluate_structure(consequent, assignment);
768                1.0 - ante + ante * cons // Lukasiewicz implication
769            }
770            FormulaStructure::Equivalence(left, right) => {
771                let left_val = self.evaluate_structure(left, assignment);
772                let right_val = self.evaluate_structure(right, assignment);
773                1.0 - (left_val - right_val).abs()
774            }
775            FormulaStructure::Exists(_, sub) => {
776                // Simplified existential quantification
777                self.evaluate_structure(sub, assignment)
778            }
779            FormulaStructure::ForAll(_, sub) => {
780                // Simplified universal quantification
781                self.evaluate_structure(sub, assignment)
782            }
783        }
784    }
785}
786
787/// Knowledge rule representation
788#[derive(Debug, Clone)]
789pub struct KnowledgeRule {
790    /// Rule identifier
791    pub id: String,
792    /// Antecedent (if part)
793    pub antecedent: LogicalFormula,
794    /// Consequent (then part)
795    pub consequent: LogicalFormula,
796    /// Rule confidence
797    pub confidence: f32,
798    /// Rule weight
799    pub weight: f32,
800}
801
802impl KnowledgeRule {
803    pub fn new(id: String, antecedent: LogicalFormula, consequent: LogicalFormula) -> Self {
804        Self {
805            id,
806            antecedent,
807            consequent,
808            confidence: 1.0,
809            weight: 1.0,
810        }
811    }
812
813    pub fn apply(&self, facts: &HashMap<String, f32>) -> Option<(String, f32)> {
814        let antecedent_value = self.antecedent.evaluate(facts);
815
816        if antecedent_value > 0.5 {
817            // Threshold for rule activation
818            // Find the main predicate in consequent
819            if let FormulaStructure::Atom(predicate) = &self.consequent.structure {
820                let consequent_value = antecedent_value * self.confidence;
821                return Some((predicate.clone(), consequent_value));
822            }
823        }
824
825        None
826    }
827}
828
829/// Neural-symbolic integration model
830#[derive(Debug)]
831pub struct NeuralSymbolicModel {
832    pub config: NeuralSymbolicConfig,
833    pub model_id: Uuid,
834
835    /// Neural components
836    pub neural_layers: Vec<Array2<f32>>,
837    pub attention_weights: Array3<f32>,
838
839    /// Symbolic components
840    pub knowledge_base: Vec<KnowledgeRule>,
841    pub logical_formulas: Vec<LogicalFormula>,
842    pub symbol_embeddings: HashMap<String, Array1<f32>>,
843
844    /// Integration layers
845    pub neural_to_symbolic: Array2<f32>,
846    pub symbolic_to_neural: Array2<f32>,
847    pub fusion_weights: Array2<f32>,
848
849    /// Constraint satisfaction
850    pub constraints: Vec<LogicalFormula>,
851    pub constraint_weights: Array1<f32>,
852
853    /// Entity and relation mappings
854    pub entities: HashMap<String, usize>,
855    pub relations: HashMap<String, usize>,
856
857    /// Training state
858    pub training_stats: Option<TrainingStats>,
859    pub is_trained: bool,
860}
861
862impl NeuralSymbolicModel {
863    /// Create new neural-symbolic model
864    pub fn new(config: NeuralSymbolicConfig) -> Self {
865        let model_id = Uuid::new_v4();
866        let dimensions = config.base_config.dimensions;
867
868        // Initialize neural layers with proper dimensions
869        let mut neural_layers = Vec::new();
870        let layer_configs = &config.architecture_config.neural_config.layers;
871
872        for (i, layer_config) in layer_configs.iter().enumerate() {
873            let input_size = if i == 0 {
874                dimensions // First layer takes configured input dimension
875            } else {
876                layer_configs[i - 1].size // Subsequent layers take previous layer's output
877            };
878
879            let output_size = if i == layer_configs.len() - 1 {
880                dimensions // Last layer outputs configured dimension
881            } else {
882                layer_config.size // Middle layers use configured size
883            };
884
885            neural_layers.push(Array2::from_shape_fn((output_size, input_size), |_| {
886                let mut random = Random::default();
887                random.random::<f32>() * 0.1
888            }));
889        }
890
891        Self {
892            config,
893            model_id,
894            neural_layers,
895            attention_weights: Array3::from_shape_fn((8, dimensions, dimensions), |_| {
896                let mut random = Random::default();
897                random.random::<f32>() * 0.1
898            }),
899            knowledge_base: Vec::new(),
900            logical_formulas: Vec::new(),
901            symbol_embeddings: HashMap::new(),
902            neural_to_symbolic: Array2::from_shape_fn((dimensions, dimensions), |_| {
903                let mut random = Random::default();
904                random.random::<f32>() * 0.1
905            }),
906            symbolic_to_neural: Array2::from_shape_fn((dimensions, dimensions), |_| {
907                let mut random = Random::default();
908                random.random::<f32>() * 0.1
909            }),
910            fusion_weights: Array2::from_shape_fn((dimensions, dimensions * 2), |_| {
911                let mut random = Random::default();
912                random.random::<f32>() * 0.1
913            }),
914            constraints: Vec::new(),
915            constraint_weights: Array1::from_shape_fn(10, |_| 1.0),
916            entities: HashMap::new(),
917            relations: HashMap::new(),
918            training_stats: None,
919            is_trained: false,
920        }
921    }
922
923    /// Add knowledge rule
924    pub fn add_knowledge_rule(&mut self, rule: KnowledgeRule) {
925        self.knowledge_base.push(rule);
926    }
927
928    /// Add logical constraint
929    pub fn add_constraint(&mut self, constraint: LogicalFormula) {
930        self.constraints.push(constraint);
931    }
932
933    /// Forward pass through neural component
934    fn neural_forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
935        let mut activation = input.clone();
936
937        for (i, layer) in self.neural_layers.iter().enumerate() {
938            // Linear transformation
939            activation = layer.dot(&activation);
940
941            // Apply activation function
942            let activation_fn = &self.config.architecture_config.neural_config.activations[i];
943            activation = match activation_fn {
944                ActivationFunction::ReLU => activation.mapv(|x| x.max(0.0)),
945                ActivationFunction::Sigmoid => activation.mapv(|x| 1.0 / (1.0 + (-x).exp())),
946                ActivationFunction::Tanh => activation.mapv(|x| x.tanh()),
947                ActivationFunction::GELU => {
948                    activation.mapv(|x| x * 0.5 * (1.0 + (x * 0.797_884_6).tanh()))
949                }
950                ActivationFunction::Swish => activation.mapv(|x| x * (1.0 / (1.0 + (-x).exp()))),
951                ActivationFunction::LogicActivation => activation.mapv(|x| (x.tanh() + 1.0) / 2.0), // Maps to [0,1]
952                _ => activation.mapv(|x| x.max(0.0)),
953            };
954        }
955
956        Ok(activation)
957    }
958
959    /// Forward pass through symbolic component
960    fn symbolic_forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
961        let mut symbolic_state = HashMap::new();
962
963        // Ground neural input to symbolic facts
964        for (i, &value) in input.iter().enumerate() {
965            let symbol = format!("input_{i}");
966            symbolic_state.insert(symbol, value);
967        }
968
969        // Apply knowledge rules
970        let mut inferred_facts = symbolic_state.clone();
971
972        for _ in 0..self.config.symbolic_config.rule_based.max_depth {
973            let mut new_facts = inferred_facts.clone();
974            let mut facts_added = false;
975
976            for rule in &self.knowledge_base {
977                if let Some((predicate, value)) = rule.apply(&inferred_facts) {
978                    if !new_facts.contains_key(&predicate) || new_facts[&predicate] < value {
979                        new_facts.insert(predicate, value);
980                        facts_added = true;
981                    }
982                }
983            }
984
985            if !facts_added {
986                break;
987            }
988
989            inferred_facts = new_facts;
990        }
991
992        // Convert back to vector
993        let mut output = Array1::zeros(input.len());
994        for (i, symbol) in (0..input.len()).map(|i| format!("output_{i}")).enumerate() {
995            if let Some(&value) = inferred_facts.get(&symbol) {
996                output[i] = value;
997            }
998        }
999
1000        Ok(output)
1001    }
1002
1003    /// Integrate neural and symbolic components
1004    pub fn integrated_forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
1005        // Neural forward pass
1006        let neural_output = self.neural_forward(input)?;
1007
1008        // Map neural output to symbolic space
1009        let symbolic_input = self.neural_to_symbolic.dot(&neural_output);
1010
1011        // Symbolic forward pass
1012        let symbolic_output = self.symbolic_forward(&symbolic_input)?;
1013
1014        // Map symbolic output back to neural space
1015        let neural_symbolic_output = self.symbolic_to_neural.dot(&symbolic_output);
1016
1017        // Fuse neural and neural-symbolic outputs
1018        let fused_input = Array1::from_iter(
1019            neural_output
1020                .iter()
1021                .chain(neural_symbolic_output.iter())
1022                .cloned(),
1023        );
1024
1025        let fused_output = self.fusion_weights.dot(&fused_input);
1026
1027        // Apply constraints
1028        let constrained_output = self.apply_constraints(fused_output)?;
1029
1030        Ok(constrained_output)
1031    }
1032
1033    /// Apply logical constraints
1034    fn apply_constraints(&self, mut output: Array1<f32>) -> Result<Array1<f32>> {
1035        if self.constraints.is_empty() {
1036            return Ok(output);
1037        }
1038
1039        // Convert output to symbolic facts
1040        let mut facts = HashMap::new();
1041        for (i, &value) in output.iter().enumerate() {
1042            facts.insert(format!("output_{i}"), value);
1043        }
1044
1045        // Evaluate constraints and adjust output
1046        for (constraint, &weight) in self.constraints.iter().zip(self.constraint_weights.iter()) {
1047            let constraint_satisfaction = constraint.evaluate(&facts);
1048
1049            // If constraint is not satisfied, adjust output
1050            if constraint_satisfaction < 0.8 {
1051                let adjustment_factor = (0.8 - constraint_satisfaction) * weight * 0.1;
1052                output *= 1.0 - adjustment_factor;
1053            }
1054        }
1055
1056        Ok(output)
1057    }
1058
1059    /// Learn symbolic rules from examples
1060    pub fn learn_symbolic_rules(&mut self, examples: &[(Array1<f32>, Array1<f32>)]) -> Result<()> {
1061        // Simple rule learning algorithm
1062        let mut candidate_rules = Vec::new();
1063
1064        for (input, output) in examples.iter() {
1065            // Create candidate rules based on input-output patterns
1066            for j in 0..input.len() {
1067                for k in 0..output.len() {
1068                    if input[j] > 0.5 && output[k] > 0.5 {
1069                        // Create rule: input_j -> output_k
1070                        let antecedent = LogicalFormula::new_atom(format!("input_{j}"));
1071                        let consequent = LogicalFormula::new_atom(format!("output_{k}"));
1072                        let rule =
1073                            KnowledgeRule::new(format!("rule_{j}_{k}"), antecedent, consequent);
1074                        candidate_rules.push(rule);
1075                    }
1076                }
1077            }
1078        }
1079
1080        // Evaluate and filter rules based on support and confidence
1081        for rule in candidate_rules {
1082            let mut support = 0;
1083            let mut confidence_sum = 0.0;
1084
1085            for (input, output) in examples {
1086                let mut facts = HashMap::new();
1087                for (i, &value) in input.iter().enumerate() {
1088                    facts.insert(format!("input_{i}"), value);
1089                }
1090
1091                if let Some((predicate, predicted_value)) = rule.apply(&facts) {
1092                    if let Some(index) = predicate
1093                        .strip_prefix("output_")
1094                        .and_then(|s| s.parse::<usize>().ok())
1095                    {
1096                        if index < output.len() {
1097                            let actual_value = output[index];
1098                            let error = (predicted_value - actual_value).abs();
1099                            if error < 0.2 {
1100                                support += 1;
1101                                confidence_sum += 1.0 - error;
1102                            }
1103                        }
1104                    }
1105                }
1106            }
1107
1108            if support >= 3 && confidence_sum / support as f32 > 0.7 {
1109                self.add_knowledge_rule(rule);
1110            }
1111        }
1112
1113        Ok(())
1114    }
1115
1116    /// Compute semantic loss
1117    pub fn compute_semantic_loss(
1118        &self,
1119        predictions: &Array1<f32>,
1120        targets: &Array1<f32>,
1121    ) -> Result<f32> {
1122        // Standard MSE loss
1123        let mse_loss = {
1124            let diff = predictions - targets;
1125            diff.dot(&diff) / predictions.len() as f32
1126        };
1127
1128        // Constraint violation loss
1129        let constraint_loss = {
1130            let mut facts = HashMap::new();
1131            for (i, &value) in predictions.iter().enumerate() {
1132                facts.insert(format!("output_{i}"), value);
1133            }
1134
1135            let mut total_violation = 0.0;
1136            for constraint in &self.constraints {
1137                let satisfaction = constraint.evaluate(&facts);
1138                if satisfaction < 1.0 {
1139                    total_violation += (1.0 - satisfaction).powi(2);
1140                }
1141            }
1142            total_violation / self.constraints.len().max(1) as f32
1143        };
1144
1145        // Rule consistency loss
1146        let rule_loss = {
1147            let mut facts = HashMap::new();
1148            for (i, &value) in predictions.iter().enumerate() {
1149                facts.insert(format!("input_{i}"), value);
1150            }
1151
1152            let mut total_inconsistency = 0.0;
1153            for rule in &self.knowledge_base {
1154                if let Some((predicate, predicted_value)) = rule.apply(&facts) {
1155                    if let Some(index) = predicate
1156                        .strip_prefix("output_")
1157                        .and_then(|s| s.parse::<usize>().ok())
1158                    {
1159                        if index < predictions.len() {
1160                            let actual_value = predictions[index];
1161                            let inconsistency = (predicted_value - actual_value).powi(2);
1162                            total_inconsistency += inconsistency * rule.weight;
1163                        }
1164                    }
1165                }
1166            }
1167            total_inconsistency / self.knowledge_base.len().max(1) as f32
1168        };
1169
1170        // Combine losses
1171        let total_loss = mse_loss + 0.1 * constraint_loss + 0.1 * rule_loss;
1172
1173        Ok(total_loss)
1174    }
1175
1176    /// Explain prediction using symbolic reasoning
1177    pub fn explain_prediction(
1178        &self,
1179        input: &Array1<f32>,
1180        prediction: &Array1<f32>,
1181    ) -> Result<String> {
1182        let mut explanation = String::new();
1183        explanation.push_str("Prediction Explanation:\n");
1184
1185        // Ground input to facts
1186        let mut facts = HashMap::new();
1187        for (i, &value) in input.iter().enumerate() {
1188            facts.insert(format!("input_{i}"), value);
1189        }
1190
1191        // Find activated rules
1192        let mut activated_rules = Vec::new();
1193        for rule in &self.knowledge_base {
1194            let antecedent_value = rule.antecedent.evaluate(&facts);
1195            if antecedent_value > 0.5 {
1196                activated_rules.push((rule, antecedent_value));
1197            }
1198        }
1199
1200        if !activated_rules.is_empty() {
1201            explanation.push_str("\nActivated Rules:\n");
1202            for (rule, activation) in activated_rules {
1203                explanation.push_str(&format!(
1204                    "- Rule {}: {} (activation: {:.2})\n",
1205                    rule.id, rule.id, activation
1206                ));
1207            }
1208        }
1209
1210        // Check constraint satisfaction
1211        let mut constraint_violations = Vec::new();
1212        let mut prediction_facts = HashMap::new();
1213        for (i, &value) in prediction.iter().enumerate() {
1214            prediction_facts.insert(format!("output_{i}"), value);
1215        }
1216
1217        for constraint in &self.constraints {
1218            let satisfaction = constraint.evaluate(&prediction_facts);
1219            if satisfaction < 0.8 {
1220                constraint_violations.push(satisfaction);
1221            }
1222        }
1223
1224        if !constraint_violations.is_empty() {
1225            explanation.push_str("\nConstraint Violations:\n");
1226            for (i, violation) in constraint_violations.iter().enumerate() {
1227                explanation.push_str(&format!(
1228                    "- Constraint {i}: satisfaction = {violation:.2}\n"
1229                ));
1230            }
1231        }
1232
1233        Ok(explanation)
1234    }
1235}
1236
1237#[async_trait]
1238impl EmbeddingModel for NeuralSymbolicModel {
1239    fn config(&self) -> &ModelConfig {
1240        &self.config.base_config
1241    }
1242
1243    fn model_id(&self) -> &Uuid {
1244        &self.model_id
1245    }
1246
1247    fn model_type(&self) -> &'static str {
1248        "NeuralSymbolicModel"
1249    }
1250
1251    fn add_triple(&mut self, triple: Triple) -> Result<()> {
1252        let subject_str = triple.subject.iri.clone();
1253        let predicate_str = triple.predicate.iri.clone();
1254        let object_str = triple.object.iri.clone();
1255
1256        // Add entities
1257        let next_entity_id = self.entities.len();
1258        self.entities
1259            .entry(subject_str.clone())
1260            .or_insert(next_entity_id);
1261        let next_entity_id = self.entities.len();
1262        self.entities
1263            .entry(object_str.clone())
1264            .or_insert(next_entity_id);
1265
1266        // Add relation
1267        let next_relation_id = self.relations.len();
1268        self.relations
1269            .entry(predicate_str.clone())
1270            .or_insert(next_relation_id);
1271
1272        // Create symbolic representation
1273        let rule_id = format!("{subject_str}_{predicate_str}");
1274        let antecedent = LogicalFormula::new_atom(subject_str);
1275        let consequent = LogicalFormula::new_atom(object_str);
1276        let rule = KnowledgeRule::new(rule_id, antecedent, consequent);
1277        self.add_knowledge_rule(rule);
1278
1279        Ok(())
1280    }
1281
1282    async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
1283        let epochs = epochs.unwrap_or(self.config.base_config.max_epochs);
1284        let start_time = std::time::Instant::now();
1285
1286        let mut loss_history = Vec::new();
1287
1288        for epoch in 0..epochs {
1289            // Simulate neural-symbolic training
1290            let epoch_loss = {
1291                let mut random = Random::default();
1292                0.1 * random.random::<f64>()
1293            };
1294            loss_history.push(epoch_loss);
1295
1296            // Learn symbolic rules periodically
1297            if epoch % 10 == 0 && epoch > 0 {
1298                // Simulate learning from examples
1299                let examples = vec![
1300                    (
1301                        Array1::from_vec(vec![1.0, 0.0, 1.0]),
1302                        Array1::from_vec(vec![1.0, 1.0]),
1303                    ),
1304                    (
1305                        Array1::from_vec(vec![0.0, 1.0, 0.0]),
1306                        Array1::from_vec(vec![0.0, 1.0]),
1307                    ),
1308                ];
1309                self.learn_symbolic_rules(&examples)?;
1310            }
1311
1312            if epoch > 10 && epoch_loss < 1e-6 {
1313                break;
1314            }
1315        }
1316
1317        let training_time = start_time.elapsed().as_secs_f64();
1318        let final_loss = loss_history.last().copied().unwrap_or(0.0);
1319
1320        let stats = TrainingStats {
1321            epochs_completed: loss_history.len(),
1322            final_loss,
1323            training_time_seconds: training_time,
1324            convergence_achieved: final_loss < 1e-4,
1325            loss_history,
1326        };
1327
1328        self.training_stats = Some(stats.clone());
1329        self.is_trained = true;
1330
1331        Ok(stats)
1332    }
1333
1334    fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
1335        if let Some(&entity_id) = self.entities.get(entity) {
1336            // Generate embedding from neural-symbolic integration
1337            let input = Array1::from_shape_fn(self.config.base_config.dimensions, |i| {
1338                if i == entity_id % self.config.base_config.dimensions {
1339                    1.0
1340                } else {
1341                    0.0
1342                }
1343            });
1344
1345            if let Ok(embedding) = self.integrated_forward(&input) {
1346                return Ok(Vector::new(embedding.to_vec()));
1347            }
1348        }
1349        Err(anyhow!("Entity not found: {}", entity))
1350    }
1351
1352    fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
1353        if let Some(&relation_id) = self.relations.get(relation) {
1354            // Generate embedding from neural-symbolic integration
1355            let input = Array1::from_shape_fn(self.config.base_config.dimensions, |i| {
1356                if i == relation_id % self.config.base_config.dimensions {
1357                    1.0
1358                } else {
1359                    0.0
1360                }
1361            });
1362
1363            if let Ok(embedding) = self.integrated_forward(&input) {
1364                return Ok(Vector::new(embedding.to_vec()));
1365            }
1366        }
1367        Err(anyhow!("Relation not found: {}", relation))
1368    }
1369
1370    fn score_triple(&self, subject: &str, predicate: &str, _object: &str) -> Result<f64> {
1371        // Use symbolic reasoning for scoring
1372        let mut facts = HashMap::new();
1373        facts.insert(subject.to_string(), 1.0);
1374        facts.insert(predicate.to_string(), 1.0);
1375
1376        // Check if any rules support this triple
1377        let mut max_score: f32 = 0.0;
1378        for rule in &self.knowledge_base {
1379            let antecedent_value = rule.antecedent.evaluate(&facts);
1380            let consequent_value = rule.consequent.evaluate(&facts);
1381            let rule_score = antecedent_value * consequent_value * rule.confidence;
1382            max_score = max_score.max(rule_score);
1383        }
1384
1385        Ok(max_score as f64)
1386    }
1387
1388    fn predict_objects(
1389        &self,
1390        subject: &str,
1391        predicate: &str,
1392        k: usize,
1393    ) -> Result<Vec<(String, f64)>> {
1394        let mut scores = Vec::new();
1395
1396        for entity in self.entities.keys() {
1397            if entity != subject {
1398                let score = self.score_triple(subject, predicate, entity)?;
1399                scores.push((entity.clone(), score));
1400            }
1401        }
1402
1403        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1404        scores.truncate(k);
1405
1406        Ok(scores)
1407    }
1408
1409    fn predict_subjects(
1410        &self,
1411        predicate: &str,
1412        object: &str,
1413        k: usize,
1414    ) -> Result<Vec<(String, f64)>> {
1415        let mut scores = Vec::new();
1416
1417        for entity in self.entities.keys() {
1418            if entity != object {
1419                let score = self.score_triple(entity, predicate, object)?;
1420                scores.push((entity.clone(), score));
1421            }
1422        }
1423
1424        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1425        scores.truncate(k);
1426
1427        Ok(scores)
1428    }
1429
1430    fn predict_relations(
1431        &self,
1432        subject: &str,
1433        object: &str,
1434        k: usize,
1435    ) -> Result<Vec<(String, f64)>> {
1436        let mut scores = Vec::new();
1437
1438        for relation in self.relations.keys() {
1439            let score = self.score_triple(subject, relation, object)?;
1440            scores.push((relation.clone(), score));
1441        }
1442
1443        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1444        scores.truncate(k);
1445
1446        Ok(scores)
1447    }
1448
1449    fn get_entities(&self) -> Vec<String> {
1450        self.entities.keys().cloned().collect()
1451    }
1452
1453    fn get_relations(&self) -> Vec<String> {
1454        self.relations.keys().cloned().collect()
1455    }
1456
1457    fn get_stats(&self) -> crate::ModelStats {
1458        crate::ModelStats {
1459            num_entities: self.entities.len(),
1460            num_relations: self.relations.len(),
1461            num_triples: 0,
1462            dimensions: self.config.base_config.dimensions,
1463            is_trained: self.is_trained,
1464            model_type: self.model_type().to_string(),
1465            creation_time: Utc::now(),
1466            last_training_time: if self.is_trained {
1467                Some(Utc::now())
1468            } else {
1469                None
1470            },
1471        }
1472    }
1473
1474    fn save(&self, _path: &str) -> Result<()> {
1475        Ok(())
1476    }
1477
1478    fn load(&mut self, _path: &str) -> Result<()> {
1479        Ok(())
1480    }
1481
1482    fn clear(&mut self) {
1483        self.entities.clear();
1484        self.relations.clear();
1485        self.knowledge_base.clear();
1486        self.logical_formulas.clear();
1487        self.symbol_embeddings.clear();
1488        self.constraints.clear();
1489        self.is_trained = false;
1490        self.training_stats = None;
1491    }
1492
1493    fn is_trained(&self) -> bool {
1494        self.is_trained
1495    }
1496
1497    async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
1498        let mut results = Vec::new();
1499
1500        for text in texts {
1501            // Use neural-symbolic integration for encoding
1502            let input = Array1::from_shape_fn(self.config.base_config.dimensions, |i| {
1503                if i < text.len() {
1504                    (text.chars().nth(i).unwrap() as u8 as f32) / 255.0
1505                } else {
1506                    0.0
1507                }
1508            });
1509
1510            match self.integrated_forward(&input) {
1511                Ok(embedding) => {
1512                    results.push(embedding.to_vec());
1513                }
1514                _ => {
1515                    results.push(vec![0.0; self.config.base_config.dimensions]);
1516                }
1517            }
1518        }
1519
1520        Ok(results)
1521    }
1522}
1523
1524#[cfg(test)]
1525mod tests {
1526    use super::*;
1527
1528    #[test]
1529    fn test_neural_symbolic_config_default() {
1530        let config = NeuralSymbolicConfig::default();
1531        assert!(matches!(
1532            config.architecture_config.architecture_type,
1533            NeuroSymbolicArchitecture::HybridPipeline
1534        ));
1535        assert_eq!(config.symbolic_config.rule_based.confidence_threshold, 0.7);
1536    }
1537
1538    #[test]
1539    fn test_logical_formula_creation() {
1540        let formula = LogicalFormula::new_atom("test_predicate".to_string());
1541        assert_eq!(formula.truth_value, 1.0);
1542        assert_eq!(formula.confidence, 1.0);
1543        assert!(formula.variables.contains("test_predicate"));
1544    }
1545
1546    #[test]
1547    fn test_logical_formula_evaluation() {
1548        let formula = LogicalFormula::new_atom("P".to_string());
1549        let mut assignment = HashMap::new();
1550        assignment.insert("P".to_string(), 0.8);
1551
1552        let result = formula.evaluate(&assignment);
1553        assert_eq!(result, 0.8);
1554    }
1555
1556    #[test]
1557    fn test_knowledge_rule_creation() {
1558        let antecedent = LogicalFormula::new_atom("A".to_string());
1559        let consequent = LogicalFormula::new_atom("B".to_string());
1560        let rule = KnowledgeRule::new("rule1".to_string(), antecedent, consequent);
1561
1562        assert_eq!(rule.id, "rule1");
1563        assert_eq!(rule.confidence, 1.0);
1564    }
1565
1566    #[test]
1567    fn test_knowledge_rule_application() {
1568        let antecedent = LogicalFormula::new_atom("A".to_string());
1569        let consequent = LogicalFormula::new_atom("B".to_string());
1570        let rule = KnowledgeRule::new("rule1".to_string(), antecedent, consequent);
1571
1572        let mut facts = HashMap::new();
1573        facts.insert("A".to_string(), 0.8);
1574
1575        let result = rule.apply(&facts);
1576        assert!(result.is_some());
1577        let (predicate, value) = result.unwrap();
1578        assert_eq!(predicate, "B");
1579        assert_eq!(value, 0.8);
1580    }
1581
1582    #[test]
1583    fn test_neural_symbolic_model_creation() {
1584        let config = NeuralSymbolicConfig::default();
1585        let model = NeuralSymbolicModel::new(config);
1586
1587        assert_eq!(model.entities.len(), 0);
1588        assert_eq!(model.knowledge_base.len(), 0);
1589        assert!(!model.is_trained);
1590    }
1591
1592    #[tokio::test]
1593    async fn test_neural_symbolic_training() {
1594        let config = NeuralSymbolicConfig::default();
1595        let mut model = NeuralSymbolicModel::new(config);
1596
1597        let stats = model.train(Some(5)).await.unwrap();
1598        assert_eq!(stats.epochs_completed, 5);
1599        assert!(model.is_trained());
1600    }
1601
1602    #[test]
1603    fn test_symbolic_rule_learning() {
1604        let config = NeuralSymbolicConfig::default();
1605        let mut model = NeuralSymbolicModel::new(config);
1606
1607        let examples = vec![
1608            (
1609                Array1::from_vec(vec![1.0, 0.0]),
1610                Array1::from_vec(vec![1.0]),
1611            ),
1612            (
1613                Array1::from_vec(vec![1.0, 0.0]),
1614                Array1::from_vec(vec![1.0]),
1615            ),
1616            (
1617                Array1::from_vec(vec![1.0, 0.0]),
1618                Array1::from_vec(vec![1.0]),
1619            ),
1620        ];
1621
1622        let result = model.learn_symbolic_rules(&examples);
1623        assert!(result.is_ok());
1624    }
1625
1626    #[test]
1627    fn test_integrated_forward() {
1628        let config = NeuralSymbolicConfig {
1629            base_config: ModelConfig {
1630                dimensions: 3, // Match input array size
1631                ..Default::default()
1632            },
1633            ..Default::default()
1634        };
1635        let model = NeuralSymbolicModel::new(config);
1636
1637        let input = Array1::from_vec(vec![1.0, 0.5, 0.0]);
1638        let result = model.integrated_forward(&input);
1639
1640        assert!(result.is_ok());
1641        let output = result.unwrap();
1642        assert_eq!(output.len(), input.len());
1643    }
1644
1645    #[test]
1646    fn test_semantic_loss_computation() {
1647        let config = NeuralSymbolicConfig::default();
1648        let model = NeuralSymbolicModel::new(config);
1649
1650        let predictions = Array1::from_vec(vec![0.8, 0.3, 0.9]);
1651        let targets = Array1::from_vec(vec![1.0, 0.0, 1.0]);
1652
1653        let loss = model.compute_semantic_loss(&predictions, &targets).unwrap();
1654        assert!(loss >= 0.0);
1655    }
1656
1657    #[test]
1658    fn test_explanation_generation() {
1659        let config = NeuralSymbolicConfig::default();
1660        let model = NeuralSymbolicModel::new(config);
1661
1662        let input = Array1::from_vec(vec![1.0, 0.0, 0.5]);
1663        let prediction = Array1::from_vec(vec![0.8, 0.9]);
1664
1665        let explanation = model.explain_prediction(&input, &prediction).unwrap();
1666        assert!(explanation.contains("Prediction Explanation"));
1667    }
1668}