oxirs_embed/multimodal/impl/
model.rs

1//! Main multi-modal embedding model implementation
2
3use super::adaptation::RealTimeFinetuning;
4use super::config::CrossModalConfig;
5use super::encoders::{AlignmentNetwork, KGEncoder, TextEncoder};
6use super::learning::FewShotLearning;
7use crate::{EmbeddingModel, ModelStats, TrainingStats, Vector};
8use anyhow::{anyhow, Result};
9use async_trait::async_trait;
10use chrono::Utc;
11use scirs2_core::ndarray_ext::Array1;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use uuid::Uuid;
15
16/// Multi-modal embedding model for unified representation learning
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct MultiModalEmbedding {
19    pub config: CrossModalConfig,
20    pub model_id: Uuid,
21    /// Text embeddings cache
22    pub text_embeddings: HashMap<String, Array1<f32>>,
23    /// Knowledge graph embeddings cache
24    pub kg_embeddings: HashMap<String, Array1<f32>>,
25    /// Unified cross-modal embeddings
26    pub unified_embeddings: HashMap<String, Array1<f32>>,
27    /// Cross-modal alignment mappings
28    pub text_kg_alignments: HashMap<String, String>,
29    /// Entity descriptions for alignment
30    pub entity_descriptions: HashMap<String, String>,
31    /// Property-text mappings
32    pub property_texts: HashMap<String, String>,
33    /// Multi-language mappings
34    pub multilingual_mappings: HashMap<String, Vec<String>>,
35    /// Cross-domain mappings
36    pub cross_domain_mappings: HashMap<String, String>,
37    /// Training components
38    pub text_encoder: TextEncoder,
39    pub kg_encoder: KGEncoder,
40    pub alignment_network: AlignmentNetwork,
41    /// Training statistics
42    pub training_stats: TrainingStats,
43    pub model_stats: ModelStats,
44    pub is_trained: bool,
45}
46
47/// Multi-modal embedding statistics
48#[derive(Debug, Clone, Serialize, Deserialize)]
49pub struct MultiModalStats {
50    pub num_text_embeddings: usize,
51    pub num_kg_embeddings: usize,
52    pub num_unified_embeddings: usize,
53    pub num_alignments: usize,
54    pub num_entity_descriptions: usize,
55    pub num_property_texts: usize,
56    pub num_multilingual_mappings: usize,
57    pub num_cross_domain_mappings: usize,
58    pub text_dim: usize,
59    pub kg_dim: usize,
60    pub unified_dim: usize,
61}
62
63impl MultiModalEmbedding {
64    /// Create new multi-modal embedding model
65    pub fn new(config: CrossModalConfig) -> Self {
66        let model_id = {
67            use scirs2_core::random::{Random, Rng};
68            let mut random = Random::default();
69            Uuid::from_u128(random.random::<u128>())
70        };
71        let now = Utc::now();
72
73        let text_encoder = TextEncoder::new("BERT".to_string(), config.text_dim, config.text_dim);
74
75        let kg_encoder = KGEncoder::new(
76            "ComplEx".to_string(),
77            config.kg_dim,
78            config.kg_dim,
79            config.kg_dim,
80        );
81
82        let alignment_network = AlignmentNetwork::new(
83            "CrossModalAttention".to_string(),
84            config.text_dim,
85            config.kg_dim,
86            config.unified_dim / 2,
87            config.unified_dim,
88        );
89
90        Self {
91            model_id,
92            text_embeddings: HashMap::new(),
93            kg_embeddings: HashMap::new(),
94            unified_embeddings: HashMap::new(),
95            text_kg_alignments: HashMap::new(),
96            entity_descriptions: HashMap::new(),
97            property_texts: HashMap::new(),
98            multilingual_mappings: HashMap::new(),
99            cross_domain_mappings: HashMap::new(),
100            text_encoder,
101            kg_encoder,
102            alignment_network,
103            training_stats: TrainingStats {
104                epochs_completed: 0,
105                final_loss: 0.0,
106                training_time_seconds: 0.0,
107                convergence_achieved: false,
108                loss_history: Vec::new(),
109            },
110            model_stats: ModelStats {
111                num_entities: 0,
112                num_relations: 0,
113                num_triples: 0,
114                dimensions: config.unified_dim,
115                is_trained: false,
116                model_type: "MultiModalEmbedding".to_string(),
117                creation_time: now,
118                last_training_time: None,
119            },
120            is_trained: false,
121            config,
122        }
123    }
124
125    /// Add text-KG alignment pair
126    pub fn add_text_kg_alignment(&mut self, text: &str, entity: &str) {
127        self.text_kg_alignments
128            .insert(text.to_string(), entity.to_string());
129    }
130
131    /// Add entity description
132    pub fn add_entity_description(&mut self, entity: &str, description: &str) {
133        self.entity_descriptions
134            .insert(entity.to_string(), description.to_string());
135    }
136
137    /// Add property-text mapping
138    pub fn add_property_text(&mut self, property: &str, text_description: &str) {
139        self.property_texts
140            .insert(property.to_string(), text_description.to_string());
141    }
142
143    /// Add multilingual mapping
144    pub fn add_multilingual_mapping(&mut self, concept: &str, translations: Vec<String>) {
145        self.multilingual_mappings
146            .insert(concept.to_string(), translations);
147    }
148
149    /// Add cross-domain mapping
150    pub fn add_cross_domain_mapping(&mut self, source_concept: &str, target_concept: &str) {
151        self.cross_domain_mappings
152            .insert(source_concept.to_string(), target_concept.to_string());
153    }
154
155    /// Generate unified embedding from text and KG
156    pub async fn generate_unified_embedding(
157        &mut self,
158        text: &str,
159        entity: &str,
160    ) -> Result<Array1<f32>> {
161        // Encode text
162        let text_embedding = self.text_encoder.encode(text)?;
163
164        // Get or create KG embedding (simplified - would use actual KG model)
165        let kg_embedding_raw = self.get_or_create_kg_embedding(entity)?;
166
167        // Encode KG embedding to unified dimension
168        let kg_embedding = self.kg_encoder.encode_entity(&kg_embedding_raw)?;
169
170        // Align modalities
171        let (unified_embedding, alignment_score) = self
172            .alignment_network
173            .align(&text_embedding, &kg_embedding)?;
174
175        // Cache embeddings - store raw KG embeddings to avoid dimension mismatch
176        self.text_embeddings
177            .insert(text.to_string(), text_embedding);
178        self.kg_embeddings
179            .insert(entity.to_string(), kg_embedding_raw); // Store raw, not encoded
180        self.unified_embeddings
181            .insert(format!("{text}|{entity}"), unified_embedding.clone());
182
183        println!("Generated unified embedding with alignment score: {alignment_score:.3}");
184
185        Ok(unified_embedding)
186    }
187
188    /// Get or create KG embedding for entity
189    pub fn get_or_create_kg_embedding(&self, entity: &str) -> Result<Array1<f32>> {
190        if let Some(embedding) = self.kg_embeddings.get(entity) {
191            Ok(embedding.clone())
192        } else {
193            // Create simple entity embedding based on name
194            let mut embedding = vec![0.0; self.config.kg_dim];
195            let entity_bytes = entity.as_bytes();
196
197            for (i, &byte) in entity_bytes.iter().enumerate() {
198                if i < self.config.kg_dim {
199                    embedding[i] = (byte as f32 / 255.0 - 0.5) * 2.0;
200                }
201            }
202
203            Ok(Array1::from_vec(embedding))
204        }
205    }
206
207    /// Perform contrastive learning
208    pub fn contrastive_loss(
209        &self,
210        positive_pairs: &[(String, String)],
211        negative_pairs: &[(String, String)],
212    ) -> Result<f32> {
213        let mut positive_scores = Vec::new();
214        let mut negative_scores = Vec::new();
215
216        // Compute positive pair scores
217        for (text, entity) in positive_pairs {
218            if let (Some(text_emb), Some(kg_emb_raw)) = (
219                self.text_embeddings.get(text),
220                self.kg_embeddings.get(entity),
221            ) {
222                let kg_emb = self.kg_encoder.encode_entity(kg_emb_raw)?;
223                let score = self
224                    .alignment_network
225                    .compute_alignment_score(text_emb, &kg_emb);
226                positive_scores.push(score);
227            }
228        }
229
230        // Compute negative pair scores
231        for (text, entity) in negative_pairs {
232            if let (Some(text_emb), Some(kg_emb_raw)) = (
233                self.text_embeddings.get(text),
234                self.kg_embeddings.get(entity),
235            ) {
236                let kg_emb = self.kg_encoder.encode_entity(kg_emb_raw)?;
237                let score = self
238                    .alignment_network
239                    .compute_alignment_score(text_emb, &kg_emb);
240                negative_scores.push(score);
241            }
242        }
243
244        // Compute contrastive loss
245        let temperature = self.config.contrastive_config.temperature;
246        let mut loss = 0.0;
247
248        for &pos_score in &positive_scores {
249            let pos_exp = (pos_score / temperature).exp();
250            let mut neg_sum = 0.0;
251
252            for &neg_score in &negative_scores {
253                neg_sum += (neg_score / temperature).exp();
254            }
255
256            if neg_sum > 0.0 {
257                loss -= (pos_exp / (pos_exp + neg_sum)).ln();
258            }
259        }
260
261        if !positive_scores.is_empty() {
262            loss /= positive_scores.len() as f32;
263        }
264
265        Ok(loss)
266    }
267
268    /// Perform zero-shot learning
269    pub async fn zero_shot_prediction(
270        &self,
271        text: &str,
272        candidate_entities: &[String],
273    ) -> Result<Vec<(String, f32)>> {
274        let text_embedding = self.text_encoder.encode(text)?;
275        let mut scores = Vec::new();
276
277        for entity in candidate_entities {
278            if let Some(kg_embedding_raw) = self.kg_embeddings.get(entity) {
279                let kg_encoded = self.kg_encoder.encode_entity(kg_embedding_raw)?;
280                let score = self
281                    .alignment_network
282                    .compute_alignment_score(&text_embedding, &kg_encoded);
283                scores.push((entity.clone(), score));
284            }
285        }
286
287        // Sort by score (descending)
288        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
289
290        Ok(scores)
291    }
292
293    /// Cross-domain transfer
294    pub async fn cross_domain_transfer(
295        &mut self,
296        source_domain: &str,
297        target_domain: &str,
298    ) -> Result<f32> {
299        if !self.config.cross_domain_config.enable_domain_adaptation {
300            return Ok(0.0);
301        }
302
303        // Find cross-domain mappings
304        let mut transfer_pairs = Vec::new();
305        for (source_concept, target_concept) in &self.cross_domain_mappings {
306            if source_concept.contains(source_domain) && target_concept.contains(target_domain) {
307                transfer_pairs.push((source_concept.clone(), target_concept.clone()));
308            }
309        }
310
311        if transfer_pairs.is_empty() {
312            return Ok(0.0);
313        }
314
315        // Compute domain adaptation loss
316        let mut adaptation_loss = 0.0;
317        for (source, target) in &transfer_pairs {
318            if let (Some(source_emb), Some(target_emb)) = (
319                self.unified_embeddings.get(source),
320                self.unified_embeddings.get(target),
321            ) {
322                // L2 distance for domain alignment
323                let diff = source_emb - target_emb;
324                adaptation_loss += diff.dot(&diff).sqrt();
325            }
326        }
327
328        adaptation_loss /= transfer_pairs.len() as f32;
329
330        println!(
331            "Cross-domain transfer loss ({source_domain} -> {target_domain}): {adaptation_loss:.3}"
332        );
333
334        Ok(adaptation_loss)
335    }
336
337    /// Multi-language alignment
338    pub async fn multilingual_alignment(&self, concept: &str) -> Result<Vec<(String, f32)>> {
339        if let Some(translations) = self.multilingual_mappings.get(concept) {
340            let mut alignment_scores = Vec::new();
341
342            if let Some(base_embedding) = self.unified_embeddings.get(concept) {
343                for translation in translations {
344                    if let Some(trans_embedding) = self.unified_embeddings.get(translation) {
345                        let score = self
346                            .alignment_network
347                            .compute_alignment_score(base_embedding, trans_embedding);
348                        alignment_scores.push((translation.clone(), score));
349                    }
350                }
351            }
352
353            // Sort by alignment score
354            alignment_scores
355                .sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
356
357            Ok(alignment_scores)
358        } else {
359            Ok(Vec::new())
360        }
361    }
362
363    /// Get multi-modal statistics
364    pub fn get_multimodal_stats(&self) -> MultiModalStats {
365        MultiModalStats {
366            num_text_embeddings: self.text_embeddings.len(),
367            num_kg_embeddings: self.kg_embeddings.len(),
368            num_unified_embeddings: self.unified_embeddings.len(),
369            num_alignments: self.text_kg_alignments.len(),
370            num_entity_descriptions: self.entity_descriptions.len(),
371            num_property_texts: self.property_texts.len(),
372            num_multilingual_mappings: self.multilingual_mappings.len(),
373            num_cross_domain_mappings: self.cross_domain_mappings.len(),
374            text_dim: self.config.text_dim,
375            kg_dim: self.config.kg_dim,
376            unified_dim: self.config.unified_dim,
377        }
378    }
379
380    /// Add few-shot learning capability
381    pub fn with_few_shot_learning(self, _few_shot_config: FewShotLearning) -> Self {
382        // Store few-shot learning configuration (would need to add field to struct)
383        // For now, we'll just return self as the integration would require struct changes
384        self
385    }
386
387    /// Perform few-shot learning task
388    pub async fn few_shot_learn(
389        &self,
390        support_examples: &[(String, String, String)],
391        query_examples: &[(String, String)],
392    ) -> Result<Vec<(String, f32)>> {
393        let mut few_shot_learner = FewShotLearning::default();
394        few_shot_learner
395            .few_shot_adapt(support_examples, query_examples, self)
396            .await
397    }
398
399    /// Add real-time fine-tuning capability
400    pub fn with_real_time_finetuning(self, _rt_config: RealTimeFinetuning) -> Self {
401        // Store real-time fine-tuning configuration
402        // For now, we'll just return self as the integration would require struct changes
403        self
404    }
405
406    /// Update model with new example in real-time
407    pub async fn real_time_update(&mut self, text: &str, entity: &str, label: &str) -> Result<f32> {
408        let mut rt_finetuning = RealTimeFinetuning::default();
409        rt_finetuning.add_example(text.to_string(), entity.to_string(), label.to_string());
410        rt_finetuning.update_model(self).await
411    }
412}
413
414#[async_trait]
415impl EmbeddingModel for MultiModalEmbedding {
416    fn config(&self) -> &crate::ModelConfig {
417        &self.config.base_config
418    }
419
420    fn model_id(&self) -> &Uuid {
421        &self.model_id
422    }
423
424    fn model_type(&self) -> &'static str {
425        "MultiModalEmbedding"
426    }
427
428    fn add_triple(&mut self, triple: crate::Triple) -> Result<()> {
429        // Add triple components for multi-modal learning
430        let subject = &triple.subject.iri;
431        let predicate = &triple.predicate.iri;
432        let object = &triple.object.iri;
433
434        // Create alignment if description exists
435        if let Some(description) = self.entity_descriptions.get(subject).cloned() {
436            self.add_text_kg_alignment(&description, subject);
437        }
438
439        if let Some(description) = self.entity_descriptions.get(object).cloned() {
440            self.add_text_kg_alignment(&description, object);
441        }
442
443        // Create property-text mapping if available
444        if let Some(property_text) = self.property_texts.get(predicate).cloned() {
445            self.add_text_kg_alignment(&property_text, predicate);
446        }
447
448        Ok(())
449    }
450
451    async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
452        let epochs = epochs.unwrap_or(100);
453        let start_time = std::time::Instant::now();
454        let mut loss_history = Vec::new();
455
456        // Training loop for multi-modal alignment
457        for epoch in 0..epochs {
458            let mut epoch_loss = 0.0;
459            let mut num_batches = 0;
460
461            // Train on text-KG alignments
462            let alignment_pairs: Vec<_> = self
463                .text_kg_alignments
464                .iter()
465                .map(|(k, v)| (k.clone(), v.clone()))
466                .collect();
467            for (text, entity) in &alignment_pairs {
468                // Generate embeddings and compute alignment loss
469                if let Ok(unified) = self.generate_unified_embedding(text, entity).await {
470                    // Simple reconstruction loss
471                    let loss = unified.iter().map(|&x| x * x).sum::<f32>() / unified.len() as f32;
472                    epoch_loss += loss;
473                    num_batches += 1;
474                }
475            }
476
477            // Add contrastive learning if we have negative samples
478            if alignment_pairs.len() > 1 {
479                let positive_pairs: Vec<_> = alignment_pairs
480                    .iter()
481                    .map(|(t, e)| (t.to_string(), e.to_string()))
482                    .collect();
483
484                // Create negative pairs by shuffling
485                let mut negative_pairs = Vec::new();
486                for i in 0..positive_pairs.len().min(10) {
487                    let neg_entity = &positive_pairs[(i + 1) % positive_pairs.len()].1;
488                    negative_pairs.push((positive_pairs[i].0.clone(), neg_entity.clone()));
489                }
490
491                if let Ok(contrastive_loss) =
492                    self.contrastive_loss(&positive_pairs, &negative_pairs)
493                {
494                    epoch_loss += contrastive_loss;
495                    num_batches += 1;
496                }
497            }
498
499            if num_batches > 0 {
500                epoch_loss /= num_batches as f32;
501            }
502
503            loss_history.push(epoch_loss as f64);
504
505            if epoch % 10 == 0 {
506                println!("Multi-modal training epoch {epoch}: Loss = {epoch_loss:.6}");
507            }
508
509            // Early stopping
510            if epoch_loss < 0.001 {
511                break;
512            }
513        }
514
515        let training_time = start_time.elapsed().as_secs_f64();
516
517        self.training_stats = TrainingStats {
518            epochs_completed: epochs,
519            final_loss: loss_history.last().copied().unwrap_or(0.0),
520            training_time_seconds: training_time,
521            convergence_achieved: loss_history.last().is_some_and(|&loss| loss < 0.001),
522            loss_history,
523        };
524
525        self.is_trained = true;
526        self.model_stats.is_trained = true;
527        self.model_stats.last_training_time = Some(Utc::now());
528
529        // Update statistics
530        self.model_stats.num_entities = self.kg_embeddings.len();
531        self.model_stats.num_relations = self.property_texts.len();
532        self.model_stats.num_triples = self.text_kg_alignments.len();
533
534        Ok(self.training_stats.clone())
535    }
536
537    fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
538        if let Some(embedding) = self.unified_embeddings.get(entity) {
539            Ok(Vector::from_array1(embedding))
540        } else if let Some(embedding) = self.kg_embeddings.get(entity) {
541            Ok(Vector::from_array1(embedding))
542        } else {
543            Err(anyhow!("Entity {} not found", entity))
544        }
545    }
546
547    fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
548        if let Some(embedding) = self.kg_embeddings.get(relation) {
549            Ok(Vector::from_array1(embedding))
550        } else {
551            Err(anyhow!("Relation {} not found", relation))
552        }
553    }
554
555    fn score_triple(&self, subject: &str, predicate: &str, object: &str) -> Result<f64> {
556        let subject_emb = self.get_entity_embedding(subject)?;
557        let predicate_emb = self.get_relation_embedding(predicate)?;
558        let object_emb = self.get_entity_embedding(object)?;
559
560        // Multi-modal scoring combines KG and text information
561        let mut score = 0.0;
562        for i in 0..subject_emb
563            .dimensions
564            .min(predicate_emb.dimensions)
565            .min(object_emb.dimensions)
566        {
567            let diff = subject_emb.values[i] + predicate_emb.values[i] - object_emb.values[i];
568            score += diff * diff;
569        }
570
571        // Convert to similarity score
572        Ok(1.0 / (1.0 + score as f64))
573    }
574
575    fn predict_objects(
576        &self,
577        subject: &str,
578        predicate: &str,
579        k: usize,
580    ) -> Result<Vec<(String, f64)>> {
581        let mut scores = Vec::new();
582
583        for entity in self.kg_embeddings.keys() {
584            if entity != subject {
585                if let Ok(score) = self.score_triple(subject, predicate, entity) {
586                    scores.push((entity.clone(), score));
587                }
588            }
589        }
590
591        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
592        scores.truncate(k);
593
594        Ok(scores)
595    }
596
597    fn predict_subjects(
598        &self,
599        predicate: &str,
600        object: &str,
601        k: usize,
602    ) -> Result<Vec<(String, f64)>> {
603        let mut scores = Vec::new();
604
605        for entity in self.kg_embeddings.keys() {
606            if entity != object {
607                if let Ok(score) = self.score_triple(entity, predicate, object) {
608                    scores.push((entity.clone(), score));
609                }
610            }
611        }
612
613        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
614        scores.truncate(k);
615
616        Ok(scores)
617    }
618
619    fn predict_relations(
620        &self,
621        subject: &str,
622        object: &str,
623        k: usize,
624    ) -> Result<Vec<(String, f64)>> {
625        let mut scores = Vec::new();
626
627        for relation in self.property_texts.keys() {
628            if let Ok(score) = self.score_triple(subject, relation, object) {
629                scores.push((relation.clone(), score));
630            }
631        }
632
633        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
634        scores.truncate(k);
635
636        Ok(scores)
637    }
638
639    fn get_entities(&self) -> Vec<String> {
640        self.kg_embeddings.keys().cloned().collect()
641    }
642
643    fn get_relations(&self) -> Vec<String> {
644        self.property_texts.keys().cloned().collect()
645    }
646
647    fn get_stats(&self) -> ModelStats {
648        self.model_stats.clone()
649    }
650
651    fn save(&self, _path: &str) -> Result<()> {
652        // Implementation would serialize the multi-modal model
653        Ok(())
654    }
655
656    fn load(&mut self, _path: &str) -> Result<()> {
657        // Implementation would deserialize the multi-modal model
658        Ok(())
659    }
660
661    fn clear(&mut self) {
662        self.text_embeddings.clear();
663        self.kg_embeddings.clear();
664        self.unified_embeddings.clear();
665        self.text_kg_alignments.clear();
666        self.entity_descriptions.clear();
667        self.property_texts.clear();
668        self.multilingual_mappings.clear();
669        self.cross_domain_mappings.clear();
670        self.is_trained = false;
671    }
672
673    fn is_trained(&self) -> bool {
674        self.is_trained
675    }
676
677    async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
678        let mut embeddings = Vec::new();
679
680        for text in texts {
681            if let Some(embedding) = self.text_embeddings.get(text) {
682                embeddings.push(embedding.to_vec());
683            } else {
684                // Generate new text embedding
685                let embedding = self.text_encoder.encode(text)?;
686                embeddings.push(embedding.to_vec());
687            }
688        }
689
690        Ok(embeddings)
691    }
692}