oxirs_embed/multimodal/impl/
encoders.rs

1//! Text, KG, and alignment network encoders for multi-modal embeddings
2
3use anyhow::Result;
4use scirs2_core::ndarray_ext::{Array1, Array2};
5use scirs2_core::random::{Random, Rng};
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8
9/// Text encoder for multi-modal embeddings
10#[derive(Debug, Clone, Serialize, Deserialize)]
11pub struct TextEncoder {
12    /// Encoder type (BERT, RoBERTa, etc.)
13    pub encoder_type: String,
14    /// Input dimension
15    pub input_dim: usize,
16    /// Output dimension
17    pub output_dim: usize,
18    /// Learned parameters (simplified representation)
19    pub parameters: HashMap<String, Array2<f32>>,
20}
21
22impl TextEncoder {
23    pub fn new(encoder_type: String, input_dim: usize, output_dim: usize) -> Self {
24        let mut parameters = HashMap::new();
25
26        // Initialize key transformation matrices
27        let mut random = Random::default();
28        parameters.insert(
29            "projection".to_string(),
30            Array2::from_shape_fn((output_dim, input_dim), |(_, _)| {
31                (random.random::<f32>() - 0.5) * 0.1
32            }),
33        );
34
35        let mut random = Random::default();
36        parameters.insert(
37            "attention".to_string(),
38            Array2::from_shape_fn((output_dim, output_dim), |(_, _)| {
39                (random.random::<f32>() - 0.5) * 0.1
40            }),
41        );
42
43        Self {
44            encoder_type,
45            input_dim,
46            output_dim,
47            parameters,
48        }
49    }
50
51    /// Encode text into embeddings
52    pub fn encode(&self, text: &str) -> Result<Array1<f32>> {
53        let input_features = self.extract_text_features(text);
54        let projection = self.parameters.get("projection").unwrap();
55
56        // Simple linear projection (in real implementation would be full transformer)
57        let encoded = projection.dot(&input_features);
58
59        // Apply layer normalization
60        let mean = encoded.mean().unwrap_or(0.0);
61        let var = encoded.var(0.0);
62        let normalized = encoded.mapv(|x| (x - mean) / (var + 1e-8).sqrt());
63
64        Ok(normalized)
65    }
66
67    /// Extract features from text (simplified)
68    fn extract_text_features(&self, text: &str) -> Array1<f32> {
69        let mut features = vec![0.0; self.input_dim];
70
71        // Simple bag-of-words features (would be tokenization + embeddings in real implementation)
72        let words: Vec<&str> = text.split_whitespace().collect();
73        for (i, word) in words.iter().enumerate() {
74            if i < self.input_dim {
75                features[i] = word.len() as f32 / 10.0; // Simple word length feature
76            }
77        }
78
79        // Add sentence-level features
80        if self.input_dim > words.len() {
81            features[words.len()] = text.len() as f32 / 100.0; // Text length
82            if self.input_dim > words.len() + 1 {
83                features[words.len() + 1] = words.len() as f32 / 20.0; // Word count
84            }
85        }
86
87        Array1::from_vec(features)
88    }
89}
90
91/// Knowledge graph encoder for multi-modal embeddings
92#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct KGEncoder {
94    /// Encoder architecture (TransE, ComplEx, etc.)
95    pub architecture: String,
96    /// Entity embedding dimension
97    pub entity_dim: usize,
98    /// Relation embedding dimension
99    pub relation_dim: usize,
100    /// Output dimension
101    pub output_dim: usize,
102    /// Learned parameters
103    pub parameters: HashMap<String, Array2<f32>>,
104}
105
106impl KGEncoder {
107    pub fn new(
108        architecture: String,
109        entity_dim: usize,
110        relation_dim: usize,
111        output_dim: usize,
112    ) -> Self {
113        let mut parameters = HashMap::new();
114
115        // Initialize transformation matrices
116        let mut random = Random::default();
117        parameters.insert(
118            "entity_projection".to_string(),
119            Array2::from_shape_fn((output_dim, entity_dim), |(_, _)| {
120                (random.random::<f32>() - 0.5) * 0.1
121            }),
122        );
123
124        let mut random = Random::default();
125        parameters.insert(
126            "relation_projection".to_string(),
127            Array2::from_shape_fn((output_dim, relation_dim), |(_, _)| {
128                (random.random::<f32>() - 0.5) * 0.1
129            }),
130        );
131
132        Self {
133            architecture,
134            entity_dim,
135            relation_dim,
136            output_dim,
137            parameters,
138        }
139    }
140
141    /// Encode knowledge graph entity
142    pub fn encode_entity(&self, entity_embedding: &Array1<f32>) -> Result<Array1<f32>> {
143        let projection = self.parameters.get("entity_projection").unwrap();
144
145        // Ensure dimension compatibility for matrix-vector multiplication
146        if projection.ncols() != entity_embedding.len() {
147            // Truncate or pad entity embedding to match projection input dimension
148            let target_dim = projection.ncols();
149            let mut adjusted_embedding = Array1::zeros(target_dim);
150
151            let copy_len = entity_embedding.len().min(target_dim);
152            adjusted_embedding
153                .slice_mut(scirs2_core::ndarray_ext::s![..copy_len])
154                .assign(&entity_embedding.slice(scirs2_core::ndarray_ext::s![..copy_len]));
155
156            Ok(projection.dot(&adjusted_embedding))
157        } else {
158            Ok(projection.dot(entity_embedding))
159        }
160    }
161
162    /// Encode knowledge graph relation
163    pub fn encode_relation(&self, relation_embedding: &Array1<f32>) -> Result<Array1<f32>> {
164        let projection = self.parameters.get("relation_projection").unwrap();
165
166        // Ensure dimension compatibility for matrix-vector multiplication
167        if projection.ncols() != relation_embedding.len() {
168            // Truncate or pad relation embedding to match projection input dimension
169            let target_dim = projection.ncols();
170            let mut adjusted_embedding = Array1::zeros(target_dim);
171
172            let copy_len = relation_embedding.len().min(target_dim);
173            adjusted_embedding
174                .slice_mut(scirs2_core::ndarray_ext::s![..copy_len])
175                .assign(&relation_embedding.slice(scirs2_core::ndarray_ext::s![..copy_len]));
176
177            Ok(projection.dot(&adjusted_embedding))
178        } else {
179            Ok(projection.dot(relation_embedding))
180        }
181    }
182
183    /// Encode structured knowledge (entity + relations)
184    pub fn encode_structured(
185        &self,
186        entity: &Array1<f32>,
187        relations: &[Array1<f32>],
188    ) -> Result<Array1<f32>> {
189        let entity_encoded = self.encode_entity(entity)?;
190
191        // Aggregate relation information
192        let mut relation_agg = Array1::<f32>::zeros(self.output_dim);
193        for relation in relations {
194            let rel_encoded = self.encode_relation(relation)?;
195            relation_agg = &relation_agg + &rel_encoded;
196        }
197
198        if !relations.is_empty() {
199            relation_agg /= relations.len() as f32;
200        }
201
202        // Combine entity and relation information
203        Ok(&entity_encoded + &relation_agg)
204    }
205}
206
207/// Alignment network for cross-modal learning
208#[derive(Debug, Clone, Serialize, Deserialize)]
209pub struct AlignmentNetwork {
210    /// Network architecture
211    pub architecture: String,
212    /// Input dimensions (text_dim, kg_dim)
213    pub input_dims: (usize, usize),
214    /// Hidden dimension
215    pub hidden_dim: usize,
216    /// Output dimension
217    pub output_dim: usize,
218    /// Network parameters
219    pub parameters: HashMap<String, Array2<f32>>,
220}
221
222impl AlignmentNetwork {
223    pub fn new(
224        architecture: String,
225        text_dim: usize,
226        kg_dim: usize,
227        hidden_dim: usize,
228        output_dim: usize,
229    ) -> Self {
230        let mut parameters = HashMap::new();
231
232        // Text pathway
233        let mut random = Random::default();
234        parameters.insert(
235            "text_hidden".to_string(),
236            Array2::from_shape_fn((hidden_dim, text_dim), |(_, _)| {
237                (random.random::<f32>() - 0.5) * 0.1
238            }),
239        );
240
241        let mut random = Random::default();
242        parameters.insert(
243            "text_output".to_string(),
244            Array2::from_shape_fn((output_dim, hidden_dim), |(_, _)| {
245                (random.random::<f32>() - 0.5) * 0.1
246            }),
247        );
248
249        // KG pathway
250        let mut random = Random::default();
251        parameters.insert(
252            "kg_hidden".to_string(),
253            Array2::from_shape_fn((hidden_dim, kg_dim), |(_, _)| {
254                (random.random::<f32>() - 0.5) * 0.1
255            }),
256        );
257
258        let mut random = Random::default();
259        parameters.insert(
260            "kg_output".to_string(),
261            Array2::from_shape_fn((output_dim, hidden_dim), |(_, _)| {
262                (random.random::<f32>() - 0.5) * 0.1
263            }),
264        );
265
266        // Cross-modal attention
267        let mut random = Random::default();
268        parameters.insert(
269            "cross_attention".to_string(),
270            Array2::from_shape_fn((output_dim, output_dim), |(_, _)| {
271                (random.random::<f32>() - 0.5) * 0.1
272            }),
273        );
274
275        Self {
276            architecture,
277            input_dims: (text_dim, kg_dim),
278            hidden_dim,
279            output_dim,
280            parameters,
281        }
282    }
283
284    /// Align text and KG embeddings
285    pub fn align(
286        &self,
287        text_emb: &Array1<f32>,
288        kg_emb: &Array1<f32>,
289    ) -> Result<(Array1<f32>, f32)> {
290        // Process text embedding
291        let text_hidden_matrix = self.parameters.get("text_hidden").unwrap();
292        let text_hidden = text_hidden_matrix.dot(text_emb);
293        let text_hidden = text_hidden.mapv(|x| x.max(0.0)); // ReLU activation
294        let text_output_matrix = self.parameters.get("text_output").unwrap();
295        let text_output = text_output_matrix.dot(&text_hidden);
296
297        // Process KG embedding
298        let kg_hidden_matrix = self.parameters.get("kg_hidden").unwrap();
299        let kg_hidden = kg_hidden_matrix.dot(kg_emb);
300        let kg_hidden = kg_hidden.mapv(|x| x.max(0.0)); // ReLU activation
301        let kg_output_matrix = self.parameters.get("kg_output").unwrap();
302        let kg_output = kg_output_matrix.dot(&kg_hidden);
303
304        // Cross-modal attention
305        let attention_weights = self.compute_attention(&text_output, &kg_output)?;
306
307        // Weighted combination (ensure same dimensions)
308        let min_dim = text_output.len().min(kg_output.len());
309        let text_slice = text_output
310            .slice(scirs2_core::ndarray_ext::s![..min_dim])
311            .to_owned();
312        let kg_slice = kg_output
313            .slice(scirs2_core::ndarray_ext::s![..min_dim])
314            .to_owned();
315        let unified = &text_slice * attention_weights + &kg_slice * (1.0 - attention_weights);
316
317        // Compute alignment score
318        let alignment_score = self.compute_alignment_score(&text_output, &kg_output);
319
320        Ok((unified, alignment_score))
321    }
322
323    /// Compute cross-modal attention weights
324    fn compute_attention(&self, text_emb: &Array1<f32>, kg_emb: &Array1<f32>) -> Result<f32> {
325        // Ensure both embeddings have the same dimension
326        let min_dim = text_emb.len().min(kg_emb.len());
327        let text_slice = text_emb.slice(scirs2_core::ndarray_ext::s![..min_dim]);
328        let kg_slice = kg_emb.slice(scirs2_core::ndarray_ext::s![..min_dim]);
329
330        // Simple dot product attention (avoiding matrix multiplication dimension issues)
331        let attention_score = text_slice.dot(&kg_slice);
332        let attention_weight = 1.0 / (1.0 + (-attention_score).exp()); // Sigmoid
333
334        Ok(attention_weight)
335    }
336
337    /// Compute alignment score between modalities
338    pub fn compute_alignment_score(&self, text_emb: &Array1<f32>, kg_emb: &Array1<f32>) -> f32 {
339        // Ensure same dimensions for cosine similarity
340        let min_dim = text_emb.len().min(kg_emb.len());
341        let text_slice = text_emb.slice(scirs2_core::ndarray_ext::s![..min_dim]);
342        let kg_slice = kg_emb.slice(scirs2_core::ndarray_ext::s![..min_dim]);
343
344        // Cosine similarity
345        let dot_product = text_slice.dot(&kg_slice);
346        let text_norm = text_slice.dot(&text_slice).sqrt();
347        let kg_norm = kg_slice.dot(&kg_slice).sqrt();
348
349        if text_norm > 0.0 && kg_norm > 0.0 {
350            dot_product / (text_norm * kg_norm)
351        } else {
352            0.0
353        }
354    }
355}