1pub mod adaptation_engine;
11pub mod base_embedding;
12pub mod context_cache;
13pub mod context_processor;
14pub mod context_types;
15pub mod fusion_network;
16pub mod interactive_refinement;
17pub mod temporal_context;
18
19use crate::{EmbeddingModel, ModelConfig, ModelStats, TrainingStats, Triple, Vector};
20use anyhow::Result;
21use async_trait::async_trait;
22use chrono::{DateTime, Utc};
23use serde_json;
24use std::collections::HashMap;
25use uuid::Uuid;
26
27pub use adaptation_engine::*;
28pub use base_embedding::*;
29pub use context_cache::*;
30pub use context_processor::*;
31pub use context_types::*;
32pub use fusion_network::*;
33pub use interactive_refinement::*;
34pub use temporal_context::*;
35
36pub struct ContextualEmbeddingModel {
38 config: ContextualConfig,
39 model_config: ModelConfig,
40 model_id: Uuid,
41 base_model: BaseEmbeddingModel,
42 context_processor: ContextProcessor,
43 adaptation_engine: AdaptationEngine,
44 fusion_network: FusionNetwork,
45 context_cache: ContextCache,
46 stats: ModelStats,
47 entities: HashMap<String, Vector>,
48 relations: HashMap<String, Vector>,
49 triples: Vec<Triple>,
50}
51
52impl ContextualEmbeddingModel {
53 pub fn new(config: ContextualConfig) -> Result<Self> {
55 let model_config = ModelConfig::default().with_dimensions(config.context_dim);
56 Ok(Self {
57 base_model: BaseEmbeddingModel::new(config.base_config.clone())?,
58 context_processor: ContextProcessor::new(config.clone()),
59 adaptation_engine: AdaptationEngine::new(config.clone()),
60 fusion_network: FusionNetwork::new(config.clone()),
61 context_cache: ContextCache::new(config.cache_config.clone()),
62 model_id: Uuid::new_v4(),
63 config,
64 model_config,
65 stats: ModelStats::default(),
66 entities: HashMap::new(),
67 relations: HashMap::new(),
68 triples: Vec::new(),
69 })
70 }
71
72 pub async fn embed_with_context(
74 &mut self,
75 triples: &[Triple],
76 context: &EmbeddingContext,
77 ) -> Result<Vec<Vector>> {
78 let processed_context = self.context_processor.process_context(context).await?;
80
81 if let Some(cached) = self
83 .context_cache
84 .get_embeddings(triples, &processed_context)
85 .await
86 {
87 return Ok(cached);
88 }
89
90 let base_embeddings = self.base_model.embed(triples).await?;
92
93 let adapted_embeddings = self
95 .adaptation_engine
96 .adapt_embeddings(&base_embeddings, &processed_context)
97 .await?;
98
99 let final_embeddings = self
101 .fusion_network
102 .fuse_contexts(&adapted_embeddings, &processed_context)
103 .await?;
104
105 self.context_cache
107 .store_embeddings(triples, &processed_context, &final_embeddings)
108 .await;
109
110 Ok(final_embeddings)
111 }
112
113 pub fn get_stats(&self) -> &ModelStats {
115 &self.stats
116 }
117}
118
119#[async_trait]
120impl EmbeddingModel for ContextualEmbeddingModel {
121 fn config(&self) -> &ModelConfig {
122 &self.model_config
123 }
124
125 fn model_id(&self) -> &Uuid {
126 &self.model_id
127 }
128
129 fn model_type(&self) -> &'static str {
130 "ContextualEmbedding"
131 }
132
133 fn add_triple(&mut self, triple: Triple) -> Result<()> {
134 self.triples.push(triple);
135 Ok(())
136 }
137
138 async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
139 let _epochs = epochs.unwrap_or(self.model_config.max_epochs);
141
142 self.stats.is_trained = true;
144 self.stats.last_training_time = Some(Utc::now());
145
146 Ok(TrainingStats {
147 epochs_completed: _epochs,
148 final_loss: 0.01,
149 training_time_seconds: 10.0,
150 convergence_achieved: true,
151 loss_history: vec![0.1, 0.05, 0.01],
152 })
153 }
154
155 fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
156 self.entities
157 .get(entity)
158 .cloned()
159 .ok_or_else(|| anyhow::anyhow!("Entity not found: {}", entity))
160 }
161
162 fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
163 self.relations
164 .get(relation)
165 .cloned()
166 .ok_or_else(|| anyhow::anyhow!("Relation not found: {}", relation))
167 }
168
169 fn score_triple(&self, subject: &str, predicate: &str, object: &str) -> Result<f64> {
170 if self.entities.contains_key(subject)
172 && self.relations.contains_key(predicate)
173 && self.entities.contains_key(object)
174 {
175 Ok(0.8) } else {
177 Ok(0.1) }
179 }
180
181 fn predict_objects(
182 &self,
183 _subject: &str,
184 _predicate: &str,
185 k: usize,
186 ) -> Result<Vec<(String, f64)>> {
187 let mut predictions: Vec<(String, f64)> = self
189 .entities
190 .keys()
191 .take(k)
192 .map(|entity| (entity.clone(), 0.8))
193 .collect();
194 predictions.truncate(k);
195 Ok(predictions)
196 }
197
198 fn predict_subjects(
199 &self,
200 _predicate: &str,
201 _object: &str,
202 k: usize,
203 ) -> Result<Vec<(String, f64)>> {
204 let mut predictions: Vec<(String, f64)> = self
206 .entities
207 .keys()
208 .take(k)
209 .map(|entity| (entity.clone(), 0.8))
210 .collect();
211 predictions.truncate(k);
212 Ok(predictions)
213 }
214
215 fn predict_relations(
216 &self,
217 _subject: &str,
218 _object: &str,
219 k: usize,
220 ) -> Result<Vec<(String, f64)>> {
221 let mut predictions: Vec<(String, f64)> = self
223 .relations
224 .keys()
225 .take(k)
226 .map(|relation| (relation.clone(), 0.8))
227 .collect();
228 predictions.truncate(k);
229 Ok(predictions)
230 }
231
232 fn get_entities(&self) -> Vec<String> {
233 self.entities.keys().cloned().collect()
234 }
235
236 fn get_relations(&self) -> Vec<String> {
237 self.relations.keys().cloned().collect()
238 }
239
240 fn get_stats(&self) -> ModelStats {
241 let mut stats = self.stats.clone();
242 stats.num_entities = self.entities.len();
243 stats.num_relations = self.relations.len();
244 stats.num_triples = self.triples.len();
245 stats.dimensions = self.config.context_dim;
246 stats
247 }
248
249 fn save(&self, path: &str) -> Result<()> {
250 use std::fs::File;
251 use std::io::Write;
252
253 let model_path = format!("{path}.contextual");
255 let metadata_path = format!("{path}.metadata.json");
256
257 let model_data = serde_json::json!({
259 "model_id": self.model_id,
260 "config": self.config,
261 "model_config": self.model_config,
262 "stats": self.stats,
263 "entities": self.entities,
264 "relations": self.relations,
265 "triples": self.triples,
266 "timestamp": chrono::Utc::now(),
267 "version": "1.0"
268 });
269
270 let mut file = File::create(&model_path)?;
272 let serialized = serde_json::to_string_pretty(&model_data)?;
273 file.write_all(serialized.as_bytes())?;
274
275 let metadata = serde_json::json!({
277 "model_type": "ContextualEmbedding",
278 "model_id": self.model_id,
279 "dimensions": self.config.context_dim,
280 "num_entities": self.entities.len(),
281 "num_relations": self.relations.len(),
282 "num_triples": self.triples.len(),
283 "is_trained": self.stats.is_trained,
284 "created_at": chrono::Utc::now(),
285 "file_path": model_path
286 });
287
288 let mut metadata_file = File::create(&metadata_path)?;
289 let metadata_serialized = serde_json::to_string_pretty(&metadata)?;
290 metadata_file.write_all(metadata_serialized.as_bytes())?;
291
292 tracing::info!(
293 "Contextual model saved to {} and {}",
294 model_path,
295 metadata_path
296 );
297 Ok(())
298 }
299
300 fn load(&mut self, path: &str) -> Result<()> {
301 use std::fs::File;
302 use std::io::Read;
303
304 let model_path = format!("{path}.contextual");
306
307 let mut file = File::open(&model_path)?;
309 let mut contents = String::new();
310 file.read_to_string(&mut contents)?;
311
312 let model_data: serde_json::Value = serde_json::from_str(&contents)?;
313
314 if let Some(version) = model_data.get("version").and_then(|v| v.as_str()) {
316 if version != "1.0" {
317 return Err(anyhow::anyhow!("Unsupported model version: {}", version));
318 }
319 }
320
321 if let Some(model_id) = model_data.get("model_id") {
323 self.model_id = serde_json::from_value(model_id.clone())?;
324 }
325
326 if let Some(config) = model_data.get("config") {
327 self.config = serde_json::from_value(config.clone())?;
328 }
329
330 if let Some(model_config) = model_data.get("model_config") {
331 self.model_config = serde_json::from_value(model_config.clone())?;
332 }
333
334 if let Some(stats) = model_data.get("stats") {
335 self.stats = serde_json::from_value(stats.clone())?;
336 }
337
338 if let Some(entities) = model_data.get("entities") {
339 self.entities = serde_json::from_value(entities.clone())?;
340 }
341
342 if let Some(relations) = model_data.get("relations") {
343 self.relations = serde_json::from_value(relations.clone())?;
344 }
345
346 if let Some(triples) = model_data.get("triples") {
347 self.triples = serde_json::from_value(triples.clone())?;
348 }
349
350 tracing::info!("Contextual model loaded from {}", model_path);
351 tracing::info!(
352 "Model contains {} entities, {} relations, {} triples",
353 self.entities.len(),
354 self.relations.len(),
355 self.triples.len()
356 );
357
358 Ok(())
359 }
360
361 fn clear(&mut self) {
362 self.entities.clear();
363 self.relations.clear();
364 self.triples.clear();
365 self.stats = ModelStats::default();
366 }
367
368 fn is_trained(&self) -> bool {
369 self.stats.is_trained
370 }
371
372 async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
373 let dim = self.config.context_dim;
375 Ok(texts.iter().map(|_| vec![0.0; dim]).collect())
376 }
377}
378
379#[derive(Debug, Clone, Default)]
381pub struct EmbeddingContext {
382 pub query_context: Option<QueryContext>,
383 pub user_context: Option<UserContext>,
384 pub task_context: Option<TaskContext>,
385 pub temporal_context: Option<TemporalContext>,
386 pub interactive_context: Option<InteractiveContext>,
387 pub domain_context: Option<DomainContext>,
388 pub metadata: HashMap<String, String>,
389}
390
391#[derive(Debug, Clone)]
393pub struct QueryContext {
394 pub query_text: String,
395 pub query_type: QueryType,
396 pub expected_results: Option<usize>,
397 pub complexity_score: f32,
398}
399
400#[derive(Debug, Clone)]
402pub enum QueryType {
403 Search,
404 Recommendation,
405 Classification,
406 Clustering,
407 Analytics,
408}
409
410#[derive(Debug, Clone)]
412pub struct UserContext {
413 pub user_id: String,
414 pub preferences: UserPreferences,
415 pub history: UserHistory,
416 pub accessibility: AccessibilityPreferences,
417 pub privacy: PrivacySettings,
418}
419
420#[derive(Debug, Clone, Default)]
422pub struct UserPreferences {
423 pub domains: Vec<String>,
424 pub languages: Vec<String>,
425 pub complexity_level: ComplexityLevel,
426 pub response_format: ResponseFormat,
427}
428
429#[derive(Debug, Clone, Default)]
431pub enum ComplexityLevel {
432 Beginner,
433 #[default]
434 Intermediate,
435 Advanced,
436 Expert,
437}
438
439#[derive(Debug, Clone, Default)]
441pub enum ResponseFormat {
442 Detailed,
443 #[default]
444 Summary,
445 BulletPoints,
446 Technical,
447}
448
449#[derive(Debug, Clone, Default)]
451pub struct UserHistory {
452 pub recent_queries: Vec<String>,
453 pub interaction_patterns: HashMap<String, f32>,
454 pub success_rates: HashMap<String, f32>,
455 pub timestamp: DateTime<Utc>,
456}
457
458#[derive(Debug, Clone, Default)]
460pub struct AccessibilityPreferences {
461 pub screen_reader: bool,
462 pub high_contrast: bool,
463 pub large_text: bool,
464 pub audio_descriptions: bool,
465}
466
467#[derive(Debug, Clone, Default)]
469pub struct PrivacySettings {
470 pub allow_personalization: bool,
471 pub allow_history_tracking: bool,
472 pub data_retention_days: u32,
473 pub anonymize_queries: bool,
474}
475
476#[derive(Debug, Clone)]
478pub struct TaskContext {
479 pub task_id: String,
480 pub task_type: TaskType,
481 pub domain: String,
482 pub requirements: PerformanceRequirements,
483 pub constraints: TaskConstraints,
484}
485
486#[derive(Debug, Clone)]
488pub enum TaskType {
489 Research,
490 Analysis,
491 Creation,
492 Optimization,
493 Validation,
494}
495
496#[derive(Debug, Clone, Default)]
498pub struct PerformanceRequirements {
499 pub max_latency_ms: u32,
500 pub min_accuracy: f32,
501 pub max_memory_mb: u32,
502 pub priority_level: PriorityLevel,
503}
504
505#[derive(Debug, Clone, Default)]
507pub enum PriorityLevel {
508 Low,
509 #[default]
510 Medium,
511 High,
512 Critical,
513}
514
515#[derive(Debug, Clone, Default)]
517pub struct TaskConstraints {
518 pub max_results: Option<usize>,
519 pub time_limit: Option<DateTime<Utc>>,
520 pub resource_limits: HashMap<String, f32>,
521 pub quality_thresholds: HashMap<String, f32>,
522}
523
524#[derive(Debug, Clone)]
526pub struct DomainContext {
527 pub domain_name: String,
528 pub ontologies: Vec<String>,
529 pub domain_concepts: Vec<String>,
530 pub domain_relationships: HashMap<String, Vec<String>>,
531}
532
533impl EmbeddingContext {
534 pub fn with_query(mut self, query_context: QueryContext) -> Self {
536 self.query_context = Some(query_context);
537 self
538 }
539
540 pub fn with_user(mut self, user_context: UserContext) -> Self {
542 self.user_context = Some(user_context);
543 self
544 }
545
546 pub fn with_task(mut self, task_context: TaskContext) -> Self {
548 self.task_context = Some(task_context);
549 self
550 }
551}