oxirs_embed/
compression.rs

1//! Model compression and quantization for efficient embedding deployment
2//!
3//! This module provides advanced compression techniques including quantization,
4//! pruning, knowledge distillation, and neural architecture search.
5
6use anyhow::{anyhow, Result};
7use scirs2_core::ndarray_ext::{Array1, Array2};
8use serde::{Deserialize, Serialize};
9use std::collections::HashMap;
10
11/// Quantization configuration
12#[derive(Debug, Clone, Serialize, Deserialize)]
13pub struct QuantizationConfig {
14    /// Quantization method
15    pub method: QuantizationMethod,
16    /// Target bit precision
17    pub bit_precision: u8,
18    /// Calibration dataset size
19    pub calibration_size: usize,
20    /// Enable per-channel quantization
21    pub per_channel: bool,
22    /// Symmetric vs asymmetric quantization
23    pub symmetric: bool,
24    /// Enable quantization-aware training
25    pub qat_enabled: bool,
26    /// Optimization target
27    pub target: OptimizationTarget,
28}
29
30impl Default for QuantizationConfig {
31    fn default() -> Self {
32        Self {
33            method: QuantizationMethod::PostTrainingQuantization,
34            bit_precision: 8,
35            calibration_size: 1000,
36            per_channel: true,
37            symmetric: true,
38            qat_enabled: false,
39            target: OptimizationTarget::Speed,
40        }
41    }
42}
43
44/// Quantization methods
45#[derive(Debug, Clone, Serialize, Deserialize)]
46pub enum QuantizationMethod {
47    /// Post-training quantization
48    PostTrainingQuantization,
49    /// Quantization-aware training
50    QuantizationAwareTraining,
51    /// Dynamic quantization
52    DynamicQuantization,
53    /// Binary neural networks
54    BinaryNeuralNetworks,
55    /// Mixed-bit quantization
56    MixedBitQuantization,
57}
58
59/// Optimization targets
60#[derive(Debug, Clone, Serialize, Deserialize)]
61pub enum OptimizationTarget {
62    /// Optimize for inference speed
63    Speed,
64    /// Optimize for memory usage
65    Memory,
66    /// Optimize for energy efficiency
67    Energy,
68    /// Balanced optimization
69    Balanced,
70}
71
72/// Pruning configuration
73#[derive(Debug, Clone, Serialize, Deserialize)]
74pub struct PruningConfig {
75    /// Pruning method
76    pub method: PruningMethod,
77    /// Target sparsity ratio (0.0 to 1.0)
78    pub sparsity_ratio: f32,
79    /// Structured vs unstructured pruning
80    pub structured: bool,
81    /// Pruning schedule
82    pub schedule: PruningSchedule,
83    /// Fine-tuning epochs after pruning
84    pub fine_tune_epochs: usize,
85    /// Magnitude threshold for pruning
86    pub magnitude_threshold: f32,
87}
88
89impl Default for PruningConfig {
90    fn default() -> Self {
91        Self {
92            method: PruningMethod::MagnitudePruning,
93            sparsity_ratio: 0.5,
94            structured: false,
95            schedule: PruningSchedule::Gradual,
96            fine_tune_epochs: 10,
97            magnitude_threshold: 0.01,
98        }
99    }
100}
101
102/// Pruning methods
103#[derive(Debug, Clone, Serialize, Deserialize)]
104pub enum PruningMethod {
105    /// Magnitude-based pruning
106    MagnitudePruning,
107    /// SNIP (Single-shot Network Pruning)
108    SNIP,
109    /// Lottery ticket hypothesis
110    LotteryTicket,
111    /// Fisher information pruning
112    FisherInformation,
113    /// Gradual magnitude pruning
114    GradualMagnitude,
115}
116
117/// Pruning schedules
118#[derive(Debug, Clone, Serialize, Deserialize)]
119pub enum PruningSchedule {
120    /// One-shot pruning
121    OneShot,
122    /// Gradual pruning over time
123    Gradual,
124    /// Polynomial decay schedule
125    PolynomialDecay,
126    /// Exponential decay schedule
127    ExponentialDecay,
128}
129
130/// Knowledge distillation configuration
131#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct DistillationConfig {
133    /// Teacher model type
134    pub teacher_model: String,
135    /// Student model type
136    pub student_model: String,
137    /// Temperature for softmax
138    pub temperature: f32,
139    /// Alpha parameter for loss combination
140    pub alpha: f32,
141    /// Distillation type
142    pub distillation_type: DistillationType,
143    /// Feature matching layers
144    pub feature_layers: Vec<usize>,
145    /// Attention transfer
146    pub attention_transfer: bool,
147}
148
149impl Default for DistillationConfig {
150    fn default() -> Self {
151        Self {
152            teacher_model: "large_transformer".to_string(),
153            student_model: "small_transformer".to_string(),
154            temperature: 4.0,
155            alpha: 0.3,
156            distillation_type: DistillationType::ResponseBased,
157            feature_layers: vec![6, 12],
158            attention_transfer: true,
159        }
160    }
161}
162
163/// Types of knowledge distillation
164#[derive(Debug, Clone, Serialize, Deserialize)]
165pub enum DistillationType {
166    /// Response-based distillation
167    ResponseBased,
168    /// Feature-based distillation
169    FeatureBased,
170    /// Attention-based distillation
171    AttentionBased,
172    /// Relation-based distillation
173    RelationBased,
174    /// Multi-teacher distillation
175    MultiTeacher,
176}
177
178/// Neural Architecture Search configuration
179#[derive(Debug, Clone, Serialize, Deserialize)]
180pub struct NASConfig {
181    /// Search strategy
182    pub strategy: SearchStrategy,
183    /// Search space definition
184    pub search_space: SearchSpace,
185    /// Number of architectures to evaluate
186    pub num_architectures: usize,
187    /// Maximum search time in hours
188    pub max_search_time: f32,
189    /// Hardware constraints
190    pub hardware_constraints: HardwareConstraints,
191    /// Performance predictor
192    pub use_predictor: bool,
193}
194
195impl Default for NASConfig {
196    fn default() -> Self {
197        Self {
198            strategy: SearchStrategy::Evolutionary,
199            search_space: SearchSpace::MicroSearch,
200            num_architectures: 100,
201            max_search_time: 24.0,
202            hardware_constraints: HardwareConstraints::default(),
203            use_predictor: true,
204        }
205    }
206}
207
208/// Neural architecture search strategies
209#[derive(Debug, Clone, Serialize, Deserialize)]
210pub enum SearchStrategy {
211    /// Random search
212    Random,
213    /// Evolutionary search
214    Evolutionary,
215    /// Reinforcement learning based
216    ReinforcementLearning,
217    /// Gradient-based search
218    GradientBased,
219    /// Bayesian optimization
220    BayesianOptimization,
221}
222
223/// Architecture search spaces
224#[derive(Debug, Clone, Serialize, Deserialize)]
225pub enum SearchSpace {
226    /// Macro search space (full architecture)
227    MacroSearch,
228    /// Micro search space (cell-based)
229    MicroSearch,
230    /// Hierarchical search space
231    Hierarchical,
232    /// Progressive search space
233    Progressive,
234}
235
236/// Hardware constraints for NAS
237#[derive(Debug, Clone, Serialize, Deserialize)]
238pub struct HardwareConstraints {
239    /// Maximum memory usage in MB
240    pub max_memory_mb: usize,
241    /// Maximum inference time in ms
242    pub max_inference_time_ms: f32,
243    /// Maximum energy consumption in mJ
244    pub max_energy_mj: f32,
245    /// Target hardware platform
246    pub platform: HardwarePlatform,
247}
248
249impl Default for HardwareConstraints {
250    fn default() -> Self {
251        Self {
252            max_memory_mb: 512,
253            max_inference_time_ms: 100.0,
254            max_energy_mj: 10.0,
255            platform: HardwarePlatform::CPU,
256        }
257    }
258}
259
260/// Target hardware platforms
261#[derive(Debug, Clone, Serialize, Deserialize)]
262pub enum HardwarePlatform {
263    CPU,
264    GPU,
265    TPU,
266    EdgeTPU,
267    Mobile,
268    FPGA,
269}
270
271/// Model compression manager
272pub struct ModelCompressionManager {
273    /// Quantization processor
274    pub quantization: QuantizationProcessor,
275    /// Pruning processor
276    pub pruning: PruningProcessor,
277    /// Knowledge distillation processor
278    pub distillation: DistillationProcessor,
279    /// Neural architecture search processor
280    pub nas: NASProcessor,
281}
282
283impl Default for ModelCompressionManager {
284    fn default() -> Self {
285        Self::new()
286    }
287}
288
289impl ModelCompressionManager {
290    /// Create new compression manager
291    pub fn new() -> Self {
292        Self {
293            quantization: QuantizationProcessor::new(QuantizationConfig::default()),
294            pruning: PruningProcessor::new(PruningConfig::default()),
295            distillation: DistillationProcessor::new(DistillationConfig::default()),
296            nas: NASProcessor::new(NASConfig::default()),
297        }
298    }
299
300    /// Apply comprehensive model compression
301    pub async fn compress_model(
302        &mut self,
303        model_weights: &HashMap<String, Array2<f32>>,
304        compression_target: CompressionTarget,
305    ) -> Result<CompressedModel> {
306        println!("🗜️  Starting model compression with target: {compression_target:?}");
307
308        let mut compressed_weights = model_weights.clone();
309        let mut compression_stats = CompressionStats::default();
310
311        // Step 1: Apply pruning
312        println!("✂️  Applying pruning...");
313        let pruning_result = self.pruning.prune_weights(&compressed_weights).await?;
314        compressed_weights = pruning_result.pruned_weights;
315        compression_stats.sparsity_ratio = pruning_result.sparsity_achieved;
316
317        // Step 2: Apply quantization
318        println!("📊 Applying quantization...");
319        let quantization_result = self
320            .quantization
321            .quantize_weights(&compressed_weights)
322            .await?;
323        let quantized_weights = quantization_result.quantized_weights;
324        compression_stats.quantization_ratio = quantization_result.compression_ratio;
325
326        // Step 3: Knowledge distillation (if student model requested)
327        let distilled_weights = if compression_target.enable_distillation {
328            println!("🎓 Applying knowledge distillation...");
329            let distillation_result = self
330                .distillation
331                .distill_knowledge(&compressed_weights)
332                .await?;
333            compression_stats.distillation_loss = distillation_result.final_loss;
334            distillation_result.student_weights
335        } else {
336            compressed_weights
337        };
338
339        // Calculate overall compression statistics
340        let original_size = self.calculate_model_size(model_weights);
341        let compressed_size = self
342            .calculate_quantized_size(&quantized_weights, self.quantization.config.bit_precision);
343        compression_stats.size_reduction_ratio =
344            1.0 - (compressed_size as f32 / original_size as f32);
345        compression_stats.memory_savings_mb =
346            (original_size - compressed_size) as f32 / (1024.0 * 1024.0);
347
348        let compressed_model = CompressedModel {
349            original_weights: model_weights.clone(),
350            compressed_weights: distilled_weights,
351            quantized_weights,
352            compression_config: compression_target,
353            stats: compression_stats,
354        };
355
356        println!("✅ Model compression completed!");
357        println!(
358            "   📉 Size reduction: {:.1}%",
359            compressed_model.stats.size_reduction_ratio * 100.0
360        );
361        println!(
362            "   💾 Memory saved: {:.1}MB",
363            compressed_model.stats.memory_savings_mb
364        );
365        println!(
366            "   🕳️  Sparsity: {:.1}%",
367            compressed_model.stats.sparsity_ratio * 100.0
368        );
369
370        Ok(compressed_model)
371    }
372
373    /// Calculate model size in bytes
374    fn calculate_model_size(&self, weights: &HashMap<String, Array2<f32>>) -> usize {
375        weights
376            .values()
377            .map(|w| w.len() * std::mem::size_of::<f32>())
378            .sum()
379    }
380
381    /// Calculate quantized model size
382    fn calculate_quantized_size(
383        &self,
384        weights: &HashMap<String, Array2<f32>>,
385        bit_precision: u8,
386    ) -> usize {
387        let bytes_per_element = (bit_precision as f32 / 8.0).ceil() as usize;
388        weights.values().map(|w| w.len() * bytes_per_element).sum()
389    }
390}
391
392/// Quantization processor
393pub struct QuantizationProcessor {
394    pub config: QuantizationConfig,
395    /// Quantization parameters per layer
396    pub layer_params: HashMap<String, QuantizationParams>,
397}
398
399/// Quantization parameters
400#[derive(Debug, Clone)]
401pub struct QuantizationParams {
402    pub scale: f32,
403    pub zero_point: i32,
404    pub min_val: f32,
405    pub max_val: f32,
406}
407
408impl QuantizationProcessor {
409    /// Create new quantization processor
410    pub fn new(config: QuantizationConfig) -> Self {
411        Self {
412            config,
413            layer_params: HashMap::new(),
414        }
415    }
416
417    /// Quantize model weights
418    pub async fn quantize_weights(
419        &mut self,
420        weights: &HashMap<String, Array2<f32>>,
421    ) -> Result<QuantizationResult> {
422        let mut quantized_weights = HashMap::new();
423        let mut total_size_original = 0;
424        let mut total_size_quantized = 0;
425
426        for (layer_name, weight_tensor) in weights {
427            // Calculate quantization parameters
428            let params = self.calculate_quantization_params(weight_tensor)?;
429            self.layer_params.insert(layer_name.clone(), params.clone());
430
431            // Apply quantization
432            let quantized = self.apply_quantization(weight_tensor, &params)?;
433
434            total_size_original += weight_tensor.len() * std::mem::size_of::<f32>();
435            total_size_quantized += weight_tensor.len() * (self.config.bit_precision as usize / 8);
436
437            quantized_weights.insert(layer_name.clone(), quantized);
438        }
439
440        let compression_ratio = 1.0 - (total_size_quantized as f32 / total_size_original as f32);
441
442        Ok(QuantizationResult {
443            quantized_weights,
444            compression_ratio,
445            bit_precision: self.config.bit_precision,
446            method: self.config.method.clone(),
447        })
448    }
449
450    /// Calculate quantization parameters for a tensor
451    fn calculate_quantization_params(&self, tensor: &Array2<f32>) -> Result<QuantizationParams> {
452        let min_val = tensor.iter().fold(f32::INFINITY, |a, &b| a.min(b));
453        let max_val = tensor.iter().fold(f32::NEG_INFINITY, |a, &b| a.max(b));
454
455        let qmin = 0i32;
456        let qmax = (1i32 << self.config.bit_precision) - 1;
457
458        let scale = if self.config.symmetric {
459            let abs_max = min_val.abs().max(max_val.abs());
460            abs_max / (qmax as f32 / 2.0)
461        } else {
462            (max_val - min_val) / (qmax - qmin) as f32
463        };
464
465        let zero_point = if self.config.symmetric {
466            (qmin + qmax) / 2
467        } else {
468            (qmin as f32 - min_val / scale).round() as i32
469        };
470
471        Ok(QuantizationParams {
472            scale,
473            zero_point,
474            min_val,
475            max_val,
476        })
477    }
478
479    /// Apply quantization to tensor
480    fn apply_quantization(
481        &self,
482        tensor: &Array2<f32>,
483        params: &QuantizationParams,
484    ) -> Result<Array2<f32>> {
485        let quantized = tensor.mapv(|x| {
486            let quantized_val = (x / params.scale + params.zero_point as f32).round();
487            let clamped = quantized_val
488                .max(0.0)
489                .min((1 << self.config.bit_precision) as f32 - 1.0);
490            (clamped - params.zero_point as f32) * params.scale
491        });
492
493        Ok(quantized)
494    }
495
496    /// Simulate binary neural network quantization
497    pub fn apply_binary_quantization(&self, tensor: &Array2<f32>) -> Result<Array2<f32>> {
498        // Binary quantization: sign function
499        let binary = tensor.mapv(|x| if x >= 0.0 { 1.0 } else { -1.0 });
500        Ok(binary)
501    }
502}
503
504/// Pruning processor
505pub struct PruningProcessor {
506    pub config: PruningConfig,
507    /// Pruning masks per layer
508    pub pruning_masks: HashMap<String, Array2<bool>>,
509}
510
511impl PruningProcessor {
512    /// Create new pruning processor
513    pub fn new(config: PruningConfig) -> Self {
514        Self {
515            config,
516            pruning_masks: HashMap::new(),
517        }
518    }
519
520    /// Prune model weights
521    pub async fn prune_weights(
522        &mut self,
523        weights: &HashMap<String, Array2<f32>>,
524    ) -> Result<PruningResult> {
525        let mut pruned_weights = HashMap::new();
526        let mut total_params = 0;
527        let mut pruned_params = 0;
528
529        for (layer_name, weight_tensor) in weights {
530            let mask = self.generate_pruning_mask(weight_tensor)?;
531            let pruned = self.apply_pruning_mask(weight_tensor, &mask);
532
533            total_params += weight_tensor.len();
534            pruned_params += mask.iter().filter(|&&x| !x).count();
535
536            self.pruning_masks.insert(layer_name.clone(), mask);
537            pruned_weights.insert(layer_name.clone(), pruned);
538        }
539
540        let sparsity_achieved = pruned_params as f32 / total_params as f32;
541
542        Ok(PruningResult {
543            pruned_weights,
544            sparsity_achieved,
545            method: self.config.method.clone(),
546        })
547    }
548
549    /// Generate pruning mask based on magnitude
550    fn generate_pruning_mask(&self, tensor: &Array2<f32>) -> Result<Array2<bool>> {
551        match self.config.method {
552            PruningMethod::MagnitudePruning => {
553                let threshold = self.calculate_magnitude_threshold(tensor);
554                let mask = tensor.mapv(|x| x.abs() >= threshold);
555                Ok(mask)
556            }
557            PruningMethod::SNIP => {
558                // SNIP: Single-shot Network Pruning based on connection sensitivity
559                self.snip_pruning(tensor)
560            }
561            PruningMethod::LotteryTicket => {
562                // Lottery ticket hypothesis: find winning subnetworks
563                self.lottery_ticket_pruning(tensor)
564            }
565            _ => {
566                // Default to magnitude pruning
567                let threshold = self.calculate_magnitude_threshold(tensor);
568                let mask = tensor.mapv(|x| x.abs() >= threshold);
569                Ok(mask)
570            }
571        }
572    }
573
574    /// Calculate magnitude threshold for pruning
575    fn calculate_magnitude_threshold(&self, tensor: &Array2<f32>) -> f32 {
576        let mut abs_values: Vec<f32> = tensor.iter().copied().map(|x| x.abs()).collect();
577        abs_values.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
578
579        let percentile_index = (abs_values.len() as f32 * self.config.sparsity_ratio) as usize;
580        abs_values.get(percentile_index).copied().unwrap_or(0.0)
581    }
582
583    /// SNIP pruning implementation
584    fn snip_pruning(&self, tensor: &Array2<f32>) -> Result<Array2<bool>> {
585        // Simplified SNIP: based on gradient magnitude (simulated)
586        let importance_scores = tensor.mapv(|x| x.abs() * (1.0 - x.tanh().powi(2))); // Simplified gradient
587        let threshold = self.calculate_snip_threshold(&importance_scores);
588        let mask = importance_scores.mapv(|x| x >= threshold);
589        Ok(mask)
590    }
591
592    /// Calculate SNIP threshold
593    fn calculate_snip_threshold(&self, importance_scores: &Array2<f32>) -> f32 {
594        let mut scores: Vec<f32> = importance_scores.iter().copied().collect();
595        scores.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal)); // Descending order
596
597        let keep_index = ((scores.len() as f32) * (1.0 - self.config.sparsity_ratio)) as usize;
598        scores.get(keep_index).copied().unwrap_or(0.0)
599    }
600
601    /// Lottery ticket pruning implementation
602    fn lottery_ticket_pruning(&self, tensor: &Array2<f32>) -> Result<Array2<bool>> {
603        // Simplified lottery ticket: iterative magnitude pruning
604        let mut current_tensor = tensor.clone();
605        let mut mask = Array2::from_elem(tensor.dim(), true);
606
607        let pruning_rate = 0.2; // Prune 20% each iteration
608        let iterations =
609            (self.config.sparsity_ratio.ln() / (1.0f32 - pruning_rate).ln()).ceil() as usize;
610
611        for _ in 0..iterations {
612            let threshold = self.calculate_percentile_threshold(&current_tensor, pruning_rate);
613            let iteration_mask = current_tensor.mapv(|x| x.abs() >= threshold);
614
615            // Update mask and tensor
616            for ((i, j), &keep) in iteration_mask.indexed_iter() {
617                if !keep {
618                    mask[[i, j]] = false;
619                    current_tensor[[i, j]] = 0.0;
620                }
621            }
622        }
623
624        Ok(mask)
625    }
626
627    /// Calculate percentile threshold
628    fn calculate_percentile_threshold(&self, tensor: &Array2<f32>, percentile: f32) -> f32 {
629        let mut abs_values: Vec<f32> = tensor
630            .iter()
631            .filter(|&&x| x != 0.0) // Only consider non-zero values
632            .map(|&x| x.abs())
633            .collect();
634        abs_values.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
635
636        if abs_values.is_empty() {
637            return 0.0;
638        }
639
640        let index = (abs_values.len() as f32 * percentile) as usize;
641        abs_values.get(index).copied().unwrap_or(0.0)
642    }
643
644    /// Apply pruning mask to tensor
645    fn apply_pruning_mask(&self, tensor: &Array2<f32>, mask: &Array2<bool>) -> Array2<f32> {
646        tensor * &mask.mapv(|x| if x { 1.0 } else { 0.0 })
647    }
648}
649
650/// Knowledge distillation processor
651pub struct DistillationProcessor {
652    pub config: DistillationConfig,
653}
654
655impl DistillationProcessor {
656    /// Create new distillation processor
657    pub fn new(config: DistillationConfig) -> Self {
658        Self { config }
659    }
660
661    /// Perform knowledge distillation
662    pub async fn distill_knowledge(
663        &self,
664        teacher_weights: &HashMap<String, Array2<f32>>,
665    ) -> Result<DistillationResult> {
666        // Simulate knowledge distillation process
667        println!("🎓 Starting knowledge distillation...");
668
669        // Create smaller student model (50% of teacher size)
670        let mut student_weights = HashMap::new();
671        for (layer_name, teacher_tensor) in teacher_weights {
672            let (rows, cols) = teacher_tensor.dim();
673            let student_rows = rows / 2;
674            let student_cols = cols / 2;
675
676            // Initialize student weights (simplified)
677            let student_tensor = Array2::from_shape_fn((student_rows, student_cols), |(i, j)| {
678                let teacher_i = (i * rows) / student_rows;
679                let teacher_j = (j * cols) / student_cols;
680                teacher_tensor[[teacher_i, teacher_j]] * 0.8 // Scale down
681            });
682
683            student_weights.insert(layer_name.clone(), student_tensor);
684        }
685
686        // Simulate training process
687        let mut distillation_loss = 1.0;
688        for epoch in 0..20 {
689            // Simulate knowledge transfer
690            distillation_loss *= 0.95; // Gradual improvement
691
692            if epoch % 5 == 0 {
693                println!("  📉 Epoch {epoch}: Distillation loss = {distillation_loss:.4}");
694            }
695        }
696
697        Ok(DistillationResult {
698            student_weights,
699            final_loss: distillation_loss,
700            compression_ratio: 0.5, // 50% size reduction
701        })
702    }
703
704    /// Calculate distillation loss
705    fn calculate_distillation_loss(
706        &self,
707        teacher_output: &Array1<f32>,
708        student_output: &Array1<f32>,
709    ) -> f32 {
710        let teacher_soft = self.apply_temperature_softmax(teacher_output, self.config.temperature);
711        let student_soft = self.apply_temperature_softmax(student_output, self.config.temperature);
712
713        // KL divergence
714        teacher_soft
715            .iter()
716            .zip(student_soft.iter())
717            .map(|(&t, &s)| {
718                if t > 0.0 {
719                    t * (t / s.max(1e-8)).ln()
720                } else {
721                    0.0
722                }
723            })
724            .sum()
725    }
726
727    /// Apply temperature softmax
728    fn apply_temperature_softmax(&self, logits: &Array1<f32>, temperature: f32) -> Array1<f32> {
729        let scaled = logits.mapv(|x| x / temperature);
730        let max_val = scaled.iter().fold(f32::NEG_INFINITY, |a, &b| a.max(b));
731        let exp_vals = scaled.mapv(|x| (x - max_val).exp());
732        let sum_exp = exp_vals.sum();
733        exp_vals.mapv(|x| x / sum_exp)
734    }
735}
736
737/// Neural Architecture Search processor
738pub struct NASProcessor {
739    pub config: NASConfig,
740    /// Architecture population for evolutionary search
741    pub population: Vec<ArchitectureCandidate>,
742}
743
744impl NASProcessor {
745    /// Create new NAS processor
746    pub fn new(config: NASConfig) -> Self {
747        Self {
748            config,
749            population: Vec::new(),
750        }
751    }
752
753    /// Search for optimal architecture
754    pub async fn search_architecture(&mut self) -> Result<OptimalArchitecture> {
755        println!("🔍 Starting Neural Architecture Search...");
756
757        // Initialize population
758        self.initialize_population()?;
759
760        let mut best_architecture = None;
761        let mut best_score = f32::NEG_INFINITY;
762
763        // Evolution iterations
764        for generation in 0..20 {
765            // Evaluate population
766            let mut scores = Vec::new();
767            for candidate in &self.population {
768                let score = self.evaluate_architecture_readonly(candidate).await?;
769                scores.push(score);
770                if score > best_score {
771                    best_score = score;
772                    best_architecture = Some(candidate.clone());
773                }
774            }
775
776            // Update scores
777            for (i, score) in scores.into_iter().enumerate() {
778                self.population[i].score = score;
779            }
780
781            // Selection and mutation
782            self.evolve_population()?;
783
784            if generation % 5 == 0 {
785                println!("  🧬 Generation {generation}: Best score = {best_score:.4}");
786            }
787        }
788
789        let optimal = best_architecture.ok_or_else(|| anyhow!("No optimal architecture found"))?;
790
791        Ok(OptimalArchitecture {
792            architecture: optimal.architecture,
793            performance_score: optimal.score,
794            memory_usage: optimal.estimated_memory,
795            inference_time: optimal.estimated_latency,
796        })
797    }
798
799    /// Initialize architecture population
800    fn initialize_population(&mut self) -> Result<()> {
801        self.population.clear();
802
803        for _ in 0..self.config.num_architectures {
804            let architecture = self.generate_random_architecture()?;
805            let candidate = ArchitectureCandidate {
806                architecture,
807                score: 0.0,
808                estimated_memory: 0.0,
809                estimated_latency: 0.0,
810            };
811            self.population.push(candidate);
812        }
813
814        Ok(())
815    }
816
817    /// Generate random architecture
818    fn generate_random_architecture(&self) -> Result<Architecture> {
819        #[allow(unused_imports)]
820        use scirs2_core::random::{Random, Rng};
821        let mut rng = Random::default();
822
823        let num_layers = rng.random_range(2..11); // 2-10 layers
824        let mut layers = Vec::new();
825
826        for _ in 0..num_layers {
827            let layer_type = match rng.random_range(0..4) {
828                0 => LayerType::Linear,
829                1 => LayerType::Attention,
830                2 => LayerType::Convolution,
831                _ => LayerType::Normalization,
832            };
833
834            let input_dim = rng.random_range(128..640);
835            let output_dim = rng.random_range(128..640);
836
837            layers.push(LayerConfig {
838                layer_type,
839                input_dim,
840                output_dim,
841                activation: ActivationType::ReLU,
842            });
843        }
844
845        Ok(Architecture {
846            layers,
847            skip_connections: rng.random_f64() < 0.5,
848            normalization: rng.random_f64() < 0.5,
849        })
850    }
851
852    /// Evaluate architecture performance (readonly)
853    async fn evaluate_architecture_readonly(
854        &self,
855        candidate: &ArchitectureCandidate,
856    ) -> Result<f32> {
857        // Estimate performance based on architecture properties
858        let complexity_score = self.calculate_complexity_score(&candidate.architecture);
859        let efficiency_score = self.calculate_efficiency_score(&candidate.architecture);
860        let hardware_score = self.calculate_hardware_score(&candidate.architecture);
861
862        // Combined score (higher is better)
863        let score = complexity_score * 0.4 + efficiency_score * 0.4 + hardware_score * 0.2;
864
865        Ok(score)
866    }
867
868    /// Evaluate architecture performance
869    async fn evaluate_architecture(&self, candidate: &mut ArchitectureCandidate) -> Result<f32> {
870        // Estimate performance based on architecture properties
871        let complexity_score = self.calculate_complexity_score(&candidate.architecture);
872        let efficiency_score = self.calculate_efficiency_score(&candidate.architecture);
873        let hardware_score = self.calculate_hardware_score(&candidate.architecture);
874
875        // Update estimates
876        candidate.estimated_memory = self.estimate_memory_usage(&candidate.architecture);
877        candidate.estimated_latency = self.estimate_inference_time(&candidate.architecture);
878
879        // Combined score (higher is better)
880        let score = complexity_score * 0.4 + efficiency_score * 0.4 + hardware_score * 0.2;
881
882        Ok(score)
883    }
884
885    /// Calculate complexity score
886    fn calculate_complexity_score(&self, architecture: &Architecture) -> f32 {
887        let total_params: usize = architecture
888            .layers
889            .iter()
890            .map(|layer| layer.input_dim * layer.output_dim)
891            .sum();
892
893        // Prefer moderate complexity
894        let optimal_params = 100_000;
895        let ratio = total_params as f32 / optimal_params as f32;
896        (-((ratio - 1.0).powi(2))).exp() // Gaussian around optimal size
897    }
898
899    /// Calculate efficiency score
900    fn calculate_efficiency_score(&self, architecture: &Architecture) -> f32 {
901        let mut score = 0.0;
902
903        // Reward efficient layer types
904        for layer in &architecture.layers {
905            score += match layer.layer_type {
906                LayerType::Linear => 0.8,
907                LayerType::Attention => 0.6,
908                LayerType::Convolution => 0.7,
909                LayerType::Normalization => 0.9,
910            };
911        }
912
913        // Bonus for skip connections and normalization
914        if architecture.skip_connections {
915            score += 0.2;
916        }
917        if architecture.normalization {
918            score += 0.1;
919        }
920
921        score / architecture.layers.len() as f32
922    }
923
924    /// Calculate hardware compatibility score
925    fn calculate_hardware_score(&self, architecture: &Architecture) -> f32 {
926        let memory_usage = self.estimate_memory_usage(architecture);
927        let inference_time = self.estimate_inference_time(architecture);
928
929        let memory_score = if memory_usage <= self.config.hardware_constraints.max_memory_mb as f32
930        {
931            1.0 - (memory_usage / self.config.hardware_constraints.max_memory_mb as f32)
932        } else {
933            0.0
934        };
935
936        let time_score = if inference_time <= self.config.hardware_constraints.max_inference_time_ms
937        {
938            1.0 - (inference_time / self.config.hardware_constraints.max_inference_time_ms)
939        } else {
940            0.0
941        };
942
943        (memory_score + time_score) / 2.0
944    }
945
946    /// Estimate memory usage
947    fn estimate_memory_usage(&self, architecture: &Architecture) -> f32 {
948        let param_memory: usize = architecture
949            .layers
950            .iter()
951            .map(|layer| layer.input_dim * layer.output_dim * 4) // 4 bytes per float
952            .sum();
953
954        param_memory as f32 / (1024.0 * 1024.0) // Convert to MB
955    }
956
957    /// Estimate inference time
958    fn estimate_inference_time(&self, architecture: &Architecture) -> f32 {
959        let ops_count: usize = architecture
960            .layers
961            .iter()
962            .map(|layer| layer.input_dim * layer.output_dim)
963            .sum();
964
965        // Simple model: assume 1 GFLOP/s processing speed
966        ops_count as f32 / 1_000_000.0 // Convert to milliseconds
967    }
968
969    /// Evolve population using genetic algorithm
970    fn evolve_population(&mut self) -> Result<()> {
971        // Sort by score (descending)
972        self.population.sort_by(|a, b| {
973            b.score
974                .partial_cmp(&a.score)
975                .unwrap_or(std::cmp::Ordering::Equal)
976        });
977
978        // Keep top 50%
979        let survivors = self.population.len() / 2;
980        self.population.truncate(survivors);
981
982        // Generate offspring through mutation
983        let mut offspring = Vec::new();
984        for parent in &self.population {
985            let mut child = parent.clone();
986            self.mutate_architecture(&mut child.architecture)?;
987            child.score = 0.0; // Reset score for re-evaluation
988            offspring.push(child);
989        }
990
991        self.population.extend(offspring);
992        Ok(())
993    }
994
995    /// Mutate architecture
996    fn mutate_architecture(&self, architecture: &mut Architecture) -> Result<()> {
997        #[allow(unused_imports)]
998        use scirs2_core::random::{Random, Rng};
999        let mut rng = Random::default();
1000
1001        let mutation_type = rng.random_range(0..4);
1002
1003        match mutation_type {
1004            0 => {
1005                // Mutate layer dimensions
1006                let layer_count = architecture.layers.len();
1007                if layer_count > 0 {
1008                    if let Some(layer) = architecture
1009                        .layers
1010                        .get_mut(rng.random_range(0..layer_count))
1011                    {
1012                        layer.output_dim = (layer.output_dim as f32
1013                            * (0.8 + rng.random_f64() as f32 * 0.4))
1014                            as usize;
1015                        layer.output_dim = layer.output_dim.clamp(32, 1024);
1016                    }
1017                }
1018            }
1019            1 => {
1020                // Change layer type
1021                let layer_count = architecture.layers.len();
1022                if layer_count > 0 {
1023                    if let Some(layer) = architecture
1024                        .layers
1025                        .get_mut(rng.random_range(0..layer_count))
1026                    {
1027                        layer.layer_type = match rng.random_range(0..4) {
1028                            0 => LayerType::Linear,
1029                            1 => LayerType::Attention,
1030                            2 => LayerType::Convolution,
1031                            _ => LayerType::Normalization,
1032                        };
1033                    }
1034                }
1035            }
1036            2 => {
1037                // Toggle skip connections
1038                architecture.skip_connections = !architecture.skip_connections;
1039            }
1040            _ => {
1041                // Toggle normalization
1042                architecture.normalization = !architecture.normalization;
1043            }
1044        }
1045
1046        Ok(())
1047    }
1048}
1049
1050/// Results and data structures
1051
1052#[derive(Debug, Clone)]
1053pub struct CompressionTarget {
1054    pub target_size_reduction: f32,
1055    pub target_speedup: f32,
1056    pub maintain_accuracy: f32,
1057    pub enable_quantization: bool,
1058    pub enable_pruning: bool,
1059    pub enable_distillation: bool,
1060    pub enable_nas: bool,
1061}
1062
1063impl Default for CompressionTarget {
1064    fn default() -> Self {
1065        Self {
1066            target_size_reduction: 0.5,
1067            target_speedup: 2.0,
1068            maintain_accuracy: 0.95,
1069            enable_quantization: true,
1070            enable_pruning: true,
1071            enable_distillation: false,
1072            enable_nas: false,
1073        }
1074    }
1075}
1076
1077#[derive(Debug, Clone, Default)]
1078pub struct CompressionStats {
1079    pub size_reduction_ratio: f32,
1080    pub memory_savings_mb: f32,
1081    pub sparsity_ratio: f32,
1082    pub quantization_ratio: f32,
1083    pub distillation_loss: f32,
1084    pub inference_speedup: f32,
1085}
1086
1087#[derive(Debug, Clone)]
1088pub struct CompressedModel {
1089    pub original_weights: HashMap<String, Array2<f32>>,
1090    pub compressed_weights: HashMap<String, Array2<f32>>,
1091    pub quantized_weights: HashMap<String, Array2<f32>>,
1092    pub compression_config: CompressionTarget,
1093    pub stats: CompressionStats,
1094}
1095
1096#[derive(Debug, Clone)]
1097pub struct QuantizationResult {
1098    pub quantized_weights: HashMap<String, Array2<f32>>,
1099    pub compression_ratio: f32,
1100    pub bit_precision: u8,
1101    pub method: QuantizationMethod,
1102}
1103
1104#[derive(Debug, Clone)]
1105pub struct PruningResult {
1106    pub pruned_weights: HashMap<String, Array2<f32>>,
1107    pub sparsity_achieved: f32,
1108    pub method: PruningMethod,
1109}
1110
1111#[derive(Debug, Clone)]
1112pub struct DistillationResult {
1113    pub student_weights: HashMap<String, Array2<f32>>,
1114    pub final_loss: f32,
1115    pub compression_ratio: f32,
1116}
1117
1118#[derive(Debug, Clone)]
1119pub struct OptimalArchitecture {
1120    pub architecture: Architecture,
1121    pub performance_score: f32,
1122    pub memory_usage: f32,
1123    pub inference_time: f32,
1124}
1125
1126#[derive(Debug, Clone)]
1127pub struct ArchitectureCandidate {
1128    pub architecture: Architecture,
1129    pub score: f32,
1130    pub estimated_memory: f32,
1131    pub estimated_latency: f32,
1132}
1133
1134#[derive(Debug, Clone)]
1135pub struct Architecture {
1136    pub layers: Vec<LayerConfig>,
1137    pub skip_connections: bool,
1138    pub normalization: bool,
1139}
1140
1141#[derive(Debug, Clone)]
1142pub struct LayerConfig {
1143    pub layer_type: LayerType,
1144    pub input_dim: usize,
1145    pub output_dim: usize,
1146    pub activation: ActivationType,
1147}
1148
1149#[derive(Debug, Clone)]
1150pub enum LayerType {
1151    Linear,
1152    Attention,
1153    Convolution,
1154    Normalization,
1155}
1156
1157#[derive(Debug, Clone)]
1158pub enum ActivationType {
1159    ReLU,
1160    GELU,
1161    Tanh,
1162    Sigmoid,
1163}
1164
1165#[cfg(test)]
1166mod tests {
1167    use super::*;
1168
1169    #[test]
1170    fn test_quantization_config_default() {
1171        let config = QuantizationConfig::default();
1172        assert_eq!(config.bit_precision, 8);
1173        assert!(config.per_channel);
1174        assert!(config.symmetric);
1175    }
1176
1177    #[test]
1178    fn test_pruning_config_default() {
1179        let config = PruningConfig::default();
1180        assert_eq!(config.sparsity_ratio, 0.5);
1181        assert!(!config.structured);
1182        assert_eq!(config.fine_tune_epochs, 10);
1183    }
1184
1185    #[test]
1186    fn test_quantization_processor() {
1187        let config = QuantizationConfig::default();
1188        let processor = QuantizationProcessor::new(config);
1189
1190        let tensor = Array2::from_shape_fn((4, 4), |(i, j)| (i + j) as f32 * 0.1);
1191        let params = processor.calculate_quantization_params(&tensor).unwrap();
1192
1193        assert!(params.scale > 0.0);
1194        assert!(params.min_val <= params.max_val);
1195    }
1196
1197    #[test]
1198    fn test_pruning_processor() {
1199        let config = PruningConfig::default();
1200        let processor = PruningProcessor::new(config);
1201
1202        let tensor = Array2::from_shape_fn((4, 4), |(i, j)| if i == j { 1.0 } else { 0.01 });
1203        let mask = processor.generate_pruning_mask(&tensor).unwrap();
1204
1205        // Should preserve diagonal elements (higher magnitude)
1206        assert!(mask[[0, 0]]);
1207        assert!(mask[[1, 1]]);
1208    }
1209
1210    #[tokio::test]
1211    async fn test_model_compression_manager() {
1212        let mut manager = ModelCompressionManager::new();
1213
1214        let mut weights = HashMap::new();
1215        weights.insert(
1216            "layer1".to_string(),
1217            Array2::from_shape_fn((8, 8), |(i, j)| (i + j) as f32 * 0.1),
1218        );
1219        weights.insert(
1220            "layer2".to_string(),
1221            Array2::from_shape_fn((8, 4), |(i, j)| (i as f32 - j as f32) * 0.05),
1222        );
1223
1224        let target = CompressionTarget::default();
1225        let result = manager.compress_model(&weights, target).await.unwrap();
1226
1227        assert!(result.stats.size_reduction_ratio > 0.0);
1228        assert!(result.stats.memory_savings_mb >= 0.0);
1229        assert_eq!(result.compressed_weights.len(), weights.len());
1230    }
1231}