oxirs_embed/biomedical_embeddings/
network_analysis.rs

1//! Module for biomedical embeddings
2
3use super::*;
4use crate::Vector;
5use anyhow::Result;
6use std::collections::HashMap;
7
8pub struct PublicationNetworkAnalyzer {
9    /// Author embedding cache
10    author_embeddings: HashMap<String, Vector>,
11    /// Citation graph
12    citation_graph: HashMap<String, Vec<String>>,
13    /// Topic model for publications
14    topic_model: TopicModel,
15    /// Collaboration network
16    collaboration_network: HashMap<String, Vec<CollaborationEdge>>,
17    /// Impact metrics
18    impact_metrics: HashMap<String, ImpactMetrics>,
19}
20
21/// Topic modeling for research publications
22#[derive(Debug, Clone)]
23pub struct TopicModel {
24    /// Topic distributions for documents
25    topic_distributions: HashMap<String, Vec<f64>>,
26    /// Topic keywords
27    topic_keywords: HashMap<usize, Vec<String>>,
28    /// Number of topics
29    num_topics: usize,
30}
31
32/// Collaboration edge in research network
33#[derive(Debug, Clone)]
34pub struct CollaborationEdge {
35    /// Collaborator ID
36    pub collaborator_id: String,
37    /// Number of joint publications
38    pub joint_publications: usize,
39    /// Collaboration strength (0.0 to 1.0)
40    pub strength: f64,
41    /// Research areas in common
42    pub common_areas: Vec<String>,
43}
44
45/// Impact metrics for authors and publications
46#[derive(Debug, Clone)]
47pub struct ImpactMetrics {
48    /// Citation count
49    pub citation_count: usize,
50    /// H-index
51    pub h_index: f64,
52    /// Collaboration impact score
53    pub collaboration_impact: f64,
54    /// Trend prediction score
55    pub trend_score: f64,
56    /// Cross-disciplinary impact
57    pub cross_disciplinary_score: f64,
58}
59
60/// Research network analysis results
61#[derive(Debug, Clone)]
62pub struct NetworkAnalysisResults {
63    /// Central authors in the network
64    pub central_authors: Vec<String>,
65    /// Emerging research trends
66    pub emerging_trends: Vec<String>,
67    /// Collaboration clusters
68    pub collaboration_clusters: Vec<Vec<String>>,
69    /// Citation flow patterns
70    pub citation_patterns: HashMap<String, f64>,
71}
72
73impl PublicationNetworkAnalyzer {
74    /// Create new publication network analyzer
75    pub fn new() -> Self {
76        Self {
77            author_embeddings: HashMap::new(),
78            citation_graph: HashMap::new(),
79            topic_model: TopicModel {
80                topic_distributions: HashMap::new(),
81                topic_keywords: HashMap::new(),
82                num_topics: 50,
83            },
84            collaboration_network: HashMap::new(),
85            impact_metrics: HashMap::new(),
86        }
87    }
88
89    /// Generate author embeddings based on publications
90    pub async fn generate_author_embeddings(
91        &mut self,
92        author_id: &str,
93        publications: &[String],
94    ) -> Result<Vector> {
95        // Combine all publication texts for this author
96        let combined_text = publications.join(" ");
97
98        // Use biomedical text embedding
99        let config = SpecializedTextEmbedding::scibert_config();
100        let mut model = SpecializedTextEmbedding::new(config);
101        let embedding_array = model.encode_text(&combined_text).await?;
102
103        // Convert ndarray to Vector
104        let embedding = Vector::new(embedding_array.to_vec());
105
106        // Store in cache
107        self.author_embeddings
108            .insert(author_id.to_string(), embedding.clone());
109
110        Ok(embedding)
111    }
112
113    /// Analyze citation network patterns
114    pub fn analyze_citation_network(
115        &mut self,
116        citations: &[(String, String)],
117    ) -> NetworkAnalysisResults {
118        // Build citation graph
119        for (from_paper, to_paper) in citations {
120            self.citation_graph
121                .entry(from_paper.clone())
122                .or_default()
123                .push(to_paper.clone());
124        }
125
126        // Calculate centrality metrics
127        let central_authors = self.calculate_centrality();
128
129        // Detect emerging trends
130        let emerging_trends = self.detect_emerging_trends();
131
132        // Find collaboration clusters
133        let collaboration_clusters = self.find_collaboration_clusters();
134
135        // Analyze citation patterns
136        let citation_patterns = self.analyze_citation_patterns();
137
138        NetworkAnalysisResults {
139            central_authors,
140            emerging_trends,
141            collaboration_clusters,
142            citation_patterns,
143        }
144    }
145
146    /// Calculate author centrality in citation network
147    fn calculate_centrality(&self) -> Vec<String> {
148        let mut centrality_scores: HashMap<String, f64> = HashMap::new();
149
150        // Simple degree centrality calculation
151        for (paper, citations) in &self.citation_graph {
152            let score = citations.len() as f64;
153            centrality_scores.insert(paper.clone(), score);
154        }
155
156        // Sort by centrality score
157        let mut sorted: Vec<_> = centrality_scores.into_iter().collect();
158        sorted.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
159
160        sorted
161            .into_iter()
162            .take(10)
163            .map(|(author, _)| author)
164            .collect()
165    }
166
167    /// Detect emerging research trends
168    fn detect_emerging_trends(&self) -> Vec<String> {
169        // Mock implementation - in reality would use temporal analysis
170        vec![
171            "AI-driven drug discovery".to_string(),
172            "CRISPR gene editing applications".to_string(),
173            "Personalized medicine genomics".to_string(),
174            "Quantum biology mechanisms".to_string(),
175            "Microbiome therapeutics".to_string(),
176        ]
177    }
178
179    /// Find collaboration clusters using community detection
180    fn find_collaboration_clusters(&self) -> Vec<Vec<String>> {
181        // Mock implementation - would use graph clustering algorithms
182        vec![
183            vec![
184                "author1".to_string(),
185                "author2".to_string(),
186                "author3".to_string(),
187            ],
188            vec!["author4".to_string(), "author5".to_string()],
189            vec![
190                "author6".to_string(),
191                "author7".to_string(),
192                "author8".to_string(),
193            ],
194        ]
195    }
196
197    /// Analyze citation flow patterns
198    fn analyze_citation_patterns(&self) -> HashMap<String, f64> {
199        let mut patterns = HashMap::new();
200        patterns.insert("self_citation_rate".to_string(), 0.15);
201        patterns.insert("cross_disciplinary_rate".to_string(), 0.23);
202        patterns.insert("recency_bias".to_string(), 0.67);
203        patterns.insert("impact_diffusion_rate".to_string(), 0.34);
204        patterns
205    }
206
207    /// Predict collaboration likelihood between authors
208    pub fn predict_collaboration(&self, author1: &str, author2: &str) -> f64 {
209        // Get author embeddings
210        let emb1 = self.author_embeddings.get(author1);
211        let emb2 = self.author_embeddings.get(author2);
212
213        match (emb1, emb2) {
214            (Some(e1), Some(e2)) => {
215                // Calculate cosine similarity
216                let dot_product: f32 = e1
217                    .values
218                    .iter()
219                    .zip(e2.values.iter())
220                    .map(|(a, b)| a * b)
221                    .sum();
222                let norm1: f32 = e1.values.iter().map(|x| x * x).sum::<f32>().sqrt();
223                let norm2: f32 = e2.values.iter().map(|x| x * x).sum::<f32>().sqrt();
224
225                if norm1 > 0.0 && norm2 > 0.0 {
226                    (dot_product / (norm1 * norm2)) as f64
227                } else {
228                    0.0
229                }
230            }
231            _ => 0.0,
232        }
233    }
234
235    /// Predict research impact of a publication
236    pub fn predict_impact(&mut self, paper_text: &str, authors: &[String]) -> ImpactMetrics {
237        // Mock implementation - would use ML models trained on historical data
238        let citation_count = (paper_text.len() / 100).min(500); // Rough heuristic
239        let h_index = (citation_count as f64).sqrt();
240        let collaboration_impact = authors.len() as f64 * 0.1;
241
242        ImpactMetrics {
243            citation_count,
244            h_index,
245            collaboration_impact,
246            trend_score: 0.75,
247            cross_disciplinary_score: 0.68,
248        }
249    }
250
251    /// Build topic model from publication corpus
252    pub fn build_topic_model(&mut self, publications: &[String]) -> Result<()> {
253        // Mock implementation - would use LDA or similar
254        for (i, pub_text) in publications.iter().enumerate() {
255            // Simple keyword extraction
256            let words: Vec<&str> = pub_text.split_whitespace().collect();
257            let mut topic_dist = vec![0.0; self.topic_model.num_topics];
258
259            // Assign random topic distribution for demo
260            topic_dist[i % self.topic_model.num_topics] = 0.8;
261            topic_dist[(i + 1) % self.topic_model.num_topics] = 0.2;
262
263            self.topic_model
264                .topic_distributions
265                .insert(i.to_string(), topic_dist);
266
267            // Store keywords for topics
268            if words.len() > 3 {
269                self.topic_model
270                    .topic_keywords
271                    .entry(i % self.topic_model.num_topics)
272                    .or_default()
273                    .extend(words.into_iter().take(3).map(|s| s.to_string()));
274            }
275        }
276
277        Ok(())
278    }
279}
280
281impl Default for PublicationNetworkAnalyzer {
282    fn default() -> Self {
283        Self::new()
284    }
285}
286
287// =============================================================================
288// Tests for Publication Networks
289// =============================================================================
290
291#[cfg(test)]
292mod publication_tests {
293    use super::*;
294
295    #[tokio::test]
296    async fn test_author_embeddings() {
297        let mut analyzer = PublicationNetworkAnalyzer::new();
298
299        let publications = vec![
300            "Machine learning applications in drug discovery".to_string(),
301            "Deep neural networks for protein structure prediction".to_string(),
302        ];
303
304        let embedding = analyzer
305            .generate_author_embeddings("dr_smith", &publications)
306            .await
307            .unwrap();
308        assert_eq!(embedding.values.len(), 768); // SciBERT embedding dimension
309        assert!(analyzer.author_embeddings.contains_key("dr_smith"));
310    }
311
312    #[test]
313    fn test_citation_network_analysis() {
314        let mut analyzer = PublicationNetworkAnalyzer::new();
315
316        let citations = vec![
317            ("paper1".to_string(), "paper2".to_string()),
318            ("paper1".to_string(), "paper3".to_string()),
319            ("paper2".to_string(), "paper3".to_string()),
320        ];
321
322        let results = analyzer.analyze_citation_network(&citations);
323        assert!(!results.central_authors.is_empty());
324        assert!(!results.emerging_trends.is_empty());
325        assert!(!results.collaboration_clusters.is_empty());
326    }
327
328    #[tokio::test]
329    async fn test_collaboration_prediction() {
330        let mut analyzer = PublicationNetworkAnalyzer::new();
331
332        // Generate embeddings for two authors
333        let pub1 = vec!["AI in healthcare".to_string()];
334        let pub2 = vec!["Machine learning for medical diagnosis".to_string()];
335
336        analyzer
337            .generate_author_embeddings("author1", &pub1)
338            .await
339            .unwrap();
340        analyzer
341            .generate_author_embeddings("author2", &pub2)
342            .await
343            .unwrap();
344
345        let similarity = analyzer.predict_collaboration("author1", "author2");
346        assert!((0.0..=1.0).contains(&similarity));
347    }
348
349    #[test]
350    fn test_impact_prediction() {
351        let mut analyzer = PublicationNetworkAnalyzer::new();
352
353        let paper_text = "Revolutionary breakthrough in quantum computing applications for drug discovery with novel algorithms and experimental validation across multiple therapeutic areas";
354        let authors = vec!["Dr. Smith".to_string(), "Dr. Jones".to_string()];
355
356        let metrics = analyzer.predict_impact(paper_text, &authors);
357        assert!(metrics.citation_count > 0);
358        assert!(metrics.h_index > 0.0);
359        assert!(metrics.collaboration_impact > 0.0);
360    }
361
362    #[test]
363    fn test_topic_modeling() {
364        let mut analyzer = PublicationNetworkAnalyzer::new();
365
366        let publications = vec![
367            "Machine learning in healthcare".to_string(),
368            "Deep learning for drug discovery".to_string(),
369            "AI applications in genomics".to_string(),
370        ];
371
372        analyzer.build_topic_model(&publications).unwrap();
373        assert!(!analyzer.topic_model.topic_distributions.is_empty());
374        assert!(!analyzer.topic_model.topic_keywords.is_empty());
375    }
376}