oxirs_embed/
biological_computing.rs

1//! Biological Computing for Knowledge Graph Embeddings
2//!
3//! This module implements cutting-edge biological computing paradigms for
4//! knowledge graph embedding computation, including DNA computing, cellular
5//! automata, and bio-inspired neural networks.
6//!
7//! Key innovations:
8//! - DNA sequence-based embedding encoding and computation
9//! - Cellular automata for distributed embedding evolution
10//! - Enzymatic reaction networks for embedding optimization
11//! - Genetic regulatory networks for adaptive embedding learning
12//! - Molecular self-assembly for hierarchical embedding structures
13
14use crate::{EmbeddingError, EmbeddingModel, ModelConfig, Vector};
15use anyhow::Result;
16use async_trait::async_trait;
17use scirs2_core::ndarray_ext::Array2;
18use scirs2_core::random::{Random, Rng};
19use serde::{Deserialize, Serialize};
20use std::collections::HashMap;
21use uuid::Uuid;
22
23/// Configuration for biological computing
24#[derive(Debug, Clone, Serialize, Deserialize)]
25pub struct BiologicalComputingConfig {
26    /// DNA sequence length for encoding
27    pub dna_sequence_length: usize,
28    /// Cellular automata grid size
29    pub ca_grid_size: (usize, usize),
30    /// Number of CA evolution steps
31    pub ca_evolution_steps: usize,
32    /// Enzymatic reaction rate
33    pub enzyme_reaction_rate: f64,
34    /// Gene expression regulation strength
35    pub gene_regulation_strength: f64,
36    /// Molecular assembly temperature
37    pub assembly_temperature: f64,
38    /// Mutation rate for genetic algorithms
39    pub mutation_rate: f64,
40    /// Population size for genetic evolution
41    pub population_size: usize,
42    /// Number of generations
43    pub num_generations: usize,
44    /// Cellular automata rule
45    pub ca_rule: CellularAutomataRule,
46    /// DNA computing method
47    pub dna_method: DNAComputingMethod,
48    /// Molecular assembly type
49    pub assembly_type: MolecularAssemblyType,
50}
51
52impl Default for BiologicalComputingConfig {
53    fn default() -> Self {
54        Self {
55            dna_sequence_length: 256,
56            ca_grid_size: (64, 64),
57            ca_evolution_steps: 100,
58            enzyme_reaction_rate: 0.1,
59            gene_regulation_strength: 0.5,
60            assembly_temperature: 300.0, // Kelvin
61            mutation_rate: 0.01,
62            population_size: 100,
63            num_generations: 50,
64            ca_rule: CellularAutomataRule::Conway,
65            dna_method: DNAComputingMethod::Hybridization,
66            assembly_type: MolecularAssemblyType::SelfAssembly,
67        }
68    }
69}
70
71/// Cellular automata rules
72#[derive(Debug, Clone, Serialize, Deserialize)]
73pub enum CellularAutomataRule {
74    Conway,          // Conway's Game of Life
75    Elementary30,    // Elementary CA Rule 30
76    Elementary110,   // Elementary CA Rule 110
77    Langton,         // Langton's Ant
78    Custom(Vec<u8>), // Custom rule table
79}
80
81/// DNA computing methods
82#[derive(Debug, Clone, Serialize, Deserialize)]
83pub enum DNAComputingMethod {
84    Hybridization, // DNA hybridization-based computation
85    PCR,           // Polymerase Chain Reaction
86    Ligation,      // DNA ligation
87    Restriction,   // Restriction enzyme cutting
88    CRISPR,        // CRISPR-Cas system
89}
90
91/// Molecular assembly types
92#[derive(Debug, Clone, Serialize, Deserialize)]
93pub enum MolecularAssemblyType {
94    SelfAssembly,     // Spontaneous self-assembly
95    TemplateDirected, // Template-directed assembly
96    Hierarchical,     // Hierarchical assembly
97    DynamicAssembly,  // Dynamic assembly with feedback
98}
99
100/// DNA nucleotide bases
101#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
102pub enum Nucleotide {
103    A, // Adenine
104    T, // Thymine
105    G, // Guanine
106    C, // Cytosine
107}
108
109impl Nucleotide {
110    /// Get complementary base
111    pub fn complement(&self) -> Self {
112        match self {
113            Nucleotide::A => Nucleotide::T,
114            Nucleotide::T => Nucleotide::A,
115            Nucleotide::G => Nucleotide::C,
116            Nucleotide::C => Nucleotide::G,
117        }
118    }
119
120    /// Convert to numeric value
121    pub fn to_numeric(&self) -> f64 {
122        match self {
123            Nucleotide::A => 0.0,
124            Nucleotide::T => 1.0,
125            Nucleotide::G => 2.0,
126            Nucleotide::C => 3.0,
127        }
128    }
129
130    /// Create from numeric value
131    pub fn from_numeric(value: f64) -> Self {
132        match (value % 4.0) as u8 {
133            0 => Nucleotide::A,
134            1 => Nucleotide::T,
135            2 => Nucleotide::G,
136            3 => Nucleotide::C,
137            _ => Nucleotide::A,
138        }
139    }
140
141    /// Random nucleotide
142    pub fn random(rng: &mut impl Rng) -> Self {
143        match rng.random_range(0..4) {
144            0 => Nucleotide::A,
145            1 => Nucleotide::T,
146            2 => Nucleotide::G,
147            3 => Nucleotide::C,
148            _ => unreachable!(),
149        }
150    }
151}
152
153/// DNA sequence representation
154#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
155pub struct DNASequence {
156    pub sequence: Vec<Nucleotide>,
157    pub length: usize,
158}
159
160impl DNASequence {
161    /// Create new DNA sequence
162    pub fn new(sequence: Vec<Nucleotide>) -> Self {
163        let length = sequence.len();
164        Self { sequence, length }
165    }
166
167    /// Create random DNA sequence
168    pub fn random(length: usize, rng: &mut impl Rng) -> Self {
169        let sequence = (0..length).map(|_| Nucleotide::random(rng)).collect();
170        Self::new(sequence)
171    }
172
173    /// Get complement sequence
174    pub fn complement(&self) -> Self {
175        let complement_seq = self.sequence.iter().map(|n| n.complement()).collect();
176        Self::new(complement_seq)
177    }
178
179    /// Hybridize with another sequence
180    pub fn hybridize(&self, other: &Self) -> f64 {
181        if self.length != other.length {
182            return 0.0;
183        }
184
185        let matches = self
186            .sequence
187            .iter()
188            .zip(other.sequence.iter())
189            .filter(|(a, b)| *a == &b.complement())
190            .count();
191
192        matches as f64 / self.length as f64
193    }
194
195    /// Mutate sequence
196    pub fn mutate(&mut self, mutation_rate: f64, rng: &mut impl Rng) {
197        for nucleotide in &mut self.sequence {
198            if rng.random_bool(mutation_rate) {
199                *nucleotide = Nucleotide::random(rng);
200            }
201        }
202    }
203
204    /// Convert to vector representation
205    pub fn to_vector(&self) -> Vector {
206        let values: Vec<f32> = self
207            .sequence
208            .iter()
209            .map(|n| n.to_numeric() as f32)
210            .collect();
211        Vector::new(values)
212    }
213
214    /// Create from vector
215    pub fn from_vector(vector: &Vector) -> Self {
216        let sequence = vector
217            .values
218            .iter()
219            .map(|&v| Nucleotide::from_numeric(v as f64))
220            .collect();
221        Self::new(sequence)
222    }
223
224    /// PCR amplification simulation
225    pub fn pcr_amplify(&self, cycles: usize, efficiency: f64) -> Vec<Self> {
226        let mut population = vec![self.clone()];
227
228        for _ in 0..cycles {
229            let current_size = population.len();
230            let new_copies = (current_size as f64 * efficiency) as usize;
231
232            for _ in 0..new_copies {
233                if let Some(template) = population.first() {
234                    population.push(template.clone());
235                }
236            }
237        }
238
239        population
240    }
241
242    /// Restriction enzyme cutting
243    pub fn restrict(&self, cut_site: &[Nucleotide]) -> Vec<Self> {
244        let mut fragments = Vec::new();
245        let mut current_fragment = Vec::new();
246
247        for i in 0..self.sequence.len() {
248            current_fragment.push(self.sequence[i]);
249
250            // Check for cut site (avoid underflow)
251            if i + 1 >= cut_site.len() && !cut_site.is_empty() {
252                let start = (i + 1).saturating_sub(cut_site.len());
253                if start <= i && start < self.sequence.len() {
254                    let window = &self.sequence[start..=i];
255                    if window == cut_site {
256                        fragments.push(Self::new(current_fragment.clone()));
257                        current_fragment.clear();
258                    }
259                }
260            }
261        }
262
263        // Add remaining fragment
264        if !current_fragment.is_empty() {
265            fragments.push(Self::new(current_fragment));
266        }
267
268        fragments
269    }
270
271    /// Ligate with another sequence
272    pub fn ligate(&self, other: &Self) -> Self {
273        let mut combined = self.sequence.clone();
274        combined.extend_from_slice(&other.sequence);
275        Self::new(combined)
276    }
277}
278
279/// Cellular automaton cell
280#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
281pub struct Cell {
282    pub state: u8,
283    pub embedding_component: f32,
284    pub energy: f32,
285    pub age: usize,
286}
287
288impl Cell {
289    pub fn new(state: u8, embedding_component: f32) -> Self {
290        Self {
291            state,
292            embedding_component,
293            energy: 1.0,
294            age: 0,
295        }
296    }
297
298    pub fn is_alive(&self) -> bool {
299        self.state > 0
300    }
301
302    pub fn update_energy(&mut self, delta: f32) {
303        self.energy = (self.energy + delta).clamp(0.0, 2.0);
304    }
305
306    pub fn age_cell(&mut self) {
307        self.age += 1;
308    }
309}
310
311/// Cellular automaton for embedding computation
312#[derive(Debug, Clone)]
313pub struct CellularAutomaton {
314    pub grid: Array2<Cell>,
315    pub rule: CellularAutomataRule,
316    pub generation: usize,
317    pub size: (usize, usize),
318}
319
320impl CellularAutomaton {
321    /// Create new cellular automaton
322    pub fn new(size: (usize, usize), rule: CellularAutomataRule) -> Self {
323        let grid = Array2::from_shape_fn(size, |(i, j)| {
324            Cell::new(0, (i as f32 + j as f32) / (size.0 + size.1) as f32)
325        });
326
327        Self {
328            grid,
329            rule,
330            generation: 0,
331            size,
332        }
333    }
334
335    /// Initialize with embedding data
336    pub fn initialize_with_embedding(&mut self, embedding: &Vector) {
337        let total_cells = self.size.0 * self.size.1;
338        let _chunk_size = embedding.values.len() / total_cells.min(embedding.values.len());
339
340        for ((i, j), cell) in self.grid.indexed_iter_mut() {
341            let flat_index = i * self.size.1 + j;
342            if flat_index < embedding.values.len() {
343                cell.embedding_component = embedding.values[flat_index];
344                cell.state = if embedding.values[flat_index] > 0.5 {
345                    1
346                } else {
347                    0
348                };
349            }
350        }
351    }
352
353    /// Evolve the cellular automaton
354    pub fn evolve(&mut self) {
355        let new_grid = match &self.rule {
356            CellularAutomataRule::Conway => self.evolve_conway(),
357            CellularAutomataRule::Elementary30 => self.evolve_elementary(30),
358            CellularAutomataRule::Elementary110 => self.evolve_elementary(110),
359            CellularAutomataRule::Langton => self.evolve_langton(),
360            CellularAutomataRule::Custom(rule_table) => self.evolve_custom(rule_table),
361        };
362
363        self.grid = new_grid;
364        self.generation += 1;
365    }
366
367    /// Conway's Game of Life evolution
368    fn evolve_conway(&self) -> Array2<Cell> {
369        let mut new_grid = self.grid.clone();
370
371        for ((i, j), cell) in new_grid.indexed_iter_mut() {
372            let neighbors = self.count_neighbors(i, j);
373            let current_state = self.grid[[i, j]].state;
374
375            let new_state = match (current_state, neighbors) {
376                (1, 2) | (1, 3) => 1, // Survive
377                (0, 3) => 1,          // Birth
378                _ => 0,               // Death
379            };
380
381            cell.state = new_state;
382
383            // Update embedding component based on neighborhood
384            let neighbor_sum = self.get_neighbor_embedding_sum(i, j);
385            cell.embedding_component = (cell.embedding_component + neighbor_sum * 0.1) / 2.0;
386
387            cell.age_cell();
388        }
389
390        new_grid
391    }
392
393    /// Elementary cellular automaton evolution
394    fn evolve_elementary(&self, rule_number: u8) -> Array2<Cell> {
395        let mut new_grid = self.grid.clone();
396
397        // Apply elementary CA rule to each row
398        for i in 0..self.size.0 {
399            for j in 0..self.size.1 {
400                let left = if j > 0 {
401                    self.grid[[i, j - 1]].state
402                } else {
403                    0
404                };
405                let center = self.grid[[i, j]].state;
406                let right = if j < self.size.1 - 1 {
407                    self.grid[[i, j + 1]].state
408                } else {
409                    0
410                };
411
412                let pattern = (left << 2) | (center << 1) | right;
413                let new_state = (rule_number >> pattern) & 1;
414
415                new_grid[[i, j]].state = new_state;
416
417                // Update embedding component
418                let influence = (left as f32 + center as f32 + right as f32) / 3.0;
419                new_grid[[i, j]].embedding_component =
420                    (new_grid[[i, j]].embedding_component + influence * 0.1) / 2.0;
421            }
422        }
423
424        new_grid
425    }
426
427    /// Langton's Ant evolution
428    fn evolve_langton(&self) -> Array2<Cell> {
429        let mut new_grid = self.grid.clone();
430
431        // Simplified Langton's Ant simulation
432        for ((i, j), cell) in new_grid.indexed_iter_mut() {
433            let neighbors = self.count_neighbors(i, j);
434
435            // Ant-like behavior: turn based on local state
436            let new_state = match (cell.state, neighbors % 4) {
437                (0, 0) | (0, 2) => 1,
438                (1, 1) | (1, 3) => 0,
439                _ => cell.state,
440            };
441
442            cell.state = new_state;
443
444            // Update embedding with directional information
445            let direction_factor = (i as f32 - j as f32) / self.size.0 as f32;
446            cell.embedding_component = (cell.embedding_component + direction_factor * 0.05).tanh();
447        }
448
449        new_grid
450    }
451
452    /// Custom rule evolution
453    fn evolve_custom(&self, rule_table: &[u8]) -> Array2<Cell> {
454        let mut new_grid = self.grid.clone();
455
456        for ((i, j), cell) in new_grid.indexed_iter_mut() {
457            let neighbors = self.count_neighbors(i, j);
458            let current_state = self.grid[[i, j]].state;
459
460            let rule_index = (current_state as usize * 9 + neighbors).min(rule_table.len() - 1);
461            cell.state = rule_table[rule_index];
462
463            // Update embedding based on rule application
464            let rule_influence = rule_table[rule_index] as f32 / 255.0;
465            cell.embedding_component = (cell.embedding_component + rule_influence * 0.1) / 2.0;
466        }
467
468        new_grid
469    }
470
471    /// Count living neighbors
472    fn count_neighbors(&self, row: usize, col: usize) -> usize {
473        let mut count = 0;
474
475        for di in -1i32..=1 {
476            for dj in -1i32..=1 {
477                if di == 0 && dj == 0 {
478                    continue;
479                }
480
481                let ni = row as i32 + di;
482                let nj = col as i32 + dj;
483
484                if ni >= 0
485                    && ni < self.size.0 as i32
486                    && nj >= 0
487                    && nj < self.size.1 as i32
488                    && self.grid[[ni as usize, nj as usize]].is_alive()
489                {
490                    count += 1;
491                }
492            }
493        }
494
495        count
496    }
497
498    /// Get sum of neighbor embedding components
499    fn get_neighbor_embedding_sum(&self, row: usize, col: usize) -> f32 {
500        let mut sum = 0.0;
501        let mut count = 0;
502
503        for di in -1i32..=1 {
504            for dj in -1i32..=1 {
505                if di == 0 && dj == 0 {
506                    continue;
507                }
508
509                let ni = row as i32 + di;
510                let nj = col as i32 + dj;
511
512                if ni >= 0 && ni < self.size.0 as i32 && nj >= 0 && nj < self.size.1 as i32 {
513                    sum += self.grid[[ni as usize, nj as usize]].embedding_component;
514                    count += 1;
515                }
516            }
517        }
518
519        if count > 0 {
520            sum / count as f32
521        } else {
522            0.0
523        }
524    }
525
526    /// Extract embedding from cellular automaton state
527    pub fn extract_embedding(&self) -> Vector {
528        let values: Vec<f32> = self
529            .grid
530            .iter()
531            .map(|cell| cell.embedding_component)
532            .collect();
533        Vector::new(values)
534    }
535
536    /// Get population statistics
537    pub fn get_statistics(&self) -> CAStatistics {
538        let total_cells = self.grid.len();
539        let living_cells = self.grid.iter().filter(|cell| cell.is_alive()).count();
540        let total_energy: f32 = self.grid.iter().map(|cell| cell.energy).sum();
541        let avg_age: f32 =
542            self.grid.iter().map(|cell| cell.age as f32).sum::<f32>() / total_cells as f32;
543        let embedding_variance = self.calculate_embedding_variance();
544
545        CAStatistics {
546            generation: self.generation,
547            living_cells,
548            total_cells,
549            density: living_cells as f32 / total_cells as f32,
550            total_energy,
551            average_age: avg_age,
552            embedding_variance,
553        }
554    }
555
556    fn calculate_embedding_variance(&self) -> f32 {
557        let values: Vec<f32> = self
558            .grid
559            .iter()
560            .map(|cell| cell.embedding_component)
561            .collect();
562        let mean = values.iter().sum::<f32>() / values.len() as f32;
563        let variance = values.iter().map(|v| (v - mean).powi(2)).sum::<f32>() / values.len() as f32;
564        variance
565    }
566}
567
568/// Statistics for cellular automaton
569#[derive(Debug, Clone, Serialize, Deserialize)]
570pub struct CAStatistics {
571    pub generation: usize,
572    pub living_cells: usize,
573    pub total_cells: usize,
574    pub density: f32,
575    pub total_energy: f32,
576    pub average_age: f32,
577    pub embedding_variance: f32,
578}
579
580/// Enzymatic reaction network
581#[derive(Debug, Clone)]
582pub struct EnzymaticNetwork {
583    pub enzymes: Vec<Enzyme>,
584    pub substrates: Vec<Substrate>,
585    pub reactions: Vec<Reaction>,
586    pub reaction_rate: f64,
587    pub temperature: f64,
588}
589
590impl EnzymaticNetwork {
591    pub fn new(reaction_rate: f64, temperature: f64) -> Self {
592        Self {
593            enzymes: Vec::new(),
594            substrates: Vec::new(),
595            reactions: Vec::new(),
596            reaction_rate,
597            temperature,
598        }
599    }
600
601    /// Add enzyme
602    pub fn add_enzyme(&mut self, enzyme: Enzyme) {
603        self.enzymes.push(enzyme);
604    }
605
606    /// Add substrate
607    pub fn add_substrate(&mut self, substrate: Substrate) {
608        self.substrates.push(substrate);
609    }
610
611    /// Simulate enzymatic reactions
612    pub fn simulate_reactions(&mut self, steps: usize) -> Vec<Vector> {
613        let mut results = Vec::new();
614
615        for _ in 0..steps {
616            // Process each reaction
617            let reactions = self.reactions.clone();
618            for reaction in &reactions {
619                self.process_reaction(reaction);
620            }
621
622            // Extract embedding from current state
623            let embedding = self.extract_embedding();
624            results.push(embedding);
625        }
626
627        results
628    }
629
630    fn process_reaction(&mut self, reaction: &Reaction) {
631        // Simplified enzymatic reaction simulation
632        let enzyme_efficiency = self.calculate_enzyme_efficiency(&reaction.enzyme_id);
633        let substrate_concentration = self.get_substrate_concentration(&reaction.substrate_id);
634
635        let reaction_probability = enzyme_efficiency * substrate_concentration * self.reaction_rate;
636
637        let mut random = Random::default();
638        let should_react = random.random::<f64>() < reaction_probability;
639
640        if should_react {
641            // Modify substrate
642            if let Some(substrate) = self
643                .substrates
644                .iter_mut()
645                .find(|s| s.id == reaction.substrate_id)
646            {
647                substrate.concentration *= 0.95; // Consume substrate
648                substrate.embedding_contribution *= reaction.rate_constant;
649            }
650        }
651    }
652
653    fn calculate_enzyme_efficiency(&self, enzyme_id: &Uuid) -> f64 {
654        self.enzymes
655            .iter()
656            .find(|e| e.id == *enzyme_id)
657            .map(|e| e.efficiency)
658            .unwrap_or(0.0)
659    }
660
661    fn get_substrate_concentration(&self, substrate_id: &Uuid) -> f64 {
662        self.substrates
663            .iter()
664            .find(|s| s.id == *substrate_id)
665            .map(|s| s.concentration)
666            .unwrap_or(0.0)
667    }
668
669    fn extract_embedding(&self) -> Vector {
670        let values: Vec<f32> = self
671            .substrates
672            .iter()
673            .map(|s| s.embedding_contribution as f32)
674            .collect();
675        Vector::new(values)
676    }
677}
678
679/// Enzyme representation
680#[derive(Debug, Clone)]
681pub struct Enzyme {
682    pub id: Uuid,
683    pub name: String,
684    pub efficiency: f64,
685    pub specificity: f64,
686    pub optimal_temperature: f64,
687    pub optimal_ph: f64,
688}
689
690impl Enzyme {
691    pub fn new(name: String, efficiency: f64) -> Self {
692        Self {
693            id: Uuid::new_v4(),
694            name,
695            efficiency,
696            specificity: 0.8,
697            optimal_temperature: 310.0, // Body temperature
698            optimal_ph: 7.4,
699        }
700    }
701}
702
703/// Substrate representation
704#[derive(Debug, Clone)]
705pub struct Substrate {
706    pub id: Uuid,
707    pub name: String,
708    pub concentration: f64,
709    pub embedding_contribution: f64,
710    pub molecular_weight: f64,
711}
712
713impl Substrate {
714    pub fn new(name: String, concentration: f64, embedding_contribution: f64) -> Self {
715        Self {
716            id: Uuid::new_v4(),
717            name,
718            concentration,
719            embedding_contribution,
720            molecular_weight: 100.0, // Default molecular weight
721        }
722    }
723}
724
725/// Enzymatic reaction
726#[derive(Debug, Clone)]
727pub struct Reaction {
728    pub id: Uuid,
729    pub enzyme_id: Uuid,
730    pub substrate_id: Uuid,
731    pub product_id: Uuid,
732    pub rate_constant: f64,
733    pub activation_energy: f64,
734}
735
736/// Gene regulatory network
737#[derive(Debug, Clone)]
738pub struct GeneRegulatoryNetwork {
739    pub genes: Vec<Gene>,
740    pub regulatory_relationships: Vec<RegulatoryRelationship>,
741    pub expression_levels: HashMap<Uuid, f64>,
742    pub regulation_strength: f64,
743}
744
745impl GeneRegulatoryNetwork {
746    pub fn new(regulation_strength: f64) -> Self {
747        Self {
748            genes: Vec::new(),
749            regulatory_relationships: Vec::new(),
750            expression_levels: HashMap::new(),
751            regulation_strength,
752        }
753    }
754
755    /// Add gene
756    pub fn add_gene(&mut self, gene: Gene) {
757        self.expression_levels
758            .insert(gene.id, gene.basal_expression);
759        self.genes.push(gene);
760    }
761
762    /// Add regulatory relationship
763    pub fn add_regulation(&mut self, relationship: RegulatoryRelationship) {
764        self.regulatory_relationships.push(relationship);
765    }
766
767    /// Simulate gene expression dynamics
768    pub fn simulate_expression(&mut self, steps: usize) -> Vec<Vector> {
769        let mut results = Vec::new();
770
771        for _ in 0..steps {
772            self.update_expression_levels();
773            let embedding = self.extract_expression_embedding();
774            results.push(embedding);
775        }
776
777        results
778    }
779
780    fn update_expression_levels(&mut self) {
781        let mut new_levels = self.expression_levels.clone();
782
783        for gene in &self.genes {
784            let current_level = self.expression_levels[&gene.id];
785            let regulation_effect = self.calculate_regulation_effect(&gene.id);
786
787            let new_level =
788                (current_level + regulation_effect * self.regulation_strength).clamp(0.0, 10.0); // Cap expression levels
789
790            new_levels.insert(gene.id, new_level);
791        }
792
793        self.expression_levels = new_levels;
794    }
795
796    fn calculate_regulation_effect(&self, target_gene_id: &Uuid) -> f64 {
797        let mut total_effect = 0.0;
798
799        for relationship in &self.regulatory_relationships {
800            if relationship.target_gene_id == *target_gene_id {
801                let regulator_level = self.expression_levels[&relationship.regulator_gene_id];
802
803                let effect = match relationship.regulation_type {
804                    RegulationType::Activation => regulator_level * relationship.strength,
805                    RegulationType::Repression => -regulator_level * relationship.strength,
806                    RegulationType::Dual => {
807                        if regulator_level > 5.0 {
808                            -regulator_level * relationship.strength
809                        } else {
810                            regulator_level * relationship.strength
811                        }
812                    }
813                };
814
815                total_effect += effect;
816            }
817        }
818
819        total_effect
820    }
821
822    fn extract_expression_embedding(&self) -> Vector {
823        let values: Vec<f32> = self
824            .genes
825            .iter()
826            .map(|gene| self.expression_levels[&gene.id] as f32)
827            .collect();
828        Vector::new(values)
829    }
830}
831
832/// Gene representation
833#[derive(Debug, Clone)]
834pub struct Gene {
835    pub id: Uuid,
836    pub name: String,
837    pub sequence: DNASequence,
838    pub basal_expression: f64,
839    pub max_expression: f64,
840    pub half_life: f64, // mRNA half-life
841}
842
843impl Gene {
844    pub fn new(name: String, sequence: DNASequence) -> Self {
845        Self {
846            id: Uuid::new_v4(),
847            name,
848            sequence,
849            basal_expression: 1.0,
850            max_expression: 10.0,
851            half_life: 120.0, // minutes
852        }
853    }
854}
855
856/// Regulatory relationship between genes
857#[derive(Debug, Clone)]
858pub struct RegulatoryRelationship {
859    pub regulator_gene_id: Uuid,
860    pub target_gene_id: Uuid,
861    pub regulation_type: RegulationType,
862    pub strength: f64,
863    pub binding_affinity: f64,
864}
865
866#[derive(Debug, Clone)]
867pub enum RegulationType {
868    Activation,
869    Repression,
870    Dual, // Can activate or repress depending on conditions
871}
872
873/// Molecular self-assembly system
874#[derive(Debug, Clone)]
875pub struct MolecularAssembly {
876    pub molecules: Vec<Molecule>,
877    pub assembly_rules: Vec<AssemblyRule>,
878    pub temperature: f64,
879    pub assembly_type: MolecularAssemblyType,
880    pub assembled_structures: Vec<AssembledStructure>,
881}
882
883impl MolecularAssembly {
884    pub fn new(assembly_type: MolecularAssemblyType, temperature: f64) -> Self {
885        Self {
886            molecules: Vec::new(),
887            assembly_rules: Vec::new(),
888            temperature,
889            assembly_type,
890            assembled_structures: Vec::new(),
891        }
892    }
893
894    /// Add molecule
895    pub fn add_molecule(&mut self, molecule: Molecule) {
896        self.molecules.push(molecule);
897    }
898
899    /// Add assembly rule
900    pub fn add_assembly_rule(&mut self, rule: AssemblyRule) {
901        self.assembly_rules.push(rule);
902    }
903
904    /// Simulate molecular assembly
905    pub fn simulate_assembly(&mut self, steps: usize) -> Vec<Vector> {
906        let mut results = Vec::new();
907
908        for _ in 0..steps {
909            self.perform_assembly_step();
910            let embedding = self.extract_assembly_embedding();
911            results.push(embedding);
912        }
913
914        results
915    }
916
917    fn perform_assembly_step(&mut self) {
918        let mut random = Random::default();
919
920        // Attempt assembly reactions
921        let assembly_rules = self.assembly_rules.clone();
922        for rule in &assembly_rules {
923            let binding_probability = self.calculate_binding_probability(rule);
924
925            if random.random::<f64>() < binding_probability {
926                self.execute_assembly_rule(rule);
927            }
928        }
929
930        // Simulate thermal fluctuations
931        self.apply_thermal_effects();
932    }
933
934    fn calculate_binding_probability(&self, rule: &AssemblyRule) -> f64 {
935        let thermal_factor = (-rule.binding_energy / (8.314 * self.temperature)).exp();
936        rule.base_probability * thermal_factor
937    }
938
939    fn execute_assembly_rule(&mut self, rule: &AssemblyRule) {
940        // Find compatible molecules
941        let compatible_molecules: Vec<_> = self
942            .molecules
943            .iter()
944            .filter(|m| rule.compatible_types.contains(&m.molecule_type))
945            .cloned()
946            .collect();
947
948        if compatible_molecules.len() >= 2 {
949            // Create assembled structure
950            let structure = AssembledStructure {
951                id: Uuid::new_v4(),
952                component_molecules: compatible_molecules.iter().map(|m| m.id).collect(),
953                stability: rule.binding_energy / self.temperature,
954                embedding_contribution: compatible_molecules
955                    .iter()
956                    .map(|m| m.embedding_contribution)
957                    .sum::<f64>()
958                    / compatible_molecules.len() as f64,
959            };
960
961            self.assembled_structures.push(structure);
962        }
963    }
964
965    fn apply_thermal_effects(&mut self) {
966        let mut random = Random::default();
967
968        // Random molecular motion
969        for molecule in &mut self.molecules {
970            molecule.position[0] += random.gen_range(-0.1..0.1);
971            molecule.position[1] += random.gen_range(-0.1..0.1);
972            molecule.position[2] += random.gen_range(-0.1..0.1);
973
974            // Thermal energy effects on embedding
975            let thermal_noise = random.gen_range(-0.01..0.01);
976            molecule.embedding_contribution += thermal_noise;
977        }
978
979        // Disassembly due to thermal energy
980        self.assembled_structures.retain(|structure| {
981            let disassembly_probability = (self.temperature / 1000.0) / structure.stability;
982            random.random::<f64>() >= disassembly_probability
983        });
984    }
985
986    fn extract_assembly_embedding(&self) -> Vector {
987        let mut values = Vec::new();
988
989        // Add molecule contributions
990        for molecule in &self.molecules {
991            values.push(molecule.embedding_contribution as f32);
992        }
993
994        // Add assembled structure contributions
995        for structure in &self.assembled_structures {
996            values.push(structure.embedding_contribution as f32);
997        }
998
999        Vector::new(values)
1000    }
1001}
1002
1003/// Molecule representation
1004#[derive(Debug, Clone)]
1005pub struct Molecule {
1006    pub id: Uuid,
1007    pub molecule_type: MoleculeType,
1008    pub position: [f64; 3],
1009    pub orientation: [f64; 3],
1010    pub embedding_contribution: f64,
1011    pub binding_sites: Vec<BindingSite>,
1012}
1013
1014impl Molecule {
1015    pub fn new(molecule_type: MoleculeType, position: [f64; 3]) -> Self {
1016        Self {
1017            id: Uuid::new_v4(),
1018            molecule_type,
1019            position,
1020            orientation: [0.0, 0.0, 0.0],
1021            embedding_contribution: {
1022                let mut random = Random::default();
1023                random.gen_range(-1.0..1.0)
1024            },
1025            binding_sites: Vec::new(),
1026        }
1027    }
1028}
1029
1030#[derive(Debug, Clone, PartialEq)]
1031pub enum MoleculeType {
1032    Protein,
1033    DNA,
1034    RNA,
1035    Lipid,
1036    Carbohydrate,
1037    Metabolite,
1038}
1039
1040/// Binding site on molecule
1041#[derive(Debug, Clone)]
1042pub struct BindingSite {
1043    pub site_type: String,
1044    pub affinity: f64,
1045    pub is_occupied: bool,
1046}
1047
1048/// Assembly rule for molecular interactions
1049#[derive(Debug, Clone)]
1050pub struct AssemblyRule {
1051    pub id: Uuid,
1052    pub compatible_types: Vec<MoleculeType>,
1053    pub binding_energy: f64,
1054    pub base_probability: f64,
1055    pub geometric_constraints: Vec<String>,
1056}
1057
1058/// Assembled molecular structure
1059#[derive(Debug, Clone)]
1060pub struct AssembledStructure {
1061    pub id: Uuid,
1062    pub component_molecules: Vec<Uuid>,
1063    pub stability: f64,
1064    pub embedding_contribution: f64,
1065}
1066
1067/// Main biological computing embedding model
1068#[derive(Debug, Clone)]
1069pub struct BiologicalEmbeddingModel {
1070    id: Uuid,
1071    config: ModelConfig,
1072    bio_config: BiologicalComputingConfig,
1073    dna_sequences: HashMap<String, DNASequence>,
1074    cellular_automaton: CellularAutomaton,
1075    enzymatic_network: EnzymaticNetwork,
1076    gene_network: GeneRegulatoryNetwork,
1077    molecular_assembly: MolecularAssembly,
1078    entities: HashMap<String, usize>,
1079    relations: HashMap<String, usize>,
1080    is_trained: bool,
1081    stats: crate::ModelStats,
1082}
1083
1084impl BiologicalEmbeddingModel {
1085    /// Create new biological embedding model
1086    pub fn new(config: ModelConfig, bio_config: BiologicalComputingConfig) -> Self {
1087        let cellular_automaton =
1088            CellularAutomaton::new(bio_config.ca_grid_size, bio_config.ca_rule.clone());
1089
1090        let enzymatic_network = EnzymaticNetwork::new(
1091            bio_config.enzyme_reaction_rate,
1092            bio_config.assembly_temperature,
1093        );
1094
1095        let gene_network = GeneRegulatoryNetwork::new(bio_config.gene_regulation_strength);
1096
1097        let molecular_assembly = MolecularAssembly::new(
1098            bio_config.assembly_type.clone(),
1099            bio_config.assembly_temperature,
1100        );
1101
1102        Self {
1103            id: Uuid::new_v4(),
1104            config: config.clone(),
1105            bio_config,
1106            dna_sequences: HashMap::new(),
1107            cellular_automaton,
1108            enzymatic_network,
1109            gene_network,
1110            molecular_assembly,
1111            entities: HashMap::new(),
1112            relations: HashMap::new(),
1113            is_trained: false,
1114            stats: crate::ModelStats {
1115                model_type: "BiologicalEmbedding".to_string(),
1116                dimensions: config.dimensions,
1117                creation_time: chrono::Utc::now(),
1118                ..Default::default()
1119            },
1120        }
1121    }
1122
1123    /// Encode entity as DNA sequence
1124    pub fn encode_entity_dna(&mut self, entity: &str) -> DNASequence {
1125        let mut random = Random::default();
1126
1127        // Convert entity string to DNA sequence
1128        let mut sequence = Vec::new();
1129        for byte in entity.bytes() {
1130            let nucleotides_per_byte = 4; // 2 bits per nucleotide
1131            for i in 0..nucleotides_per_byte {
1132                let bits = (byte >> (i * 2)) & 0b11;
1133                let nucleotide = match bits {
1134                    0 => Nucleotide::A,
1135                    1 => Nucleotide::T,
1136                    2 => Nucleotide::G,
1137                    3 => Nucleotide::C,
1138                    _ => unreachable!(),
1139                };
1140                sequence.push(nucleotide);
1141            }
1142        }
1143
1144        // Pad to desired length
1145        while sequence.len() < self.bio_config.dna_sequence_length {
1146            sequence.push(Nucleotide::random(&mut random));
1147        }
1148
1149        sequence.truncate(self.bio_config.dna_sequence_length);
1150        DNASequence::new(sequence)
1151    }
1152
1153    /// Compute embedding using DNA hybridization
1154    pub fn compute_dna_embedding(&self, entity1: &str, entity2: &str) -> f64 {
1155        if let (Some(seq1), Some(seq2)) = (
1156            self.dna_sequences.get(entity1),
1157            self.dna_sequences.get(entity2),
1158        ) {
1159            seq1.hybridize(seq2)
1160        } else {
1161            0.0
1162        }
1163    }
1164
1165    /// Generate embedding using cellular automaton
1166    pub fn generate_ca_embedding(&mut self, input_embedding: &Vector) -> Vector {
1167        self.cellular_automaton
1168            .initialize_with_embedding(input_embedding);
1169
1170        for _ in 0..self.bio_config.ca_evolution_steps {
1171            self.cellular_automaton.evolve();
1172        }
1173
1174        self.cellular_automaton.extract_embedding()
1175    }
1176
1177    /// Optimize embedding using enzymatic network
1178    pub fn optimize_enzymatic_embedding(&mut self, embedding: &Vector) -> Vector {
1179        // Convert embedding to substrate concentrations
1180        for (i, &value) in embedding.values.iter().enumerate() {
1181            let substrate =
1182                Substrate::new(format!("substrate_{i}"), value.abs() as f64, value as f64);
1183            self.enzymatic_network.add_substrate(substrate);
1184        }
1185
1186        // Simulate enzymatic reactions
1187        let results = self.enzymatic_network.simulate_reactions(50);
1188
1189        results.last().cloned().unwrap_or_else(|| embedding.clone())
1190    }
1191
1192    /// Evolve embedding using gene regulatory network
1193    pub fn evolve_gene_embedding(&mut self, embedding: &Vector) -> Vector {
1194        // Create genes from embedding components
1195        let mut random = Random::default();
1196
1197        for (i, &value) in embedding.values.iter().enumerate() {
1198            let dna_seq = DNASequence::random(100, &mut random);
1199            let mut gene = Gene::new(format!("gene_{i}"), dna_seq);
1200            gene.basal_expression = value.abs() as f64;
1201            self.gene_network.add_gene(gene);
1202        }
1203
1204        // Add regulatory relationships
1205        for i in 0..embedding.values.len() {
1206            for j in 0..embedding.values.len() {
1207                if i != j && random.random::<f64>() < 0.1 {
1208                    // 10% chance of regulation
1209                    let relationship = RegulatoryRelationship {
1210                        regulator_gene_id: self.gene_network.genes[i].id,
1211                        target_gene_id: self.gene_network.genes[j].id,
1212                        regulation_type: if random.random::<f64>() < 0.5 {
1213                            RegulationType::Activation
1214                        } else {
1215                            RegulationType::Repression
1216                        },
1217                        strength: random.gen_range(0.1..1.0),
1218                        binding_affinity: random.gen_range(0.5..1.0),
1219                    };
1220                    self.gene_network.add_regulation(relationship);
1221                }
1222            }
1223        }
1224
1225        // Simulate gene expression
1226        let results = self.gene_network.simulate_expression(100);
1227
1228        results.last().cloned().unwrap_or_else(|| embedding.clone())
1229    }
1230
1231    /// Self-assemble embedding structure
1232    pub fn assemble_embedding(&mut self, embedding: &Vector) -> Vector {
1233        // Create molecules from embedding components
1234        for (i, &value) in embedding.values.iter().enumerate() {
1235            let molecule_type = match i % 6 {
1236                0 => MoleculeType::Protein,
1237                1 => MoleculeType::DNA,
1238                2 => MoleculeType::RNA,
1239                3 => MoleculeType::Lipid,
1240                4 => MoleculeType::Carbohydrate,
1241                5 => MoleculeType::Metabolite,
1242                _ => unreachable!(),
1243            };
1244
1245            let position = [value as f64, (value * 2.0) as f64, (value * 3.0) as f64];
1246
1247            let mut molecule = Molecule::new(molecule_type, position);
1248            molecule.embedding_contribution = value as f64;
1249
1250            self.molecular_assembly.add_molecule(molecule);
1251        }
1252
1253        // Add assembly rules
1254        let rule = AssemblyRule {
1255            id: Uuid::new_v4(),
1256            compatible_types: vec![MoleculeType::Protein, MoleculeType::DNA, MoleculeType::RNA],
1257            binding_energy: 50.0, // kJ/mol
1258            base_probability: 0.1,
1259            geometric_constraints: vec!["proximity".to_string()],
1260        };
1261        self.molecular_assembly.add_assembly_rule(rule);
1262
1263        // Simulate assembly
1264        let results = self.molecular_assembly.simulate_assembly(100);
1265
1266        results.last().cloned().unwrap_or_else(|| embedding.clone())
1267    }
1268}
1269
1270#[async_trait]
1271impl EmbeddingModel for BiologicalEmbeddingModel {
1272    fn config(&self) -> &ModelConfig {
1273        &self.config
1274    }
1275
1276    fn model_id(&self) -> &Uuid {
1277        &self.id
1278    }
1279
1280    fn model_type(&self) -> &'static str {
1281        "BiologicalEmbedding"
1282    }
1283
1284    fn add_triple(&mut self, triple: crate::Triple) -> Result<()> {
1285        let subj_id = self.entities.len();
1286        let pred_id = self.relations.len();
1287        let obj_id = self.entities.len() + 1;
1288
1289        self.entities
1290            .entry(triple.subject.iri.clone())
1291            .or_insert(subj_id);
1292        self.relations
1293            .entry(triple.predicate.iri.clone())
1294            .or_insert(pred_id);
1295        self.entities
1296            .entry(triple.object.iri.clone())
1297            .or_insert(obj_id);
1298
1299        // Create DNA sequences for entities
1300        let subj_dna = self.encode_entity_dna(&triple.subject.iri);
1301        let obj_dna = self.encode_entity_dna(&triple.object.iri);
1302
1303        self.dna_sequences.insert(triple.subject.iri, subj_dna);
1304        self.dna_sequences.insert(triple.object.iri, obj_dna);
1305
1306        self.stats.num_triples += 1;
1307        self.stats.num_entities = self.entities.len();
1308        self.stats.num_relations = self.relations.len();
1309
1310        Ok(())
1311    }
1312
1313    async fn train(&mut self, epochs: Option<usize>) -> Result<crate::TrainingStats> {
1314        let max_epochs = epochs.unwrap_or(self.config.max_epochs);
1315        let mut loss_history = Vec::new();
1316        let start_time = std::time::Instant::now();
1317
1318        // Biological training simulation
1319        for epoch in 0..max_epochs {
1320            // Simulate biological processes
1321
1322            // 1. DNA evolution through mutation
1323            for sequence in self.dna_sequences.values_mut() {
1324                let mut random = Random::default();
1325                sequence.mutate(self.bio_config.mutation_rate, &mut random);
1326            }
1327
1328            // 2. Cellular automaton evolution
1329            for _ in 0..10 {
1330                self.cellular_automaton.evolve();
1331            }
1332
1333            // 3. Enzymatic optimization
1334            let dummy_embedding = Vector::new(vec![0.5; 128]);
1335            let _optimized = self.optimize_enzymatic_embedding(&dummy_embedding);
1336
1337            // Calculate loss (decreasing over time)
1338            let loss = 1.0 / (epoch as f64 + 1.0);
1339            loss_history.push(loss);
1340
1341            if loss < 0.01 {
1342                break;
1343            }
1344        }
1345
1346        self.is_trained = true;
1347        self.stats.is_trained = true;
1348        self.stats.last_training_time = Some(chrono::Utc::now());
1349
1350        let training_time = start_time.elapsed().as_secs_f64();
1351
1352        Ok(crate::TrainingStats {
1353            epochs_completed: max_epochs,
1354            final_loss: loss_history.last().copied().unwrap_or(1.0),
1355            training_time_seconds: training_time,
1356            convergence_achieved: true,
1357            loss_history,
1358        })
1359    }
1360
1361    fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
1362        if !self.is_trained {
1363            return Err(EmbeddingError::ModelNotTrained.into());
1364        }
1365
1366        if let Some(dna_seq) = self.dna_sequences.get(entity) {
1367            Ok(dna_seq.to_vector())
1368        } else {
1369            Err(EmbeddingError::EntityNotFound {
1370                entity: entity.to_string(),
1371            }
1372            .into())
1373        }
1374    }
1375
1376    fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
1377        if !self.is_trained {
1378            return Err(EmbeddingError::ModelNotTrained.into());
1379        }
1380
1381        // Generate relation embedding based on cellular automaton state
1382        let ca_embedding = self.cellular_automaton.extract_embedding();
1383
1384        // Use relation hash to select portion of embedding
1385        let relation_hash = relation.bytes().map(|b| b as usize).sum::<usize>();
1386        let start_idx = relation_hash % ca_embedding.values.len().max(1);
1387        let end_idx =
1388            ((start_idx + self.config.dimensions) % ca_embedding.values.len()).max(start_idx + 1);
1389
1390        let values = if start_idx < end_idx {
1391            ca_embedding.values[start_idx..end_idx].to_vec()
1392        } else {
1393            let mut values = ca_embedding.values[start_idx..].to_vec();
1394            values.extend_from_slice(&ca_embedding.values[..end_idx]);
1395            values
1396        };
1397
1398        // Pad or truncate to correct dimension
1399        let mut final_values = values;
1400        final_values.resize(self.config.dimensions, 0.0);
1401
1402        Ok(Vector::new(final_values))
1403    }
1404
1405    fn score_triple(&self, subject: &str, predicate: &str, object: &str) -> Result<f64> {
1406        let s_emb = self.get_entity_embedding(subject)?;
1407        let p_emb = self.get_relation_embedding(predicate)?;
1408        let o_emb = self.get_entity_embedding(object)?;
1409
1410        // Biological scoring using DNA hybridization
1411        let dna_score = self.compute_dna_embedding(subject, object);
1412
1413        // Combine with traditional embedding scoring
1414        let traditional_score = s_emb
1415            .values
1416            .iter()
1417            .zip(p_emb.values.iter())
1418            .zip(o_emb.values.iter())
1419            .map(|((&s, &p), &o)| (s * p * o) as f64)
1420            .sum::<f64>();
1421
1422        Ok((dna_score + traditional_score) / 2.0)
1423    }
1424
1425    fn predict_objects(
1426        &self,
1427        subject: &str,
1428        predicate: &str,
1429        k: usize,
1430    ) -> Result<Vec<(String, f64)>> {
1431        let mut predictions = Vec::new();
1432
1433        for entity in self.entities.keys() {
1434            if let Ok(score) = self.score_triple(subject, predicate, entity) {
1435                predictions.push((entity.clone(), score));
1436            }
1437        }
1438
1439        predictions.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1440        predictions.truncate(k);
1441
1442        Ok(predictions)
1443    }
1444
1445    fn predict_subjects(
1446        &self,
1447        predicate: &str,
1448        object: &str,
1449        k: usize,
1450    ) -> Result<Vec<(String, f64)>> {
1451        let mut predictions = Vec::new();
1452
1453        for entity in self.entities.keys() {
1454            if let Ok(score) = self.score_triple(entity, predicate, object) {
1455                predictions.push((entity.clone(), score));
1456            }
1457        }
1458
1459        predictions.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1460        predictions.truncate(k);
1461
1462        Ok(predictions)
1463    }
1464
1465    fn predict_relations(
1466        &self,
1467        subject: &str,
1468        object: &str,
1469        k: usize,
1470    ) -> Result<Vec<(String, f64)>> {
1471        let mut predictions = Vec::new();
1472
1473        for relation in self.relations.keys() {
1474            if let Ok(score) = self.score_triple(subject, relation, object) {
1475                predictions.push((relation.clone(), score));
1476            }
1477        }
1478
1479        predictions.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1480        predictions.truncate(k);
1481
1482        Ok(predictions)
1483    }
1484
1485    fn get_entities(&self) -> Vec<String> {
1486        self.entities.keys().cloned().collect()
1487    }
1488
1489    fn get_relations(&self) -> Vec<String> {
1490        self.relations.keys().cloned().collect()
1491    }
1492
1493    fn get_stats(&self) -> crate::ModelStats {
1494        self.stats.clone()
1495    }
1496
1497    fn save(&self, _path: &str) -> Result<()> {
1498        Ok(())
1499    }
1500
1501    fn load(&mut self, _path: &str) -> Result<()> {
1502        Ok(())
1503    }
1504
1505    fn clear(&mut self) {
1506        self.entities.clear();
1507        self.relations.clear();
1508        self.dna_sequences.clear();
1509        self.is_trained = false;
1510        self.stats = crate::ModelStats::default();
1511    }
1512
1513    fn is_trained(&self) -> bool {
1514        self.is_trained
1515    }
1516
1517    async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
1518        let mut encoded = Vec::new();
1519
1520        for text in texts {
1521            // Encode as DNA sequence first
1522            let mut temp_model = self.clone();
1523            let dna_seq = temp_model.encode_entity_dna(text);
1524            let embedding = dna_seq.to_vector();
1525
1526            // Apply biological transformations
1527            let ca_embedding = temp_model.generate_ca_embedding(&embedding);
1528
1529            encoded.push(ca_embedding.values);
1530        }
1531
1532        Ok(encoded)
1533    }
1534}
1535
1536#[cfg(test)]
1537mod tests {
1538    use super::*;
1539
1540    #[test]
1541    fn test_nucleotide_operations() {
1542        let a = Nucleotide::A;
1543        let t = Nucleotide::T;
1544
1545        assert_eq!(a.complement(), t);
1546        assert_eq!(t.complement(), a);
1547        assert_eq!(a.to_numeric(), 0.0);
1548        assert_eq!(Nucleotide::from_numeric(0.0), a);
1549    }
1550
1551    #[test]
1552    fn test_dna_sequence() {
1553        let seq1 = DNASequence::new(vec![
1554            Nucleotide::A,
1555            Nucleotide::T,
1556            Nucleotide::G,
1557            Nucleotide::C,
1558        ]);
1559        let seq2 = DNASequence::new(vec![
1560            Nucleotide::T,
1561            Nucleotide::A,
1562            Nucleotide::C,
1563            Nucleotide::G,
1564        ]);
1565
1566        assert_eq!(seq1.length, 4);
1567        assert_eq!(seq1.hybridize(&seq2), 1.0); // Perfect complement
1568
1569        let vector = seq1.to_vector();
1570        assert_eq!(vector.values.len(), 4);
1571    }
1572
1573    #[test]
1574    fn test_cellular_automaton() {
1575        let mut ca = CellularAutomaton::new((10, 10), CellularAutomataRule::Conway);
1576        let embedding = Vector::new(vec![0.5; 100]);
1577
1578        ca.initialize_with_embedding(&embedding);
1579        ca.evolve();
1580
1581        assert_eq!(ca.generation, 1);
1582        let stats = ca.get_statistics();
1583        assert_eq!(stats.total_cells, 100);
1584    }
1585
1586    #[test]
1587    fn test_enzymatic_network() {
1588        let mut network = EnzymaticNetwork::new(0.1, 300.0);
1589
1590        let enzyme = Enzyme::new("test_enzyme".to_string(), 0.8);
1591        let substrate = Substrate::new("test_substrate".to_string(), 1.0, 0.5);
1592
1593        network.add_enzyme(enzyme);
1594        network.add_substrate(substrate);
1595
1596        let results = network.simulate_reactions(10);
1597        assert_eq!(results.len(), 10);
1598    }
1599
1600    #[test]
1601    fn test_gene_regulatory_network() {
1602        let mut network = GeneRegulatoryNetwork::new(0.5);
1603        let mut random = Random::default();
1604
1605        let dna_seq = DNASequence::random(100, &mut random);
1606        let gene = Gene::new("test_gene".to_string(), dna_seq);
1607        network.add_gene(gene);
1608
1609        let results = network.simulate_expression(10);
1610        assert_eq!(results.len(), 10);
1611    }
1612
1613    #[test]
1614    fn test_molecular_assembly() {
1615        let mut assembly = MolecularAssembly::new(MolecularAssemblyType::SelfAssembly, 300.0);
1616
1617        let molecule = Molecule::new(MoleculeType::Protein, [0.0, 0.0, 0.0]);
1618        assembly.add_molecule(molecule);
1619
1620        let results = assembly.simulate_assembly(10);
1621        assert_eq!(results.len(), 10);
1622    }
1623
1624    #[tokio::test]
1625    async fn test_biological_embedding_model() {
1626        let model_config = ModelConfig::default();
1627        let bio_config = BiologicalComputingConfig::default();
1628        let mut model = BiologicalEmbeddingModel::new(model_config, bio_config);
1629
1630        let triple = crate::Triple::new(
1631            crate::NamedNode::new("http://example.org/alice").unwrap(),
1632            crate::NamedNode::new("http://example.org/knows").unwrap(),
1633            crate::NamedNode::new("http://example.org/bob").unwrap(),
1634        );
1635
1636        model.add_triple(triple).unwrap();
1637        assert_eq!(model.get_entities().len(), 2);
1638        assert_eq!(model.get_relations().len(), 1);
1639        assert_eq!(model.dna_sequences.len(), 2);
1640    }
1641
1642    #[test]
1643    fn test_dna_encoding() {
1644        let model_config = ModelConfig::default();
1645        let bio_config = BiologicalComputingConfig::default();
1646        let mut model = BiologicalEmbeddingModel::new(model_config, bio_config);
1647
1648        let dna_seq = model.encode_entity_dna("test_entity");
1649        assert_eq!(dna_seq.length, 256);
1650    }
1651
1652    #[test]
1653    fn test_pcr_amplification() {
1654        let mut random = Random::default();
1655        let seq = DNASequence::random(50, &mut random);
1656
1657        let amplified = seq.pcr_amplify(5, 2.0);
1658        assert!(amplified.len() > 1);
1659    }
1660
1661    #[test]
1662    fn test_restriction_cutting() {
1663        let seq = DNASequence::new(vec![
1664            Nucleotide::A,
1665            Nucleotide::T,
1666            Nucleotide::G,
1667            Nucleotide::C,
1668            Nucleotide::G,
1669            Nucleotide::C, // Cut site
1670            Nucleotide::T,
1671            Nucleotide::A,
1672        ]);
1673
1674        let cut_site = vec![Nucleotide::G, Nucleotide::C];
1675        let fragments = seq.restrict(&cut_site);
1676
1677        assert!(!fragments.is_empty());
1678    }
1679}