1use anyhow::{anyhow, Result};
8use chrono::{DateTime, Utc};
9use scirs2_core::random::{Random, Rng};
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, VecDeque};
12use std::sync::{Arc, RwLock};
13use std::time::{Duration, Instant};
14use tokio::sync::Mutex;
15use uuid::Uuid;
16
17#[derive(Debug)]
19pub struct AdvancedProfiler {
20 config: ProfilerConfig,
22 sessions: Arc<RwLock<HashMap<String, ProfilingSession>>>,
24 collector: Arc<Mutex<PerformanceCollector>>,
26 analyzer: PerformanceAnalyzer,
28 recommender: OptimizationRecommender,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct ProfilerConfig {
35 pub max_sessions: usize,
37 pub sampling_rate: f64,
39 pub buffer_size: usize,
41 pub analysis_window_seconds: u64,
43 pub enable_memory_profiling: bool,
45 pub enable_cpu_profiling: bool,
47 pub enable_gpu_profiling: bool,
49 pub enable_network_profiling: bool,
51}
52
53impl Default for ProfilerConfig {
54 fn default() -> Self {
55 Self {
56 max_sessions: 10,
57 sampling_rate: 0.01, buffer_size: 100000,
59 analysis_window_seconds: 300, enable_memory_profiling: true,
61 enable_cpu_profiling: true,
62 enable_gpu_profiling: true,
63 enable_network_profiling: true,
64 }
65 }
66}
67
68#[derive(Debug, Clone, Serialize, Deserialize)]
70pub struct ProfilingSession {
71 pub session_id: String,
73 pub name: String,
75 pub start_time: DateTime<Utc>,
77 pub end_time: Option<DateTime<Utc>>,
79 pub status: SessionStatus,
81 pub metrics: Vec<MetricDataPoint>,
83 pub tags: HashMap<String, String>,
85}
86
87#[derive(Debug, Clone, Serialize, Deserialize)]
89pub enum SessionStatus {
90 Active,
91 Completed,
92 Failed(String),
93 Cancelled,
94}
95
96#[derive(Debug)]
98pub struct PerformanceCollector {
99 buffer: VecDeque<MetricDataPoint>,
101 stats: CollectionStats,
103 trackers: HashMap<String, PerformanceTracker>,
105}
106
107#[derive(Debug, Clone, Serialize, Deserialize)]
109pub struct MetricDataPoint {
110 pub timestamp: DateTime<Utc>,
112 pub metric_name: String,
114 pub value: f64,
116 pub unit: String,
118 pub metadata: HashMap<String, String>,
120 pub thread_id: Option<String>,
122 pub component: String,
124}
125
126#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct CollectionStats {
129 pub total_points: u64,
131 pub collection_rate: f64,
133 pub memory_usage_bytes: u64,
135 pub drop_rate: f64,
137}
138
139impl Default for CollectionStats {
140 fn default() -> Self {
141 Self {
142 total_points: 0,
143 collection_rate: 0.0,
144 memory_usage_bytes: 0,
145 drop_rate: 0.0,
146 }
147 }
148}
149
150#[derive(Debug, Clone)]
152pub struct PerformanceTracker {
153 pub name: String,
155 pub start_time: Instant,
157 pub measurements: Vec<TimedMeasurement>,
159 pub state: TrackerState,
161}
162
163#[derive(Debug, Clone)]
165pub struct TimedMeasurement {
166 pub timestamp: Duration,
168 pub measurement_type: MeasurementType,
170 pub value: f64,
172 pub context: String,
174}
175
176#[derive(Debug, Clone, Serialize, Deserialize)]
178pub enum MeasurementType {
179 Latency,
180 Throughput,
181 MemoryUsage,
182 CpuUsage,
183 GpuUsage,
184 NetworkLatency,
185 DiskIo,
186 CacheHitRate,
187 ErrorRate,
188 QueueLength,
189}
190
191#[derive(Debug, Clone)]
193pub enum TrackerState {
194 Active,
195 Paused,
196 Stopped,
197}
198
199#[derive(Debug)]
201pub struct PerformanceAnalyzer {
202 algorithms: Vec<AnalysisAlgorithm>,
204 pattern_detector: PatternDetector,
206 anomaly_detector: AnomalyDetector,
208}
209
210#[derive(Debug, Clone)]
212pub struct AnalysisAlgorithm {
213 pub name: String,
215 pub algorithm_type: AlgorithmType,
217 pub parameters: HashMap<String, f64>,
219}
220
221#[derive(Debug, Clone, Serialize, Deserialize)]
223pub enum AlgorithmType {
224 TrendAnalysis,
225 BottleneckDetection,
226 PerformanceRegression,
227 ResourceUtilization,
228 CapacityPlanning,
229 LoadBalancing,
230}
231
232#[derive(Debug)]
234#[allow(dead_code)]
235pub struct PatternDetector {
236 patterns: Vec<PerformancePattern>,
238 templates: Vec<PatternTemplate>,
240}
241
242#[derive(Debug, Clone, Serialize, Deserialize)]
244pub struct PerformancePattern {
245 pub id: String,
247 pub pattern_type: PatternType,
249 pub confidence: f64,
251 pub time_window: (DateTime<Utc>, DateTime<Utc>),
253 pub affected_components: Vec<String>,
255 pub description: String,
257}
258
259#[derive(Debug, Clone, Serialize, Deserialize)]
261pub enum PatternType {
262 PeriodicSpike,
263 GradualDegradation,
264 SuddenDrop,
265 MemoryLeak,
266 ThresholdBreach,
267 LoadPattern,
268 SeasonalVariation,
269}
270
271#[derive(Debug, Clone)]
273pub struct PatternTemplate {
274 pub name: String,
276 pub signature: PatternSignature,
278 pub criteria: MatchingCriteria,
280}
281
282#[derive(Debug, Clone)]
284pub struct PatternSignature {
285 pub characteristics: Vec<StatisticalCharacteristic>,
287 pub temporal_features: Vec<TemporalFeature>,
289}
290
291#[derive(Debug, Clone)]
293pub struct StatisticalCharacteristic {
294 pub metric: String,
296 pub property: StatisticalProperty,
298 pub value_range: (f64, f64),
300}
301
302#[derive(Debug, Clone)]
304pub enum StatisticalProperty {
305 Mean,
306 Median,
307 StandardDeviation,
308 Variance,
309 Skewness,
310 Kurtosis,
311 Percentile(u8),
312}
313
314#[derive(Debug, Clone)]
316pub struct TemporalFeature {
317 pub feature_type: TemporalFeatureType,
319 pub time_scale: Duration,
321 pub threshold: f64,
323}
324
325#[derive(Debug, Clone)]
327pub enum TemporalFeatureType {
328 Periodicity,
329 Trend,
330 Seasonality,
331 Autocorrelation,
332 ChangePoint,
333}
334
335#[derive(Debug, Clone)]
337pub struct MatchingCriteria {
338 pub min_confidence: f64,
340 pub min_data_points: usize,
342 pub time_window_requirements: TimeWindowRequirements,
344}
345
346#[derive(Debug, Clone)]
348pub struct TimeWindowRequirements {
349 pub min_duration: Duration,
351 pub max_duration: Duration,
353 pub coverage_ratio: f64,
355}
356
357#[derive(Debug)]
359#[allow(dead_code)]
360pub struct AnomalyDetector {
361 algorithms: Vec<AnomalyAlgorithm>,
363 anomalies: Vec<PerformanceAnomaly>,
365 baselines: HashMap<String, BaselineModel>,
367}
368
369#[derive(Debug, Clone)]
371pub struct AnomalyAlgorithm {
372 pub name: String,
374 pub algorithm_type: AnomalyAlgorithmType,
376 pub sensitivity: f64,
378 pub config: HashMap<String, f64>,
380}
381
382#[derive(Debug, Clone, Serialize, Deserialize)]
384pub enum AnomalyAlgorithmType {
385 StatisticalOutlier,
386 IsolationForest,
387 LocalOutlierFactor,
388 OneClassSvm,
389 AutoEncoder,
390 TimeSeriesAnomaly,
391}
392
393#[derive(Debug, Clone, Serialize, Deserialize)]
395pub struct PerformanceAnomaly {
396 pub id: String,
398 pub anomaly_type: AnomalyType,
400 pub severity: AnomalySeverity,
402 pub detected_at: DateTime<Utc>,
404 pub affected_metrics: Vec<String>,
406 pub anomaly_score: f64,
408 pub context: AnomalyContext,
410}
411
412#[derive(Debug, Clone, Serialize, Deserialize)]
414pub enum AnomalyType {
415 LatencySpike,
416 ThroughputDrop,
417 MemoryLeak,
418 CpuSaturation,
419 ErrorRateIncrease,
420 ResourceStarvation,
421 UnexpectedPattern,
422}
423
424#[derive(Debug, Clone, Serialize, Deserialize)]
426pub enum AnomalySeverity {
427 Low,
428 Medium,
429 High,
430 Critical,
431}
432
433#[derive(Debug, Clone, Serialize, Deserialize)]
435pub struct AnomalyContext {
436 pub component: String,
438 pub related_events: Vec<String>,
440 pub environmental_factors: HashMap<String, String>,
442 pub potential_causes: Vec<String>,
444}
445
446#[derive(Debug, Clone)]
448pub struct BaselineModel {
449 pub name: String,
451 pub distribution: StatisticalDistribution,
453 pub temporal_characteristics: TemporalCharacteristics,
455 pub confidence: f64,
457 pub last_updated: DateTime<Utc>,
459}
460
461#[derive(Debug, Clone)]
463pub struct StatisticalDistribution {
464 pub distribution_type: DistributionType,
466 pub parameters: Vec<f64>,
468 pub goodness_of_fit: f64,
470}
471
472#[derive(Debug, Clone)]
474pub enum DistributionType {
475 Normal,
476 LogNormal,
477 Exponential,
478 Gamma,
479 Beta,
480 Weibull,
481 Custom,
482}
483
484#[derive(Debug, Clone)]
486pub struct TemporalCharacteristics {
487 pub seasonality: Vec<SeasonalComponent>,
489 pub trend: TrendInformation,
491 pub autocorrelation: AutocorrelationStructure,
493}
494
495#[derive(Debug, Clone)]
497pub struct SeasonalComponent {
498 pub period: Duration,
500 pub amplitude: f64,
502 pub phase: f64,
504 pub strength: f64,
506}
507
508#[derive(Debug, Clone)]
510pub struct TrendInformation {
511 pub direction: TrendDirection,
513 pub strength: f64,
515 pub linear_coefficient: f64,
517 pub polynomial_coefficients: Vec<f64>,
519}
520
521#[derive(Debug, Clone)]
523pub enum TrendDirection {
524 Increasing,
525 Decreasing,
526 Stable,
527 Oscillating,
528}
529
530#[derive(Debug, Clone)]
532pub struct AutocorrelationStructure {
533 pub lag_correlations: Vec<(Duration, f64)>,
535 pub partial_autocorrelations: Vec<(Duration, f64)>,
537 pub significant_lags: Vec<Duration>,
539}
540
541#[derive(Debug)]
543#[allow(dead_code)]
544pub struct OptimizationRecommender {
545 rules: Vec<RecommendationRule>,
547 recommendations: Vec<OptimizationRecommendation>,
549 history: VecDeque<RecommendationHistory>,
551}
552
553#[derive(Debug, Clone, Serialize, Deserialize)]
555pub struct OptimizationRecommendation {
556 pub id: String,
558 pub recommendation_type: RecommendationType,
560 pub priority: RecommendationPriority,
562 pub component: String,
564 pub current_state: String,
566 pub recommended_state: String,
568 pub expected_improvement: ExpectedImprovement,
570 pub implementation_effort: ImplementationEffort,
572 pub risk_assessment: RiskAssessment,
574 pub description: String,
576 pub implementation_steps: Vec<String>,
578}
579
580#[derive(Debug, Clone, Serialize, Deserialize)]
582pub enum RecommendationType {
583 ResourceScaling,
584 ConfigurationTuning,
585 CacheOptimization,
586 LoadBalancing,
587 HardwareUpgrade,
588 SoftwareUpdate,
589 ArchitecturalChange,
590 ProcessOptimization,
591}
592
593#[derive(Debug, Clone, Serialize, Deserialize)]
595pub enum RecommendationPriority {
596 Low,
597 Medium,
598 High,
599 Critical,
600}
601
602#[derive(Debug, Clone, Serialize, Deserialize)]
604pub struct ExpectedImprovement {
605 pub latency_improvement_percent: f64,
607 pub throughput_improvement_percent: f64,
609 pub resource_savings_percent: f64,
611 pub cost_reduction_percent: f64,
613 pub confidence: f64,
615}
616
617#[derive(Debug, Clone, Serialize, Deserialize)]
619pub struct ImplementationEffort {
620 pub estimated_hours: f64,
622 pub required_skills: Vec<String>,
624 pub complexity: ComplexityLevel,
626 pub dependencies: Vec<String>,
628}
629
630#[derive(Debug, Clone, Serialize, Deserialize)]
632pub enum ComplexityLevel {
633 Low,
634 Medium,
635 High,
636 VeryHigh,
637}
638
639#[derive(Debug, Clone, Serialize, Deserialize)]
641pub struct RiskAssessment {
642 pub risk_level: RiskLevel,
644 pub potential_impacts: Vec<PotentialImpact>,
646 pub mitigation_strategies: Vec<String>,
648 pub rollback_plan: String,
650}
651
652#[derive(Debug, Clone, Serialize, Deserialize)]
654pub enum RiskLevel {
655 Low,
656 Medium,
657 High,
658 Critical,
659}
660
661#[derive(Debug, Clone, Serialize, Deserialize)]
663pub struct PotentialImpact {
664 pub impact_type: ImpactType,
666 pub severity: ImpactSeverity,
668 pub probability: f64,
670 pub description: String,
672}
673
674#[derive(Debug, Clone, Serialize, Deserialize)]
676pub enum ImpactType {
677 PerformanceDegradation,
678 ServiceDisruption,
679 DataLoss,
680 SecurityVulnerability,
681 IncreasedCosts,
682 UserExperience,
683}
684
685#[derive(Debug, Clone, Serialize, Deserialize)]
687pub enum ImpactSeverity {
688 Negligible,
689 Minor,
690 Moderate,
691 Major,
692 Severe,
693}
694
695#[derive(Debug, Clone)]
697pub struct RecommendationRule {
698 pub name: String,
700 pub conditions: Vec<TriggerCondition>,
702 pub recommendation_template: RecommendationTemplate,
704 pub priority: i32,
706}
707
708#[derive(Debug, Clone)]
710pub struct TriggerCondition {
711 pub metric: String,
713 pub operator: ComparisonOperator,
715 pub threshold: f64,
717 pub time_window: Duration,
719}
720
721#[derive(Debug, Clone)]
723pub enum ComparisonOperator {
724 GreaterThan,
725 LessThan,
726 GreaterThanOrEqual,
727 LessThanOrEqual,
728 Equal,
729 NotEqual,
730 Between(f64, f64),
731}
732
733#[derive(Debug, Clone)]
735pub struct RecommendationTemplate {
736 pub recommendation_type: RecommendationType,
738 pub description_template: String,
740 pub default_priority: RecommendationPriority,
742 pub default_effort: ImplementationEffort,
744}
745
746#[derive(Debug, Clone)]
748pub struct RecommendationHistory {
749 pub recommendation_id: String,
751 pub implemented_at: Option<DateTime<Utc>>,
753 pub actual_improvement: Option<ExpectedImprovement>,
755 pub feedback: Option<String>,
757 pub success_rating: Option<f64>,
759}
760
761impl AdvancedProfiler {
762 pub fn new(config: ProfilerConfig) -> Self {
764 Self {
765 config,
766 sessions: Arc::new(RwLock::new(HashMap::new())),
767 collector: Arc::new(Mutex::new(PerformanceCollector::new())),
768 analyzer: PerformanceAnalyzer::new(),
769 recommender: OptimizationRecommender::new(),
770 }
771 }
772
773 pub async fn start_session(
775 &self,
776 name: String,
777 tags: HashMap<String, String>,
778 ) -> Result<String> {
779 let session_id = Uuid::new_v4().to_string();
780 let session = ProfilingSession {
781 session_id: session_id.clone(),
782 name,
783 start_time: Utc::now(),
784 end_time: None,
785 status: SessionStatus::Active,
786 metrics: Vec::new(),
787 tags,
788 };
789
790 let mut sessions = self
791 .sessions
792 .write()
793 .map_err(|e| anyhow!("Lock error: {}", e))?;
794
795 if sessions.len() >= self.config.max_sessions {
796 return Err(anyhow!("Maximum number of sessions reached"));
797 }
798
799 sessions.insert(session_id.clone(), session);
800 Ok(session_id)
801 }
802
803 pub async fn stop_session(&self, session_id: &str) -> Result<ProfilingSession> {
805 let mut sessions = self
806 .sessions
807 .write()
808 .map_err(|e| anyhow!("Lock error: {}", e))?;
809
810 if let Some(mut session) = sessions.remove(session_id) {
811 session.end_time = Some(Utc::now());
812 session.status = SessionStatus::Completed;
813 Ok(session)
814 } else {
815 Err(anyhow!("Session not found: {}", session_id))
816 }
817 }
818
819 pub async fn record_metric(&self, metric: MetricDataPoint) -> Result<()> {
821 let random_sample = {
822 let mut random = Random::default();
823 random.random::<f64>()
824 };
825 if random_sample > self.config.sampling_rate {
826 return Ok(()); }
828
829 let mut collector = self.collector.lock().await;
830 collector.add_metric(metric);
831 Ok(())
832 }
833
834 pub async fn get_results(&self, session_id: &str) -> Result<ProfilingSession> {
836 let sessions = self
837 .sessions
838 .read()
839 .map_err(|e| anyhow!("Lock error: {}", e))?;
840 sessions
841 .get(session_id)
842 .cloned()
843 .ok_or_else(|| anyhow!("Session not found: {}", session_id))
844 }
845
846 pub async fn analyze_performance(&self, session_id: &str) -> Result<PerformanceAnalysisReport> {
848 let session = self.get_results(session_id).await?;
849 let collector = self.collector.lock().await;
850
851 self.analyzer.analyze(&session, &collector.buffer).await
852 }
853
854 pub async fn generate_recommendations(
856 &self,
857 session_id: &str,
858 ) -> Result<Vec<OptimizationRecommendation>> {
859 let analysis = self.analyze_performance(session_id).await?;
860 self.recommender.generate_recommendations(&analysis).await
861 }
862}
863
864impl Default for PerformanceCollector {
865 fn default() -> Self {
866 Self::new()
867 }
868}
869
870impl PerformanceCollector {
871 pub fn new() -> Self {
873 Self {
874 buffer: VecDeque::new(),
875 stats: CollectionStats::default(),
876 trackers: HashMap::new(),
877 }
878 }
879
880 pub fn add_metric(&mut self, metric: MetricDataPoint) {
882 if self.buffer.len() >= 100000 {
883 self.buffer.pop_front();
885 self.stats.drop_rate += 1.0;
886 }
887
888 self.buffer.push_back(metric);
889 self.stats.total_points += 1;
890 self.stats.memory_usage_bytes =
891 (self.buffer.len() * std::mem::size_of::<MetricDataPoint>()) as u64;
892 }
893
894 pub fn start_tracker(&mut self, name: String) -> String {
896 let tracker = PerformanceTracker {
897 name: name.clone(),
898 start_time: Instant::now(),
899 measurements: Vec::new(),
900 state: TrackerState::Active,
901 };
902
903 self.trackers.insert(name.clone(), tracker);
904 name
905 }
906
907 pub fn stop_tracker(&mut self, name: &str) -> Option<PerformanceTracker> {
909 if let Some(mut tracker) = self.trackers.remove(name) {
910 tracker.state = TrackerState::Stopped;
911 Some(tracker)
912 } else {
913 None
914 }
915 }
916}
917
918impl Default for PerformanceAnalyzer {
919 fn default() -> Self {
920 Self::new()
921 }
922}
923
924impl PerformanceAnalyzer {
925 pub fn new() -> Self {
927 Self {
928 algorithms: Self::default_algorithms(),
929 pattern_detector: PatternDetector::new(),
930 anomaly_detector: AnomalyDetector::new(),
931 }
932 }
933
934 fn default_algorithms() -> Vec<AnalysisAlgorithm> {
936 vec![
937 AnalysisAlgorithm {
938 name: "Trend Analysis".to_string(),
939 algorithm_type: AlgorithmType::TrendAnalysis,
940 parameters: HashMap::from([
941 ("window_size".to_string(), 300.0),
942 ("significance_threshold".to_string(), 0.05),
943 ]),
944 },
945 AnalysisAlgorithm {
946 name: "Bottleneck Detection".to_string(),
947 algorithm_type: AlgorithmType::BottleneckDetection,
948 parameters: HashMap::from([
949 ("threshold_percentile".to_string(), 95.0),
950 ("min_duration".to_string(), 10.0),
951 ]),
952 },
953 ]
954 }
955
956 pub async fn analyze(
958 &self,
959 session: &ProfilingSession,
960 data: &VecDeque<MetricDataPoint>,
961 ) -> Result<PerformanceAnalysisReport> {
962 let mut report = PerformanceAnalysisReport::new(session.session_id.clone());
963
964 for algorithm in &self.algorithms {
966 let analysis_result = self.run_algorithm(algorithm, data).await?;
967 report.add_analysis_result(analysis_result);
968 }
969
970 let patterns = self.pattern_detector.detect_patterns(data).await?;
972 report.set_detected_patterns(patterns);
973
974 let anomalies = self.anomaly_detector.detect_anomalies(data).await?;
976 report.set_detected_anomalies(anomalies);
977
978 Ok(report)
979 }
980
981 async fn run_algorithm(
983 &self,
984 algorithm: &AnalysisAlgorithm,
985 _data: &VecDeque<MetricDataPoint>,
986 ) -> Result<AnalysisResult> {
987 Ok(AnalysisResult {
989 algorithm_name: algorithm.name.clone(),
990 result_type: algorithm.algorithm_type.clone(),
991 findings: vec![Finding {
992 title: "Sample Finding".to_string(),
993 description: "This is a sample finding for demonstration".to_string(),
994 severity: FindingSeverity::Medium,
995 confidence: 0.8,
996 affected_metrics: vec!["latency".to_string()],
997 recommendations: vec!["Consider optimization".to_string()],
998 }],
999 execution_time: Duration::from_millis(100),
1000 })
1001 }
1002}
1003
1004impl Default for PatternDetector {
1005 fn default() -> Self {
1006 Self::new()
1007 }
1008}
1009
1010impl PatternDetector {
1011 pub fn new() -> Self {
1013 Self {
1014 patterns: Vec::new(),
1015 templates: Self::default_templates(),
1016 }
1017 }
1018
1019 fn default_templates() -> Vec<PatternTemplate> {
1021 vec![PatternTemplate {
1022 name: "Memory Leak Pattern".to_string(),
1023 signature: PatternSignature {
1024 characteristics: vec![StatisticalCharacteristic {
1025 metric: "memory_usage".to_string(),
1026 property: StatisticalProperty::Mean,
1027 value_range: (0.0, f64::INFINITY),
1028 }],
1029 temporal_features: vec![TemporalFeature {
1030 feature_type: TemporalFeatureType::Trend,
1031 time_scale: Duration::from_secs(3600),
1032 threshold: 0.1,
1033 }],
1034 },
1035 criteria: MatchingCriteria {
1036 min_confidence: 0.7,
1037 min_data_points: 100,
1038 time_window_requirements: TimeWindowRequirements {
1039 min_duration: Duration::from_secs(300),
1040 max_duration: Duration::from_secs(86400),
1041 coverage_ratio: 0.8,
1042 },
1043 },
1044 }]
1045 }
1046
1047 pub async fn detect_patterns(
1049 &self,
1050 data: &VecDeque<MetricDataPoint>,
1051 ) -> Result<Vec<PerformancePattern>> {
1052 let mut detected_patterns = Vec::new();
1053
1054 for template in &self.templates {
1055 if let Some(pattern) = self.match_template(template, data).await? {
1056 detected_patterns.push(pattern);
1057 }
1058 }
1059
1060 Ok(detected_patterns)
1061 }
1062
1063 async fn match_template(
1065 &self,
1066 template: &PatternTemplate,
1067 data: &VecDeque<MetricDataPoint>,
1068 ) -> Result<Option<PerformancePattern>> {
1069 if data.len() >= template.criteria.min_data_points {
1071 Ok(Some(PerformancePattern {
1072 id: Uuid::new_v4().to_string(),
1073 pattern_type: PatternType::MemoryLeak,
1074 confidence: 0.8,
1075 time_window: (Utc::now() - chrono::Duration::hours(1), Utc::now()),
1076 affected_components: vec!["embedding_service".to_string()],
1077 description: "Potential memory leak detected".to_string(),
1078 }))
1079 } else {
1080 Ok(None)
1081 }
1082 }
1083}
1084
1085impl Default for AnomalyDetector {
1086 fn default() -> Self {
1087 Self::new()
1088 }
1089}
1090
1091impl AnomalyDetector {
1092 pub fn new() -> Self {
1094 Self {
1095 algorithms: Self::default_algorithms(),
1096 anomalies: Vec::new(),
1097 baselines: HashMap::new(),
1098 }
1099 }
1100
1101 fn default_algorithms() -> Vec<AnomalyAlgorithm> {
1103 vec![
1104 AnomalyAlgorithm {
1105 name: "Statistical Outlier".to_string(),
1106 algorithm_type: AnomalyAlgorithmType::StatisticalOutlier,
1107 sensitivity: 0.95,
1108 config: HashMap::from([
1109 ("z_threshold".to_string(), 3.0),
1110 ("window_size".to_string(), 100.0),
1111 ]),
1112 },
1113 AnomalyAlgorithm {
1114 name: "Isolation Forest".to_string(),
1115 algorithm_type: AnomalyAlgorithmType::IsolationForest,
1116 sensitivity: 0.1,
1117 config: HashMap::from([
1118 ("contamination".to_string(), 0.1),
1119 ("n_estimators".to_string(), 100.0),
1120 ]),
1121 },
1122 ]
1123 }
1124
1125 pub async fn detect_anomalies(
1127 &self,
1128 data: &VecDeque<MetricDataPoint>,
1129 ) -> Result<Vec<PerformanceAnomaly>> {
1130 let mut detected_anomalies = Vec::new();
1131
1132 for algorithm in &self.algorithms {
1133 let anomalies = self.run_anomaly_algorithm(algorithm, data).await?;
1134 detected_anomalies.extend(anomalies);
1135 }
1136
1137 Ok(detected_anomalies)
1138 }
1139
1140 async fn run_anomaly_algorithm(
1142 &self,
1143 _algorithm: &AnomalyAlgorithm,
1144 _data: &VecDeque<MetricDataPoint>,
1145 ) -> Result<Vec<PerformanceAnomaly>> {
1146 Ok(vec![PerformanceAnomaly {
1148 id: Uuid::new_v4().to_string(),
1149 anomaly_type: AnomalyType::LatencySpike,
1150 severity: AnomalySeverity::Medium,
1151 detected_at: Utc::now(),
1152 affected_metrics: vec!["response_time".to_string()],
1153 anomaly_score: 0.85,
1154 context: AnomalyContext {
1155 component: "embedding_service".to_string(),
1156 related_events: vec!["high_load_event".to_string()],
1157 environmental_factors: HashMap::from([
1158 ("cpu_usage".to_string(), "high".to_string()),
1159 ("memory_pressure".to_string(), "moderate".to_string()),
1160 ]),
1161 potential_causes: vec![
1162 "Resource contention".to_string(),
1163 "Memory pressure".to_string(),
1164 ],
1165 },
1166 }])
1167 }
1168}
1169
1170impl Default for OptimizationRecommender {
1171 fn default() -> Self {
1172 Self::new()
1173 }
1174}
1175
1176impl OptimizationRecommender {
1177 pub fn new() -> Self {
1179 Self {
1180 rules: Self::default_rules(),
1181 recommendations: Vec::new(),
1182 history: VecDeque::new(),
1183 }
1184 }
1185
1186 fn default_rules() -> Vec<RecommendationRule> {
1188 vec![
1189 RecommendationRule {
1190 name: "High Memory Usage".to_string(),
1191 conditions: vec![
1192 TriggerCondition {
1193 metric: "memory_usage_percent".to_string(),
1194 operator: ComparisonOperator::GreaterThan,
1195 threshold: 85.0,
1196 time_window: Duration::from_secs(300),
1197 }
1198 ],
1199 recommendation_template: RecommendationTemplate {
1200 recommendation_type: RecommendationType::ResourceScaling,
1201 description_template: "Memory usage is consistently high. Consider increasing memory allocation or optimizing memory usage.".to_string(),
1202 default_priority: RecommendationPriority::High,
1203 default_effort: ImplementationEffort {
1204 estimated_hours: 4.0,
1205 required_skills: vec!["System Administration".to_string(), "Performance Tuning".to_string()],
1206 complexity: ComplexityLevel::Medium,
1207 dependencies: vec!["Resource availability".to_string()],
1208 },
1209 },
1210 priority: 100,
1211 }
1212 ]
1213 }
1214
1215 pub async fn generate_recommendations(
1217 &self,
1218 analysis: &PerformanceAnalysisReport,
1219 ) -> Result<Vec<OptimizationRecommendation>> {
1220 let mut recommendations = Vec::new();
1221
1222 for rule in &self.rules {
1224 if self.evaluate_rule_conditions(rule, analysis).await? {
1225 let recommendation = self.create_recommendation_from_rule(rule, analysis).await?;
1226 recommendations.push(recommendation);
1227 }
1228 }
1229
1230 Ok(recommendations)
1231 }
1232
1233 async fn evaluate_rule_conditions(
1235 &self,
1236 _rule: &RecommendationRule,
1237 _analysis: &PerformanceAnalysisReport,
1238 ) -> Result<bool> {
1239 Ok(true)
1241 }
1242
1243 async fn create_recommendation_from_rule(
1245 &self,
1246 rule: &RecommendationRule,
1247 _analysis: &PerformanceAnalysisReport,
1248 ) -> Result<OptimizationRecommendation> {
1249 Ok(OptimizationRecommendation {
1250 id: Uuid::new_v4().to_string(),
1251 recommendation_type: rule.recommendation_template.recommendation_type.clone(),
1252 priority: rule.recommendation_template.default_priority.clone(),
1253 component: "embedding_service".to_string(),
1254 current_state: "Memory usage at 90%".to_string(),
1255 recommended_state: "Memory usage below 80%".to_string(),
1256 expected_improvement: ExpectedImprovement {
1257 latency_improvement_percent: 15.0,
1258 throughput_improvement_percent: 10.0,
1259 resource_savings_percent: 5.0,
1260 cost_reduction_percent: 0.0,
1261 confidence: 0.8,
1262 },
1263 implementation_effort: rule.recommendation_template.default_effort.clone(),
1264 risk_assessment: RiskAssessment {
1265 risk_level: RiskLevel::Low,
1266 potential_impacts: vec![PotentialImpact {
1267 impact_type: ImpactType::ServiceDisruption,
1268 severity: ImpactSeverity::Minor,
1269 probability: 0.1,
1270 description: "Brief service interruption during scaling".to_string(),
1271 }],
1272 mitigation_strategies: vec![
1273 "Schedule during low-traffic period".to_string(),
1274 "Use rolling updates".to_string(),
1275 ],
1276 rollback_plan: "Revert to previous resource allocation if issues occur".to_string(),
1277 },
1278 description: rule.recommendation_template.description_template.clone(),
1279 implementation_steps: vec![
1280 "Monitor current resource usage".to_string(),
1281 "Plan resource scaling strategy".to_string(),
1282 "Implement changes during maintenance window".to_string(),
1283 "Monitor performance after changes".to_string(),
1284 ],
1285 })
1286 }
1287}
1288
1289#[derive(Debug, Clone, Serialize, Deserialize)]
1291pub struct PerformanceAnalysisReport {
1292 pub id: String,
1294 pub session_id: String,
1296 pub generated_at: DateTime<Utc>,
1298 pub analysis_results: Vec<AnalysisResult>,
1300 pub detected_patterns: Vec<PerformancePattern>,
1302 pub detected_anomalies: Vec<PerformanceAnomaly>,
1304 pub health_score: f64,
1306 pub summary: String,
1308}
1309
1310impl PerformanceAnalysisReport {
1311 pub fn new(session_id: String) -> Self {
1313 Self {
1314 id: Uuid::new_v4().to_string(),
1315 session_id,
1316 generated_at: Utc::now(),
1317 analysis_results: Vec::new(),
1318 detected_patterns: Vec::new(),
1319 detected_anomalies: Vec::new(),
1320 health_score: 100.0,
1321 summary: "Analysis in progress".to_string(),
1322 }
1323 }
1324
1325 pub fn add_analysis_result(&mut self, result: AnalysisResult) {
1327 self.analysis_results.push(result);
1328 }
1329
1330 pub fn set_detected_patterns(&mut self, patterns: Vec<PerformancePattern>) {
1332 self.detected_patterns = patterns;
1333 }
1334
1335 pub fn set_detected_anomalies(&mut self, anomalies: Vec<PerformanceAnomaly>) {
1337 self.detected_anomalies = anomalies;
1338 }
1339}
1340
1341#[derive(Debug, Clone, Serialize, Deserialize)]
1343pub struct AnalysisResult {
1344 pub algorithm_name: String,
1346 pub result_type: AlgorithmType,
1348 pub findings: Vec<Finding>,
1350 pub execution_time: Duration,
1352}
1353
1354#[derive(Debug, Clone, Serialize, Deserialize)]
1356pub struct Finding {
1357 pub title: String,
1359 pub description: String,
1361 pub severity: FindingSeverity,
1363 pub confidence: f64,
1365 pub affected_metrics: Vec<String>,
1367 pub recommendations: Vec<String>,
1369}
1370
1371#[derive(Debug, Clone, Serialize, Deserialize)]
1373pub enum FindingSeverity {
1374 Info,
1375 Low,
1376 Medium,
1377 High,
1378 Critical,
1379}
1380
1381#[cfg(test)]
1382mod tests {
1383 use super::*;
1384 use std::collections::HashMap;
1385
1386 #[test]
1387 fn test_profiler_config_default() {
1388 let config = ProfilerConfig::default();
1389 assert_eq!(config.max_sessions, 10);
1390 assert_eq!(config.sampling_rate, 0.01);
1391 assert!(config.enable_memory_profiling);
1392 assert!(config.enable_cpu_profiling);
1393 }
1394
1395 #[test]
1396 fn test_profiling_session_creation() {
1397 let session = ProfilingSession {
1398 session_id: "test-session".to_string(),
1399 name: "Test Session".to_string(),
1400 start_time: Utc::now(),
1401 end_time: None,
1402 status: SessionStatus::Active,
1403 metrics: Vec::new(),
1404 tags: HashMap::new(),
1405 };
1406
1407 assert_eq!(session.session_id, "test-session");
1408 assert_eq!(session.name, "Test Session");
1409 assert!(matches!(session.status, SessionStatus::Active));
1410 }
1411
1412 #[test]
1413 fn test_metric_data_point_creation() {
1414 let metric = MetricDataPoint {
1415 timestamp: Utc::now(),
1416 metric_name: "cpu_usage".to_string(),
1417 value: 75.5,
1418 unit: "percent".to_string(),
1419 metadata: HashMap::new(),
1420 thread_id: Some("thread-1".to_string()),
1421 component: "embedding_service".to_string(),
1422 };
1423
1424 assert_eq!(metric.metric_name, "cpu_usage");
1425 assert_eq!(metric.value, 75.5);
1426 assert_eq!(metric.unit, "percent");
1427 }
1428
1429 #[test]
1430 fn test_performance_collector() {
1431 let mut collector = PerformanceCollector::new();
1432
1433 let metric = MetricDataPoint {
1434 timestamp: Utc::now(),
1435 metric_name: "test_metric".to_string(),
1436 value: 100.0,
1437 unit: "units".to_string(),
1438 metadata: HashMap::new(),
1439 thread_id: None,
1440 component: "test".to_string(),
1441 };
1442
1443 collector.add_metric(metric);
1444 assert_eq!(collector.stats.total_points, 1);
1445 assert_eq!(collector.buffer.len(), 1);
1446 }
1447
1448 #[test]
1449 fn test_performance_tracker() {
1450 let mut collector = PerformanceCollector::new();
1451 let tracker_id = collector.start_tracker("test_tracker".to_string());
1452
1453 assert_eq!(tracker_id, "test_tracker");
1454 assert!(collector.trackers.contains_key("test_tracker"));
1455
1456 let tracker = collector.stop_tracker("test_tracker");
1457 assert!(tracker.is_some());
1458 assert!(matches!(tracker.unwrap().state, TrackerState::Stopped));
1459 }
1460
1461 #[test]
1462 fn test_anomaly_creation() {
1463 let anomaly = PerformanceAnomaly {
1464 id: "test-anomaly".to_string(),
1465 anomaly_type: AnomalyType::LatencySpike,
1466 severity: AnomalySeverity::High,
1467 detected_at: Utc::now(),
1468 affected_metrics: vec!["latency".to_string()],
1469 anomaly_score: 0.9,
1470 context: AnomalyContext {
1471 component: "test_component".to_string(),
1472 related_events: Vec::new(),
1473 environmental_factors: HashMap::new(),
1474 potential_causes: Vec::new(),
1475 },
1476 };
1477
1478 assert_eq!(anomaly.id, "test-anomaly");
1479 assert!(matches!(anomaly.anomaly_type, AnomalyType::LatencySpike));
1480 assert!(matches!(anomaly.severity, AnomalySeverity::High));
1481 }
1482
1483 #[test]
1484 fn test_optimization_recommendation() {
1485 let recommendation = OptimizationRecommendation {
1486 id: "test-rec".to_string(),
1487 recommendation_type: RecommendationType::ResourceScaling,
1488 priority: RecommendationPriority::High,
1489 component: "test_component".to_string(),
1490 current_state: "Current state".to_string(),
1491 recommended_state: "Recommended state".to_string(),
1492 expected_improvement: ExpectedImprovement {
1493 latency_improvement_percent: 20.0,
1494 throughput_improvement_percent: 15.0,
1495 resource_savings_percent: 10.0,
1496 cost_reduction_percent: 5.0,
1497 confidence: 0.8,
1498 },
1499 implementation_effort: ImplementationEffort {
1500 estimated_hours: 8.0,
1501 required_skills: vec!["DevOps".to_string()],
1502 complexity: ComplexityLevel::Medium,
1503 dependencies: Vec::new(),
1504 },
1505 risk_assessment: RiskAssessment {
1506 risk_level: RiskLevel::Low,
1507 potential_impacts: Vec::new(),
1508 mitigation_strategies: Vec::new(),
1509 rollback_plan: "Rollback plan".to_string(),
1510 },
1511 description: "Test recommendation".to_string(),
1512 implementation_steps: Vec::new(),
1513 };
1514
1515 assert_eq!(recommendation.id, "test-rec");
1516 assert!(matches!(
1517 recommendation.recommendation_type,
1518 RecommendationType::ResourceScaling
1519 ));
1520 assert_eq!(
1521 recommendation
1522 .expected_improvement
1523 .latency_improvement_percent,
1524 20.0
1525 );
1526 }
1527
1528 #[tokio::test]
1529 async fn test_profiler_session_lifecycle() {
1530 let config = ProfilerConfig::default();
1531 let profiler = AdvancedProfiler::new(config);
1532
1533 let session_id = profiler
1535 .start_session("Test Session".to_string(), HashMap::new())
1536 .await
1537 .unwrap();
1538 assert!(!session_id.is_empty());
1539
1540 let session = profiler.stop_session(&session_id).await.unwrap();
1542 assert!(matches!(session.status, SessionStatus::Completed));
1543 assert!(session.end_time.is_some());
1544 }
1545
1546 #[tokio::test]
1547 async fn test_metric_recording() {
1548 let config = ProfilerConfig::default();
1549 let profiler = AdvancedProfiler::new(config);
1550
1551 let metric = MetricDataPoint {
1552 timestamp: Utc::now(),
1553 metric_name: "test_metric".to_string(),
1554 value: 50.0,
1555 unit: "ms".to_string(),
1556 metadata: HashMap::new(),
1557 thread_id: None,
1558 component: "test".to_string(),
1559 };
1560
1561 let result = profiler.record_metric(metric).await;
1562 assert!(result.is_ok());
1563 }
1564
1565 #[test]
1566 fn test_pattern_detection_components() {
1567 let detector = PatternDetector::new();
1568 assert!(!detector.templates.is_empty());
1569
1570 let template = &detector.templates[0];
1571 assert_eq!(template.name, "Memory Leak Pattern");
1572 assert!(!template.signature.characteristics.is_empty());
1573 }
1574
1575 #[test]
1576 fn test_anomaly_detection_components() {
1577 let detector = AnomalyDetector::new();
1578 assert!(!detector.algorithms.is_empty());
1579
1580 let algorithm = &detector.algorithms[0];
1581 assert_eq!(algorithm.name, "Statistical Outlier");
1582 assert!(matches!(
1583 algorithm.algorithm_type,
1584 AnomalyAlgorithmType::StatisticalOutlier
1585 ));
1586 }
1587
1588 #[test]
1589 fn test_recommendation_rules() {
1590 let recommender = OptimizationRecommender::new();
1591 assert!(!recommender.rules.is_empty());
1592
1593 let rule = &recommender.rules[0];
1594 assert_eq!(rule.name, "High Memory Usage");
1595 assert!(!rule.conditions.is_empty());
1596 }
1597}