oxirs_embed/
advanced_profiler.rs

1//! Advanced Performance Profiler
2//!
3//! This module provides comprehensive performance profiling capabilities
4//! for embedding models with deep insights, bottleneck analysis, and
5//! optimization recommendations.
6
7use anyhow::{anyhow, Result};
8use chrono::{DateTime, Utc};
9use scirs2_core::random::{Random, Rng};
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, VecDeque};
12use std::sync::{Arc, RwLock};
13use std::time::{Duration, Instant};
14use tokio::sync::Mutex;
15use uuid::Uuid;
16
17/// Advanced performance profiler for embedding systems
18#[derive(Debug)]
19pub struct AdvancedProfiler {
20    /// Configuration for profiling
21    config: ProfilerConfig,
22    /// Active profiling sessions
23    sessions: Arc<RwLock<HashMap<String, ProfilingSession>>>,
24    /// Performance data collector
25    collector: Arc<Mutex<PerformanceCollector>>,
26    /// Analysis engine
27    analyzer: PerformanceAnalyzer,
28    /// Optimization recommender
29    recommender: OptimizationRecommender,
30}
31
32/// Configuration for advanced profiling
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct ProfilerConfig {
35    /// Maximum number of concurrent profiling sessions
36    pub max_sessions: usize,
37    /// Sampling rate (0.0 to 1.0)
38    pub sampling_rate: f64,
39    /// Buffer size for performance data
40    pub buffer_size: usize,
41    /// Analysis window size in seconds
42    pub analysis_window_seconds: u64,
43    /// Enable memory profiling
44    pub enable_memory_profiling: bool,
45    /// Enable CPU profiling
46    pub enable_cpu_profiling: bool,
47    /// Enable GPU profiling
48    pub enable_gpu_profiling: bool,
49    /// Enable network profiling
50    pub enable_network_profiling: bool,
51}
52
53impl Default for ProfilerConfig {
54    fn default() -> Self {
55        Self {
56            max_sessions: 10,
57            sampling_rate: 0.01, // 1% sampling
58            buffer_size: 100000,
59            analysis_window_seconds: 300, // 5 minutes
60            enable_memory_profiling: true,
61            enable_cpu_profiling: true,
62            enable_gpu_profiling: true,
63            enable_network_profiling: true,
64        }
65    }
66}
67
68/// Individual profiling session
69#[derive(Debug, Clone, Serialize, Deserialize)]
70pub struct ProfilingSession {
71    /// Session identifier
72    pub session_id: String,
73    /// Session name
74    pub name: String,
75    /// Start timestamp
76    pub start_time: DateTime<Utc>,
77    /// End timestamp (if completed)
78    pub end_time: Option<DateTime<Utc>>,
79    /// Session status
80    pub status: SessionStatus,
81    /// Collected metrics
82    pub metrics: Vec<MetricDataPoint>,
83    /// Session tags
84    pub tags: HashMap<String, String>,
85}
86
87/// Status of a profiling session
88#[derive(Debug, Clone, Serialize, Deserialize)]
89pub enum SessionStatus {
90    Active,
91    Completed,
92    Failed(String),
93    Cancelled,
94}
95
96/// Performance data collector
97#[derive(Debug)]
98pub struct PerformanceCollector {
99    /// Data buffer
100    buffer: VecDeque<MetricDataPoint>,
101    /// Collection statistics
102    stats: CollectionStats,
103    /// Active trackers
104    trackers: HashMap<String, PerformanceTracker>,
105}
106
107/// Individual metric data point
108#[derive(Debug, Clone, Serialize, Deserialize)]
109pub struct MetricDataPoint {
110    /// Timestamp
111    pub timestamp: DateTime<Utc>,
112    /// Metric name
113    pub metric_name: String,
114    /// Metric value
115    pub value: f64,
116    /// Unit of measurement
117    pub unit: String,
118    /// Additional metadata
119    pub metadata: HashMap<String, String>,
120    /// Thread/process ID
121    pub thread_id: Option<String>,
122    /// Component being measured
123    pub component: String,
124}
125
126/// Collection statistics
127#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct CollectionStats {
129    /// Total data points collected
130    pub total_points: u64,
131    /// Collection rate (points per second)
132    pub collection_rate: f64,
133    /// Memory usage for collection
134    pub memory_usage_bytes: u64,
135    /// Drop rate (when buffer is full)
136    pub drop_rate: f64,
137}
138
139impl Default for CollectionStats {
140    fn default() -> Self {
141        Self {
142            total_points: 0,
143            collection_rate: 0.0,
144            memory_usage_bytes: 0,
145            drop_rate: 0.0,
146        }
147    }
148}
149
150/// Performance tracker for specific components
151#[derive(Debug, Clone)]
152pub struct PerformanceTracker {
153    /// Tracker name
154    pub name: String,
155    /// Start time
156    pub start_time: Instant,
157    /// Collected measurements
158    pub measurements: Vec<TimedMeasurement>,
159    /// Tracker state
160    pub state: TrackerState,
161}
162
163/// Timed measurement
164#[derive(Debug, Clone)]
165pub struct TimedMeasurement {
166    /// Relative timestamp
167    pub timestamp: Duration,
168    /// Measurement type
169    pub measurement_type: MeasurementType,
170    /// Value
171    pub value: f64,
172    /// Context information
173    pub context: String,
174}
175
176/// Types of measurements
177#[derive(Debug, Clone, Serialize, Deserialize)]
178pub enum MeasurementType {
179    Latency,
180    Throughput,
181    MemoryUsage,
182    CpuUsage,
183    GpuUsage,
184    NetworkLatency,
185    DiskIo,
186    CacheHitRate,
187    ErrorRate,
188    QueueLength,
189}
190
191/// Tracker state
192#[derive(Debug, Clone)]
193pub enum TrackerState {
194    Active,
195    Paused,
196    Stopped,
197}
198
199/// Performance analysis engine
200#[derive(Debug)]
201pub struct PerformanceAnalyzer {
202    /// Analysis algorithms
203    algorithms: Vec<AnalysisAlgorithm>,
204    /// Pattern detection
205    pattern_detector: PatternDetector,
206    /// Anomaly detection
207    anomaly_detector: AnomalyDetector,
208}
209
210/// Analysis algorithm interface
211#[derive(Debug, Clone)]
212pub struct AnalysisAlgorithm {
213    /// Algorithm name
214    pub name: String,
215    /// Algorithm type
216    pub algorithm_type: AlgorithmType,
217    /// Configuration parameters
218    pub parameters: HashMap<String, f64>,
219}
220
221/// Types of analysis algorithms
222#[derive(Debug, Clone, Serialize, Deserialize)]
223pub enum AlgorithmType {
224    TrendAnalysis,
225    BottleneckDetection,
226    PerformanceRegression,
227    ResourceUtilization,
228    CapacityPlanning,
229    LoadBalancing,
230}
231
232/// Pattern detection system
233#[derive(Debug)]
234#[allow(dead_code)]
235pub struct PatternDetector {
236    /// Detected patterns
237    patterns: Vec<PerformancePattern>,
238    /// Pattern templates
239    templates: Vec<PatternTemplate>,
240}
241
242/// Detected performance pattern
243#[derive(Debug, Clone, Serialize, Deserialize)]
244pub struct PerformancePattern {
245    /// Pattern identifier
246    pub id: String,
247    /// Pattern type
248    pub pattern_type: PatternType,
249    /// Confidence score
250    pub confidence: f64,
251    /// Time window
252    pub time_window: (DateTime<Utc>, DateTime<Utc>),
253    /// Affected components
254    pub affected_components: Vec<String>,
255    /// Pattern description
256    pub description: String,
257}
258
259/// Types of performance patterns
260#[derive(Debug, Clone, Serialize, Deserialize)]
261pub enum PatternType {
262    PeriodicSpike,
263    GradualDegradation,
264    SuddenDrop,
265    MemoryLeak,
266    ThresholdBreach,
267    LoadPattern,
268    SeasonalVariation,
269}
270
271/// Pattern template for recognition
272#[derive(Debug, Clone)]
273pub struct PatternTemplate {
274    /// Template name
275    pub name: String,
276    /// Pattern signature
277    pub signature: PatternSignature,
278    /// Matching criteria
279    pub criteria: MatchingCriteria,
280}
281
282/// Pattern signature
283#[derive(Debug, Clone)]
284pub struct PatternSignature {
285    /// Statistical characteristics
286    pub characteristics: Vec<StatisticalCharacteristic>,
287    /// Temporal features
288    pub temporal_features: Vec<TemporalFeature>,
289}
290
291/// Statistical characteristic
292#[derive(Debug, Clone)]
293pub struct StatisticalCharacteristic {
294    /// Metric name
295    pub metric: String,
296    /// Statistical property
297    pub property: StatisticalProperty,
298    /// Expected value range
299    pub value_range: (f64, f64),
300}
301
302/// Statistical properties
303#[derive(Debug, Clone)]
304pub enum StatisticalProperty {
305    Mean,
306    Median,
307    StandardDeviation,
308    Variance,
309    Skewness,
310    Kurtosis,
311    Percentile(u8),
312}
313
314/// Temporal feature
315#[derive(Debug, Clone)]
316pub struct TemporalFeature {
317    /// Feature type
318    pub feature_type: TemporalFeatureType,
319    /// Time scale
320    pub time_scale: Duration,
321    /// Threshold
322    pub threshold: f64,
323}
324
325/// Types of temporal features
326#[derive(Debug, Clone)]
327pub enum TemporalFeatureType {
328    Periodicity,
329    Trend,
330    Seasonality,
331    Autocorrelation,
332    ChangePoint,
333}
334
335/// Matching criteria for pattern recognition
336#[derive(Debug, Clone)]
337pub struct MatchingCriteria {
338    /// Minimum confidence required
339    pub min_confidence: f64,
340    /// Required data points
341    pub min_data_points: usize,
342    /// Time window requirements
343    pub time_window_requirements: TimeWindowRequirements,
344}
345
346/// Time window requirements
347#[derive(Debug, Clone)]
348pub struct TimeWindowRequirements {
349    /// Minimum duration
350    pub min_duration: Duration,
351    /// Maximum duration
352    pub max_duration: Duration,
353    /// Required coverage ratio
354    pub coverage_ratio: f64,
355}
356
357/// Anomaly detection system
358#[derive(Debug)]
359#[allow(dead_code)]
360pub struct AnomalyDetector {
361    /// Detection algorithms
362    algorithms: Vec<AnomalyAlgorithm>,
363    /// Detected anomalies
364    anomalies: Vec<PerformanceAnomaly>,
365    /// Baseline models
366    baselines: HashMap<String, BaselineModel>,
367}
368
369/// Anomaly detection algorithm
370#[derive(Debug, Clone)]
371pub struct AnomalyAlgorithm {
372    /// Algorithm name
373    pub name: String,
374    /// Algorithm type
375    pub algorithm_type: AnomalyAlgorithmType,
376    /// Sensitivity level
377    pub sensitivity: f64,
378    /// Configuration
379    pub config: HashMap<String, f64>,
380}
381
382/// Types of anomaly detection algorithms
383#[derive(Debug, Clone, Serialize, Deserialize)]
384pub enum AnomalyAlgorithmType {
385    StatisticalOutlier,
386    IsolationForest,
387    LocalOutlierFactor,
388    OneClassSvm,
389    AutoEncoder,
390    TimeSeriesAnomaly,
391}
392
393/// Detected performance anomaly
394#[derive(Debug, Clone, Serialize, Deserialize)]
395pub struct PerformanceAnomaly {
396    /// Anomaly identifier
397    pub id: String,
398    /// Anomaly type
399    pub anomaly_type: AnomalyType,
400    /// Severity level
401    pub severity: AnomalySeverity,
402    /// Detection timestamp
403    pub detected_at: DateTime<Utc>,
404    /// Affected metrics
405    pub affected_metrics: Vec<String>,
406    /// Anomaly score
407    pub anomaly_score: f64,
408    /// Context information
409    pub context: AnomalyContext,
410}
411
412/// Types of anomalies
413#[derive(Debug, Clone, Serialize, Deserialize)]
414pub enum AnomalyType {
415    LatencySpike,
416    ThroughputDrop,
417    MemoryLeak,
418    CpuSaturation,
419    ErrorRateIncrease,
420    ResourceStarvation,
421    UnexpectedPattern,
422}
423
424/// Anomaly severity levels
425#[derive(Debug, Clone, Serialize, Deserialize)]
426pub enum AnomalySeverity {
427    Low,
428    Medium,
429    High,
430    Critical,
431}
432
433/// Anomaly context information
434#[derive(Debug, Clone, Serialize, Deserialize)]
435pub struct AnomalyContext {
436    /// Component affected
437    pub component: String,
438    /// Related events
439    pub related_events: Vec<String>,
440    /// Environmental factors
441    pub environmental_factors: HashMap<String, String>,
442    /// Potential causes
443    pub potential_causes: Vec<String>,
444}
445
446/// Baseline model for normal behavior
447#[derive(Debug, Clone)]
448pub struct BaselineModel {
449    /// Model name
450    pub name: String,
451    /// Statistical distribution
452    pub distribution: StatisticalDistribution,
453    /// Temporal characteristics
454    pub temporal_characteristics: TemporalCharacteristics,
455    /// Model confidence
456    pub confidence: f64,
457    /// Last update timestamp
458    pub last_updated: DateTime<Utc>,
459}
460
461/// Statistical distribution model
462#[derive(Debug, Clone)]
463pub struct StatisticalDistribution {
464    /// Distribution type
465    pub distribution_type: DistributionType,
466    /// Parameters
467    pub parameters: Vec<f64>,
468    /// Goodness of fit
469    pub goodness_of_fit: f64,
470}
471
472/// Types of statistical distributions
473#[derive(Debug, Clone)]
474pub enum DistributionType {
475    Normal,
476    LogNormal,
477    Exponential,
478    Gamma,
479    Beta,
480    Weibull,
481    Custom,
482}
483
484/// Temporal characteristics of metrics
485#[derive(Debug, Clone)]
486pub struct TemporalCharacteristics {
487    /// Seasonality components
488    pub seasonality: Vec<SeasonalComponent>,
489    /// Trend information
490    pub trend: TrendInformation,
491    /// Autocorrelation structure
492    pub autocorrelation: AutocorrelationStructure,
493}
494
495/// Seasonal component
496#[derive(Debug, Clone)]
497pub struct SeasonalComponent {
498    /// Period length
499    pub period: Duration,
500    /// Amplitude
501    pub amplitude: f64,
502    /// Phase offset
503    pub phase: f64,
504    /// Strength
505    pub strength: f64,
506}
507
508/// Trend information
509#[derive(Debug, Clone)]
510pub struct TrendInformation {
511    /// Trend direction
512    pub direction: TrendDirection,
513    /// Trend strength
514    pub strength: f64,
515    /// Linear coefficient
516    pub linear_coefficient: f64,
517    /// Polynomial coefficients (if applicable)
518    pub polynomial_coefficients: Vec<f64>,
519}
520
521/// Trend direction
522#[derive(Debug, Clone)]
523pub enum TrendDirection {
524    Increasing,
525    Decreasing,
526    Stable,
527    Oscillating,
528}
529
530/// Autocorrelation structure
531#[derive(Debug, Clone)]
532pub struct AutocorrelationStructure {
533    /// Lag correlations
534    pub lag_correlations: Vec<(Duration, f64)>,
535    /// Partial autocorrelations
536    pub partial_autocorrelations: Vec<(Duration, f64)>,
537    /// Significant lags
538    pub significant_lags: Vec<Duration>,
539}
540
541/// Optimization recommender system
542#[derive(Debug)]
543#[allow(dead_code)]
544pub struct OptimizationRecommender {
545    /// Recommendation rules
546    rules: Vec<RecommendationRule>,
547    /// Generated recommendations
548    recommendations: Vec<OptimizationRecommendation>,
549    /// Recommendation history
550    history: VecDeque<RecommendationHistory>,
551}
552
553/// Optimization recommendation
554#[derive(Debug, Clone, Serialize, Deserialize)]
555pub struct OptimizationRecommendation {
556    /// Recommendation identifier
557    pub id: String,
558    /// Recommendation type
559    pub recommendation_type: RecommendationType,
560    /// Priority level
561    pub priority: RecommendationPriority,
562    /// Affected component
563    pub component: String,
564    /// Current value/state
565    pub current_state: String,
566    /// Recommended value/state
567    pub recommended_state: String,
568    /// Expected improvement
569    pub expected_improvement: ExpectedImprovement,
570    /// Implementation effort
571    pub implementation_effort: ImplementationEffort,
572    /// Risk assessment
573    pub risk_assessment: RiskAssessment,
574    /// Detailed description
575    pub description: String,
576    /// Implementation steps
577    pub implementation_steps: Vec<String>,
578}
579
580/// Types of optimization recommendations
581#[derive(Debug, Clone, Serialize, Deserialize)]
582pub enum RecommendationType {
583    ResourceScaling,
584    ConfigurationTuning,
585    CacheOptimization,
586    LoadBalancing,
587    HardwareUpgrade,
588    SoftwareUpdate,
589    ArchitecturalChange,
590    ProcessOptimization,
591}
592
593/// Recommendation priority levels
594#[derive(Debug, Clone, Serialize, Deserialize)]
595pub enum RecommendationPriority {
596    Low,
597    Medium,
598    High,
599    Critical,
600}
601
602/// Expected improvement metrics
603#[derive(Debug, Clone, Serialize, Deserialize)]
604pub struct ExpectedImprovement {
605    /// Latency improvement (percentage)
606    pub latency_improvement_percent: f64,
607    /// Throughput improvement (percentage)
608    pub throughput_improvement_percent: f64,
609    /// Resource savings (percentage)
610    pub resource_savings_percent: f64,
611    /// Cost reduction (percentage)
612    pub cost_reduction_percent: f64,
613    /// Confidence in estimates
614    pub confidence: f64,
615}
616
617/// Implementation effort assessment
618#[derive(Debug, Clone, Serialize, Deserialize)]
619pub struct ImplementationEffort {
620    /// Estimated time (hours)
621    pub estimated_hours: f64,
622    /// Required skills
623    pub required_skills: Vec<String>,
624    /// Complexity level
625    pub complexity: ComplexityLevel,
626    /// Dependencies
627    pub dependencies: Vec<String>,
628}
629
630/// Complexity levels
631#[derive(Debug, Clone, Serialize, Deserialize)]
632pub enum ComplexityLevel {
633    Low,
634    Medium,
635    High,
636    VeryHigh,
637}
638
639/// Risk assessment for recommendations
640#[derive(Debug, Clone, Serialize, Deserialize)]
641pub struct RiskAssessment {
642    /// Overall risk level
643    pub risk_level: RiskLevel,
644    /// Potential impacts
645    pub potential_impacts: Vec<PotentialImpact>,
646    /// Mitigation strategies
647    pub mitigation_strategies: Vec<String>,
648    /// Rollback plan
649    pub rollback_plan: String,
650}
651
652/// Risk levels
653#[derive(Debug, Clone, Serialize, Deserialize)]
654pub enum RiskLevel {
655    Low,
656    Medium,
657    High,
658    Critical,
659}
660
661/// Potential impact of changes
662#[derive(Debug, Clone, Serialize, Deserialize)]
663pub struct PotentialImpact {
664    /// Impact type
665    pub impact_type: ImpactType,
666    /// Severity
667    pub severity: ImpactSeverity,
668    /// Probability
669    pub probability: f64,
670    /// Description
671    pub description: String,
672}
673
674/// Types of potential impacts
675#[derive(Debug, Clone, Serialize, Deserialize)]
676pub enum ImpactType {
677    PerformanceDegradation,
678    ServiceDisruption,
679    DataLoss,
680    SecurityVulnerability,
681    IncreasedCosts,
682    UserExperience,
683}
684
685/// Impact severity levels
686#[derive(Debug, Clone, Serialize, Deserialize)]
687pub enum ImpactSeverity {
688    Negligible,
689    Minor,
690    Moderate,
691    Major,
692    Severe,
693}
694
695/// Recommendation rule
696#[derive(Debug, Clone)]
697pub struct RecommendationRule {
698    /// Rule name
699    pub name: String,
700    /// Trigger conditions
701    pub conditions: Vec<TriggerCondition>,
702    /// Generated recommendation template
703    pub recommendation_template: RecommendationTemplate,
704    /// Rule priority
705    pub priority: i32,
706}
707
708/// Trigger condition for recommendations
709#[derive(Debug, Clone)]
710pub struct TriggerCondition {
711    /// Metric name
712    pub metric: String,
713    /// Comparison operator
714    pub operator: ComparisonOperator,
715    /// Threshold value
716    pub threshold: f64,
717    /// Time window for evaluation
718    pub time_window: Duration,
719}
720
721/// Comparison operators
722#[derive(Debug, Clone)]
723pub enum ComparisonOperator {
724    GreaterThan,
725    LessThan,
726    GreaterThanOrEqual,
727    LessThanOrEqual,
728    Equal,
729    NotEqual,
730    Between(f64, f64),
731}
732
733/// Template for generating recommendations
734#[derive(Debug, Clone)]
735pub struct RecommendationTemplate {
736    /// Recommendation type
737    pub recommendation_type: RecommendationType,
738    /// Template description
739    pub description_template: String,
740    /// Default priority
741    pub default_priority: RecommendationPriority,
742    /// Default implementation effort
743    pub default_effort: ImplementationEffort,
744}
745
746/// Historical recommendation data
747#[derive(Debug, Clone)]
748pub struct RecommendationHistory {
749    /// Recommendation ID
750    pub recommendation_id: String,
751    /// Implementation date
752    pub implemented_at: Option<DateTime<Utc>>,
753    /// Actual improvement achieved
754    pub actual_improvement: Option<ExpectedImprovement>,
755    /// Implementation feedback
756    pub feedback: Option<String>,
757    /// Success rating
758    pub success_rating: Option<f64>,
759}
760
761impl AdvancedProfiler {
762    /// Create a new advanced profiler
763    pub fn new(config: ProfilerConfig) -> Self {
764        Self {
765            config,
766            sessions: Arc::new(RwLock::new(HashMap::new())),
767            collector: Arc::new(Mutex::new(PerformanceCollector::new())),
768            analyzer: PerformanceAnalyzer::new(),
769            recommender: OptimizationRecommender::new(),
770        }
771    }
772
773    /// Start a new profiling session
774    pub async fn start_session(
775        &self,
776        name: String,
777        tags: HashMap<String, String>,
778    ) -> Result<String> {
779        let session_id = Uuid::new_v4().to_string();
780        let session = ProfilingSession {
781            session_id: session_id.clone(),
782            name,
783            start_time: Utc::now(),
784            end_time: None,
785            status: SessionStatus::Active,
786            metrics: Vec::new(),
787            tags,
788        };
789
790        let mut sessions = self
791            .sessions
792            .write()
793            .map_err(|e| anyhow!("Lock error: {}", e))?;
794
795        if sessions.len() >= self.config.max_sessions {
796            return Err(anyhow!("Maximum number of sessions reached"));
797        }
798
799        sessions.insert(session_id.clone(), session);
800        Ok(session_id)
801    }
802
803    /// Stop a profiling session
804    pub async fn stop_session(&self, session_id: &str) -> Result<ProfilingSession> {
805        let mut sessions = self
806            .sessions
807            .write()
808            .map_err(|e| anyhow!("Lock error: {}", e))?;
809
810        if let Some(mut session) = sessions.remove(session_id) {
811            session.end_time = Some(Utc::now());
812            session.status = SessionStatus::Completed;
813            Ok(session)
814        } else {
815            Err(anyhow!("Session not found: {}", session_id))
816        }
817    }
818
819    /// Record a performance metric
820    pub async fn record_metric(&self, metric: MetricDataPoint) -> Result<()> {
821        let random_sample = {
822            let mut random = Random::default();
823            random.random::<f64>()
824        };
825        if random_sample > self.config.sampling_rate {
826            return Ok(()); // Skip due to sampling
827        }
828
829        let mut collector = self.collector.lock().await;
830        collector.add_metric(metric);
831        Ok(())
832    }
833
834    /// Get profiling results
835    pub async fn get_results(&self, session_id: &str) -> Result<ProfilingSession> {
836        let sessions = self
837            .sessions
838            .read()
839            .map_err(|e| anyhow!("Lock error: {}", e))?;
840        sessions
841            .get(session_id)
842            .cloned()
843            .ok_or_else(|| anyhow!("Session not found: {}", session_id))
844    }
845
846    /// Analyze performance data and generate insights
847    pub async fn analyze_performance(&self, session_id: &str) -> Result<PerformanceAnalysisReport> {
848        let session = self.get_results(session_id).await?;
849        let collector = self.collector.lock().await;
850
851        self.analyzer.analyze(&session, &collector.buffer).await
852    }
853
854    /// Generate optimization recommendations
855    pub async fn generate_recommendations(
856        &self,
857        session_id: &str,
858    ) -> Result<Vec<OptimizationRecommendation>> {
859        let analysis = self.analyze_performance(session_id).await?;
860        self.recommender.generate_recommendations(&analysis).await
861    }
862}
863
864impl Default for PerformanceCollector {
865    fn default() -> Self {
866        Self::new()
867    }
868}
869
870impl PerformanceCollector {
871    /// Create a new performance collector
872    pub fn new() -> Self {
873        Self {
874            buffer: VecDeque::new(),
875            stats: CollectionStats::default(),
876            trackers: HashMap::new(),
877        }
878    }
879
880    /// Add a metric to the buffer
881    pub fn add_metric(&mut self, metric: MetricDataPoint) {
882        if self.buffer.len() >= 100000 {
883            // Buffer size limit
884            self.buffer.pop_front();
885            self.stats.drop_rate += 1.0;
886        }
887
888        self.buffer.push_back(metric);
889        self.stats.total_points += 1;
890        self.stats.memory_usage_bytes =
891            (self.buffer.len() * std::mem::size_of::<MetricDataPoint>()) as u64;
892    }
893
894    /// Start a performance tracker
895    pub fn start_tracker(&mut self, name: String) -> String {
896        let tracker = PerformanceTracker {
897            name: name.clone(),
898            start_time: Instant::now(),
899            measurements: Vec::new(),
900            state: TrackerState::Active,
901        };
902
903        self.trackers.insert(name.clone(), tracker);
904        name
905    }
906
907    /// Stop a performance tracker
908    pub fn stop_tracker(&mut self, name: &str) -> Option<PerformanceTracker> {
909        if let Some(mut tracker) = self.trackers.remove(name) {
910            tracker.state = TrackerState::Stopped;
911            Some(tracker)
912        } else {
913            None
914        }
915    }
916}
917
918impl Default for PerformanceAnalyzer {
919    fn default() -> Self {
920        Self::new()
921    }
922}
923
924impl PerformanceAnalyzer {
925    /// Create a new performance analyzer
926    pub fn new() -> Self {
927        Self {
928            algorithms: Self::default_algorithms(),
929            pattern_detector: PatternDetector::new(),
930            anomaly_detector: AnomalyDetector::new(),
931        }
932    }
933
934    /// Get default analysis algorithms
935    fn default_algorithms() -> Vec<AnalysisAlgorithm> {
936        vec![
937            AnalysisAlgorithm {
938                name: "Trend Analysis".to_string(),
939                algorithm_type: AlgorithmType::TrendAnalysis,
940                parameters: HashMap::from([
941                    ("window_size".to_string(), 300.0),
942                    ("significance_threshold".to_string(), 0.05),
943                ]),
944            },
945            AnalysisAlgorithm {
946                name: "Bottleneck Detection".to_string(),
947                algorithm_type: AlgorithmType::BottleneckDetection,
948                parameters: HashMap::from([
949                    ("threshold_percentile".to_string(), 95.0),
950                    ("min_duration".to_string(), 10.0),
951                ]),
952            },
953        ]
954    }
955
956    /// Analyze performance data
957    pub async fn analyze(
958        &self,
959        session: &ProfilingSession,
960        data: &VecDeque<MetricDataPoint>,
961    ) -> Result<PerformanceAnalysisReport> {
962        let mut report = PerformanceAnalysisReport::new(session.session_id.clone());
963
964        // Run analysis algorithms
965        for algorithm in &self.algorithms {
966            let analysis_result = self.run_algorithm(algorithm, data).await?;
967            report.add_analysis_result(analysis_result);
968        }
969
970        // Detect patterns
971        let patterns = self.pattern_detector.detect_patterns(data).await?;
972        report.set_detected_patterns(patterns);
973
974        // Detect anomalies
975        let anomalies = self.anomaly_detector.detect_anomalies(data).await?;
976        report.set_detected_anomalies(anomalies);
977
978        Ok(report)
979    }
980
981    /// Run a specific analysis algorithm
982    async fn run_algorithm(
983        &self,
984        algorithm: &AnalysisAlgorithm,
985        _data: &VecDeque<MetricDataPoint>,
986    ) -> Result<AnalysisResult> {
987        // Placeholder implementation - would contain actual algorithm logic
988        Ok(AnalysisResult {
989            algorithm_name: algorithm.name.clone(),
990            result_type: algorithm.algorithm_type.clone(),
991            findings: vec![Finding {
992                title: "Sample Finding".to_string(),
993                description: "This is a sample finding for demonstration".to_string(),
994                severity: FindingSeverity::Medium,
995                confidence: 0.8,
996                affected_metrics: vec!["latency".to_string()],
997                recommendations: vec!["Consider optimization".to_string()],
998            }],
999            execution_time: Duration::from_millis(100),
1000        })
1001    }
1002}
1003
1004impl Default for PatternDetector {
1005    fn default() -> Self {
1006        Self::new()
1007    }
1008}
1009
1010impl PatternDetector {
1011    /// Create a new pattern detector
1012    pub fn new() -> Self {
1013        Self {
1014            patterns: Vec::new(),
1015            templates: Self::default_templates(),
1016        }
1017    }
1018
1019    /// Get default pattern templates
1020    fn default_templates() -> Vec<PatternTemplate> {
1021        vec![PatternTemplate {
1022            name: "Memory Leak Pattern".to_string(),
1023            signature: PatternSignature {
1024                characteristics: vec![StatisticalCharacteristic {
1025                    metric: "memory_usage".to_string(),
1026                    property: StatisticalProperty::Mean,
1027                    value_range: (0.0, f64::INFINITY),
1028                }],
1029                temporal_features: vec![TemporalFeature {
1030                    feature_type: TemporalFeatureType::Trend,
1031                    time_scale: Duration::from_secs(3600),
1032                    threshold: 0.1,
1033                }],
1034            },
1035            criteria: MatchingCriteria {
1036                min_confidence: 0.7,
1037                min_data_points: 100,
1038                time_window_requirements: TimeWindowRequirements {
1039                    min_duration: Duration::from_secs(300),
1040                    max_duration: Duration::from_secs(86400),
1041                    coverage_ratio: 0.8,
1042                },
1043            },
1044        }]
1045    }
1046
1047    /// Detect patterns in performance data
1048    pub async fn detect_patterns(
1049        &self,
1050        data: &VecDeque<MetricDataPoint>,
1051    ) -> Result<Vec<PerformancePattern>> {
1052        let mut detected_patterns = Vec::new();
1053
1054        for template in &self.templates {
1055            if let Some(pattern) = self.match_template(template, data).await? {
1056                detected_patterns.push(pattern);
1057            }
1058        }
1059
1060        Ok(detected_patterns)
1061    }
1062
1063    /// Match a template against data
1064    async fn match_template(
1065        &self,
1066        template: &PatternTemplate,
1067        data: &VecDeque<MetricDataPoint>,
1068    ) -> Result<Option<PerformancePattern>> {
1069        // Placeholder implementation
1070        if data.len() >= template.criteria.min_data_points {
1071            Ok(Some(PerformancePattern {
1072                id: Uuid::new_v4().to_string(),
1073                pattern_type: PatternType::MemoryLeak,
1074                confidence: 0.8,
1075                time_window: (Utc::now() - chrono::Duration::hours(1), Utc::now()),
1076                affected_components: vec!["embedding_service".to_string()],
1077                description: "Potential memory leak detected".to_string(),
1078            }))
1079        } else {
1080            Ok(None)
1081        }
1082    }
1083}
1084
1085impl Default for AnomalyDetector {
1086    fn default() -> Self {
1087        Self::new()
1088    }
1089}
1090
1091impl AnomalyDetector {
1092    /// Create a new anomaly detector
1093    pub fn new() -> Self {
1094        Self {
1095            algorithms: Self::default_algorithms(),
1096            anomalies: Vec::new(),
1097            baselines: HashMap::new(),
1098        }
1099    }
1100
1101    /// Get default anomaly detection algorithms
1102    fn default_algorithms() -> Vec<AnomalyAlgorithm> {
1103        vec![
1104            AnomalyAlgorithm {
1105                name: "Statistical Outlier".to_string(),
1106                algorithm_type: AnomalyAlgorithmType::StatisticalOutlier,
1107                sensitivity: 0.95,
1108                config: HashMap::from([
1109                    ("z_threshold".to_string(), 3.0),
1110                    ("window_size".to_string(), 100.0),
1111                ]),
1112            },
1113            AnomalyAlgorithm {
1114                name: "Isolation Forest".to_string(),
1115                algorithm_type: AnomalyAlgorithmType::IsolationForest,
1116                sensitivity: 0.1,
1117                config: HashMap::from([
1118                    ("contamination".to_string(), 0.1),
1119                    ("n_estimators".to_string(), 100.0),
1120                ]),
1121            },
1122        ]
1123    }
1124
1125    /// Detect anomalies in performance data
1126    pub async fn detect_anomalies(
1127        &self,
1128        data: &VecDeque<MetricDataPoint>,
1129    ) -> Result<Vec<PerformanceAnomaly>> {
1130        let mut detected_anomalies = Vec::new();
1131
1132        for algorithm in &self.algorithms {
1133            let anomalies = self.run_anomaly_algorithm(algorithm, data).await?;
1134            detected_anomalies.extend(anomalies);
1135        }
1136
1137        Ok(detected_anomalies)
1138    }
1139
1140    /// Run anomaly detection algorithm
1141    async fn run_anomaly_algorithm(
1142        &self,
1143        _algorithm: &AnomalyAlgorithm,
1144        _data: &VecDeque<MetricDataPoint>,
1145    ) -> Result<Vec<PerformanceAnomaly>> {
1146        // Placeholder implementation
1147        Ok(vec![PerformanceAnomaly {
1148            id: Uuid::new_v4().to_string(),
1149            anomaly_type: AnomalyType::LatencySpike,
1150            severity: AnomalySeverity::Medium,
1151            detected_at: Utc::now(),
1152            affected_metrics: vec!["response_time".to_string()],
1153            anomaly_score: 0.85,
1154            context: AnomalyContext {
1155                component: "embedding_service".to_string(),
1156                related_events: vec!["high_load_event".to_string()],
1157                environmental_factors: HashMap::from([
1158                    ("cpu_usage".to_string(), "high".to_string()),
1159                    ("memory_pressure".to_string(), "moderate".to_string()),
1160                ]),
1161                potential_causes: vec![
1162                    "Resource contention".to_string(),
1163                    "Memory pressure".to_string(),
1164                ],
1165            },
1166        }])
1167    }
1168}
1169
1170impl Default for OptimizationRecommender {
1171    fn default() -> Self {
1172        Self::new()
1173    }
1174}
1175
1176impl OptimizationRecommender {
1177    /// Create a new optimization recommender
1178    pub fn new() -> Self {
1179        Self {
1180            rules: Self::default_rules(),
1181            recommendations: Vec::new(),
1182            history: VecDeque::new(),
1183        }
1184    }
1185
1186    /// Get default recommendation rules
1187    fn default_rules() -> Vec<RecommendationRule> {
1188        vec![
1189            RecommendationRule {
1190                name: "High Memory Usage".to_string(),
1191                conditions: vec![
1192                    TriggerCondition {
1193                        metric: "memory_usage_percent".to_string(),
1194                        operator: ComparisonOperator::GreaterThan,
1195                        threshold: 85.0,
1196                        time_window: Duration::from_secs(300),
1197                    }
1198                ],
1199                recommendation_template: RecommendationTemplate {
1200                    recommendation_type: RecommendationType::ResourceScaling,
1201                    description_template: "Memory usage is consistently high. Consider increasing memory allocation or optimizing memory usage.".to_string(),
1202                    default_priority: RecommendationPriority::High,
1203                    default_effort: ImplementationEffort {
1204                        estimated_hours: 4.0,
1205                        required_skills: vec!["System Administration".to_string(), "Performance Tuning".to_string()],
1206                        complexity: ComplexityLevel::Medium,
1207                        dependencies: vec!["Resource availability".to_string()],
1208                    },
1209                },
1210                priority: 100,
1211            }
1212        ]
1213    }
1214
1215    /// Generate optimization recommendations
1216    pub async fn generate_recommendations(
1217        &self,
1218        analysis: &PerformanceAnalysisReport,
1219    ) -> Result<Vec<OptimizationRecommendation>> {
1220        let mut recommendations = Vec::new();
1221
1222        // Process each rule
1223        for rule in &self.rules {
1224            if self.evaluate_rule_conditions(rule, analysis).await? {
1225                let recommendation = self.create_recommendation_from_rule(rule, analysis).await?;
1226                recommendations.push(recommendation);
1227            }
1228        }
1229
1230        Ok(recommendations)
1231    }
1232
1233    /// Evaluate rule conditions
1234    async fn evaluate_rule_conditions(
1235        &self,
1236        _rule: &RecommendationRule,
1237        _analysis: &PerformanceAnalysisReport,
1238    ) -> Result<bool> {
1239        // Placeholder implementation - would check actual conditions
1240        Ok(true)
1241    }
1242
1243    /// Create recommendation from rule
1244    async fn create_recommendation_from_rule(
1245        &self,
1246        rule: &RecommendationRule,
1247        _analysis: &PerformanceAnalysisReport,
1248    ) -> Result<OptimizationRecommendation> {
1249        Ok(OptimizationRecommendation {
1250            id: Uuid::new_v4().to_string(),
1251            recommendation_type: rule.recommendation_template.recommendation_type.clone(),
1252            priority: rule.recommendation_template.default_priority.clone(),
1253            component: "embedding_service".to_string(),
1254            current_state: "Memory usage at 90%".to_string(),
1255            recommended_state: "Memory usage below 80%".to_string(),
1256            expected_improvement: ExpectedImprovement {
1257                latency_improvement_percent: 15.0,
1258                throughput_improvement_percent: 10.0,
1259                resource_savings_percent: 5.0,
1260                cost_reduction_percent: 0.0,
1261                confidence: 0.8,
1262            },
1263            implementation_effort: rule.recommendation_template.default_effort.clone(),
1264            risk_assessment: RiskAssessment {
1265                risk_level: RiskLevel::Low,
1266                potential_impacts: vec![PotentialImpact {
1267                    impact_type: ImpactType::ServiceDisruption,
1268                    severity: ImpactSeverity::Minor,
1269                    probability: 0.1,
1270                    description: "Brief service interruption during scaling".to_string(),
1271                }],
1272                mitigation_strategies: vec![
1273                    "Schedule during low-traffic period".to_string(),
1274                    "Use rolling updates".to_string(),
1275                ],
1276                rollback_plan: "Revert to previous resource allocation if issues occur".to_string(),
1277            },
1278            description: rule.recommendation_template.description_template.clone(),
1279            implementation_steps: vec![
1280                "Monitor current resource usage".to_string(),
1281                "Plan resource scaling strategy".to_string(),
1282                "Implement changes during maintenance window".to_string(),
1283                "Monitor performance after changes".to_string(),
1284            ],
1285        })
1286    }
1287}
1288
1289/// Performance analysis report
1290#[derive(Debug, Clone, Serialize, Deserialize)]
1291pub struct PerformanceAnalysisReport {
1292    /// Report identifier
1293    pub id: String,
1294    /// Session ID this report belongs to
1295    pub session_id: String,
1296    /// Report generation timestamp
1297    pub generated_at: DateTime<Utc>,
1298    /// Analysis results
1299    pub analysis_results: Vec<AnalysisResult>,
1300    /// Detected patterns
1301    pub detected_patterns: Vec<PerformancePattern>,
1302    /// Detected anomalies
1303    pub detected_anomalies: Vec<PerformanceAnomaly>,
1304    /// Overall health score
1305    pub health_score: f64,
1306    /// Summary insights
1307    pub summary: String,
1308}
1309
1310impl PerformanceAnalysisReport {
1311    /// Create a new performance analysis report
1312    pub fn new(session_id: String) -> Self {
1313        Self {
1314            id: Uuid::new_v4().to_string(),
1315            session_id,
1316            generated_at: Utc::now(),
1317            analysis_results: Vec::new(),
1318            detected_patterns: Vec::new(),
1319            detected_anomalies: Vec::new(),
1320            health_score: 100.0,
1321            summary: "Analysis in progress".to_string(),
1322        }
1323    }
1324
1325    /// Add analysis result
1326    pub fn add_analysis_result(&mut self, result: AnalysisResult) {
1327        self.analysis_results.push(result);
1328    }
1329
1330    /// Set detected patterns
1331    pub fn set_detected_patterns(&mut self, patterns: Vec<PerformancePattern>) {
1332        self.detected_patterns = patterns;
1333    }
1334
1335    /// Set detected anomalies
1336    pub fn set_detected_anomalies(&mut self, anomalies: Vec<PerformanceAnomaly>) {
1337        self.detected_anomalies = anomalies;
1338    }
1339}
1340
1341/// Result from an analysis algorithm
1342#[derive(Debug, Clone, Serialize, Deserialize)]
1343pub struct AnalysisResult {
1344    /// Algorithm name
1345    pub algorithm_name: String,
1346    /// Result type
1347    pub result_type: AlgorithmType,
1348    /// Findings
1349    pub findings: Vec<Finding>,
1350    /// Execution time
1351    pub execution_time: Duration,
1352}
1353
1354/// Individual finding from analysis
1355#[derive(Debug, Clone, Serialize, Deserialize)]
1356pub struct Finding {
1357    /// Finding title
1358    pub title: String,
1359    /// Detailed description
1360    pub description: String,
1361    /// Severity level
1362    pub severity: FindingSeverity,
1363    /// Confidence in finding
1364    pub confidence: f64,
1365    /// Affected metrics
1366    pub affected_metrics: Vec<String>,
1367    /// Recommendations
1368    pub recommendations: Vec<String>,
1369}
1370
1371/// Severity levels for findings
1372#[derive(Debug, Clone, Serialize, Deserialize)]
1373pub enum FindingSeverity {
1374    Info,
1375    Low,
1376    Medium,
1377    High,
1378    Critical,
1379}
1380
1381#[cfg(test)]
1382mod tests {
1383    use super::*;
1384    use std::collections::HashMap;
1385
1386    #[test]
1387    fn test_profiler_config_default() {
1388        let config = ProfilerConfig::default();
1389        assert_eq!(config.max_sessions, 10);
1390        assert_eq!(config.sampling_rate, 0.01);
1391        assert!(config.enable_memory_profiling);
1392        assert!(config.enable_cpu_profiling);
1393    }
1394
1395    #[test]
1396    fn test_profiling_session_creation() {
1397        let session = ProfilingSession {
1398            session_id: "test-session".to_string(),
1399            name: "Test Session".to_string(),
1400            start_time: Utc::now(),
1401            end_time: None,
1402            status: SessionStatus::Active,
1403            metrics: Vec::new(),
1404            tags: HashMap::new(),
1405        };
1406
1407        assert_eq!(session.session_id, "test-session");
1408        assert_eq!(session.name, "Test Session");
1409        assert!(matches!(session.status, SessionStatus::Active));
1410    }
1411
1412    #[test]
1413    fn test_metric_data_point_creation() {
1414        let metric = MetricDataPoint {
1415            timestamp: Utc::now(),
1416            metric_name: "cpu_usage".to_string(),
1417            value: 75.5,
1418            unit: "percent".to_string(),
1419            metadata: HashMap::new(),
1420            thread_id: Some("thread-1".to_string()),
1421            component: "embedding_service".to_string(),
1422        };
1423
1424        assert_eq!(metric.metric_name, "cpu_usage");
1425        assert_eq!(metric.value, 75.5);
1426        assert_eq!(metric.unit, "percent");
1427    }
1428
1429    #[test]
1430    fn test_performance_collector() {
1431        let mut collector = PerformanceCollector::new();
1432
1433        let metric = MetricDataPoint {
1434            timestamp: Utc::now(),
1435            metric_name: "test_metric".to_string(),
1436            value: 100.0,
1437            unit: "units".to_string(),
1438            metadata: HashMap::new(),
1439            thread_id: None,
1440            component: "test".to_string(),
1441        };
1442
1443        collector.add_metric(metric);
1444        assert_eq!(collector.stats.total_points, 1);
1445        assert_eq!(collector.buffer.len(), 1);
1446    }
1447
1448    #[test]
1449    fn test_performance_tracker() {
1450        let mut collector = PerformanceCollector::new();
1451        let tracker_id = collector.start_tracker("test_tracker".to_string());
1452
1453        assert_eq!(tracker_id, "test_tracker");
1454        assert!(collector.trackers.contains_key("test_tracker"));
1455
1456        let tracker = collector.stop_tracker("test_tracker");
1457        assert!(tracker.is_some());
1458        assert!(matches!(tracker.unwrap().state, TrackerState::Stopped));
1459    }
1460
1461    #[test]
1462    fn test_anomaly_creation() {
1463        let anomaly = PerformanceAnomaly {
1464            id: "test-anomaly".to_string(),
1465            anomaly_type: AnomalyType::LatencySpike,
1466            severity: AnomalySeverity::High,
1467            detected_at: Utc::now(),
1468            affected_metrics: vec!["latency".to_string()],
1469            anomaly_score: 0.9,
1470            context: AnomalyContext {
1471                component: "test_component".to_string(),
1472                related_events: Vec::new(),
1473                environmental_factors: HashMap::new(),
1474                potential_causes: Vec::new(),
1475            },
1476        };
1477
1478        assert_eq!(anomaly.id, "test-anomaly");
1479        assert!(matches!(anomaly.anomaly_type, AnomalyType::LatencySpike));
1480        assert!(matches!(anomaly.severity, AnomalySeverity::High));
1481    }
1482
1483    #[test]
1484    fn test_optimization_recommendation() {
1485        let recommendation = OptimizationRecommendation {
1486            id: "test-rec".to_string(),
1487            recommendation_type: RecommendationType::ResourceScaling,
1488            priority: RecommendationPriority::High,
1489            component: "test_component".to_string(),
1490            current_state: "Current state".to_string(),
1491            recommended_state: "Recommended state".to_string(),
1492            expected_improvement: ExpectedImprovement {
1493                latency_improvement_percent: 20.0,
1494                throughput_improvement_percent: 15.0,
1495                resource_savings_percent: 10.0,
1496                cost_reduction_percent: 5.0,
1497                confidence: 0.8,
1498            },
1499            implementation_effort: ImplementationEffort {
1500                estimated_hours: 8.0,
1501                required_skills: vec!["DevOps".to_string()],
1502                complexity: ComplexityLevel::Medium,
1503                dependencies: Vec::new(),
1504            },
1505            risk_assessment: RiskAssessment {
1506                risk_level: RiskLevel::Low,
1507                potential_impacts: Vec::new(),
1508                mitigation_strategies: Vec::new(),
1509                rollback_plan: "Rollback plan".to_string(),
1510            },
1511            description: "Test recommendation".to_string(),
1512            implementation_steps: Vec::new(),
1513        };
1514
1515        assert_eq!(recommendation.id, "test-rec");
1516        assert!(matches!(
1517            recommendation.recommendation_type,
1518            RecommendationType::ResourceScaling
1519        ));
1520        assert_eq!(
1521            recommendation
1522                .expected_improvement
1523                .latency_improvement_percent,
1524            20.0
1525        );
1526    }
1527
1528    #[tokio::test]
1529    async fn test_profiler_session_lifecycle() {
1530        let config = ProfilerConfig::default();
1531        let profiler = AdvancedProfiler::new(config);
1532
1533        // Start session
1534        let session_id = profiler
1535            .start_session("Test Session".to_string(), HashMap::new())
1536            .await
1537            .unwrap();
1538        assert!(!session_id.is_empty());
1539
1540        // Stop session
1541        let session = profiler.stop_session(&session_id).await.unwrap();
1542        assert!(matches!(session.status, SessionStatus::Completed));
1543        assert!(session.end_time.is_some());
1544    }
1545
1546    #[tokio::test]
1547    async fn test_metric_recording() {
1548        let config = ProfilerConfig::default();
1549        let profiler = AdvancedProfiler::new(config);
1550
1551        let metric = MetricDataPoint {
1552            timestamp: Utc::now(),
1553            metric_name: "test_metric".to_string(),
1554            value: 50.0,
1555            unit: "ms".to_string(),
1556            metadata: HashMap::new(),
1557            thread_id: None,
1558            component: "test".to_string(),
1559        };
1560
1561        let result = profiler.record_metric(metric).await;
1562        assert!(result.is_ok());
1563    }
1564
1565    #[test]
1566    fn test_pattern_detection_components() {
1567        let detector = PatternDetector::new();
1568        assert!(!detector.templates.is_empty());
1569
1570        let template = &detector.templates[0];
1571        assert_eq!(template.name, "Memory Leak Pattern");
1572        assert!(!template.signature.characteristics.is_empty());
1573    }
1574
1575    #[test]
1576    fn test_anomaly_detection_components() {
1577        let detector = AnomalyDetector::new();
1578        assert!(!detector.algorithms.is_empty());
1579
1580        let algorithm = &detector.algorithms[0];
1581        assert_eq!(algorithm.name, "Statistical Outlier");
1582        assert!(matches!(
1583            algorithm.algorithm_type,
1584            AnomalyAlgorithmType::StatisticalOutlier
1585        ));
1586    }
1587
1588    #[test]
1589    fn test_recommendation_rules() {
1590        let recommender = OptimizationRecommender::new();
1591        assert!(!recommender.rules.is_empty());
1592
1593        let rule = &recommender.rules[0];
1594        assert_eq!(rule.name, "High Memory Usage");
1595        assert!(!rule.conditions.is_empty());
1596    }
1597}