Module diffusion_embeddings

Module diffusion_embeddings 

Source
Expand description

Diffusion Model-Based Knowledge Graph Embeddings

This module implements cutting-edge diffusion models for generating high-quality knowledge graph embeddings. Based on denoising diffusion probabilistic models (DDPMs) and score-based generative models for embedding generation.

Key innovations:

  • Controllable embedding generation through conditioning
  • High-quality embedding synthesis with noise scheduling
  • Knowledge graph structure-aware diffusion processes
  • Multi-scale embedding generation with hierarchical diffusion

Structs§

AttentionBlock
Attention block
DiffusionConfig
Configuration for diffusion-based embeddings
DiffusionEmbeddingModel
Main diffusion embedding model
DiffusionUNet
U-Net model for diffusion denoising
NoiseScheduler
Noise scheduler for diffusion process
ResNetBlock
ResNet block for U-Net
TimeEmbedding
Time embedding for diffusion timesteps

Enums§

BetaSchedule
Beta schedule types for noise scheduling
ConditioningType
Conditioning types for controlled generation
PredictionType
Types of noise prediction