Crate oxirs_embed

Crate oxirs_embed 

Source
Expand description

§OxiRS Embed: Advanced Knowledge Graph Embeddings

Version docs.rs

Status: Production Release (v0.1.0) Stability: Public APIs are stable. Production-ready with comprehensive testing.

State-of-the-art knowledge graph embedding methods including TransE, DistMult, ComplEx, and RotatE models, enhanced with biomedical AI, GPU acceleration, and specialized text processing.

§Key Features

§🧬 Biomedical AI

  • Specialized biomedical knowledge graph embeddings
  • Gene-disease association prediction
  • Drug-target interaction modeling
  • Pathway analysis and protein interactions
  • Domain-specific text embeddings (SciBERT, BioBERT, etc.)

§🚀 GPU Acceleration

  • Advanced GPU memory pooling and management
  • Intelligent tensor caching
  • Mixed precision training and inference
  • Multi-stream parallel processing
  • Pipeline parallelism for large-scale training

§🤖 Advanced Models

  • Traditional KG embeddings (TransE, DistMult, ComplEx, RotatE, etc.)
  • Graph Neural Networks (GCN, GraphSAGE, GAT)
  • Transformer-based embeddings with fine-tuning
  • Ontology-aware embeddings with reasoning

§📊 Production-Ready

  • Comprehensive evaluation and benchmarking
  • Model registry and version management
  • Intelligent caching and optimization
  • API server for deployment

§Quick Start

use oxirs_embed::{TransE, ModelConfig, Triple, NamedNode, EmbeddingModel};

// Create a knowledge graph embedding model
let config = ModelConfig::default().with_dimensions(128);
let mut model = TransE::new(config);

// Add knowledge triples
let triple = Triple::new(
    NamedNode::new("http://example.org/alice")?,
    NamedNode::new("http://example.org/knows")?,
    NamedNode::new("http://example.org/bob")?,
);
model.add_triple(triple)?;

// Train the model
let stats = model.train(Some(100)).await?;
println!("Training completed: {stats:?}");

§Biomedical Example

use oxirs_embed::{BiomedicalEmbedding, BiomedicalEmbeddingConfig, EmbeddingModel};

// Create biomedical embedding model
let config = BiomedicalEmbeddingConfig::default();
let mut model = BiomedicalEmbedding::new(config);

// Add biomedical knowledge
model.add_gene_disease_association("BRCA1", "breast_cancer", 0.95);
model.add_drug_target_interaction("aspirin", "COX1", 0.92);

// Train and predict
model.train(Some(100)).await?;
let predictions = model.predict_gene_disease_associations("BRCA1", 5)?;

§GPU Acceleration Example

use oxirs_embed::{GpuAccelerationConfig, GpuAccelerationManager};

// Configure GPU acceleration
let config = GpuAccelerationConfig {
    enabled: true,
    mixed_precision: true,
    tensor_caching: true,
    multi_stream: true,
    num_streams: 4,
    ..Default::default()
};

let mut gpu_manager = GpuAccelerationManager::new(config);

// Use accelerated embedding generation
let entities = vec!["entity1".to_string(), "entity2".to_string()];
let embeddings = gpu_manager.accelerated_embedding_generation(
    entities,
    |entity| { /* compute embedding */ vec![0.0; 128].into() }
).await?;

§Examples

See the examples/ directory for comprehensive demonstrations:

  • biomedical_embedding_demo.rs - Biomedical AI capabilities
  • gpu_acceleration_demo.rs - GPU acceleration features
  • integrated_ai_platform_demo.rs - Complete AI platform showcase

Re-exports§

pub use adaptive_learning::AdaptationMetrics;
pub use adaptive_learning::AdaptationStrategy;
pub use adaptive_learning::AdaptiveLearningConfig;
pub use adaptive_learning::AdaptiveLearningSystem;
pub use adaptive_learning::QualityFeedback;
pub use acceleration::AdaptiveEmbeddingAccelerator;
pub use acceleration::GpuEmbeddingAccelerator;
pub use api::start_server;
pub use api::ApiConfig;
pub use api::ApiState;
pub use batch_processing::BatchJob;
pub use batch_processing::BatchProcessingConfig;
pub use batch_processing::BatchProcessingManager;
pub use batch_processing::BatchProcessingResult;
pub use batch_processing::BatchProcessingStats;
pub use batch_processing::IncrementalConfig;
pub use batch_processing::JobProgress;
pub use batch_processing::JobStatus;
pub use batch_processing::OutputFormat;
pub use batch_processing::PartitioningStrategy;
pub use batch_processing::RetryConfig;
pub use biomedical_embeddings::BiomedicalEmbedding;
pub use biomedical_embeddings::BiomedicalEmbeddingConfig;
pub use biomedical_embeddings::BiomedicalEntityType;
pub use biomedical_embeddings::BiomedicalRelationType;
pub use biomedical_embeddings::FineTuningConfig;
pub use biomedical_embeddings::PreprocessingRule;
pub use biomedical_embeddings::SpecializedTextConfig;
pub use biomedical_embeddings::SpecializedTextEmbedding;
pub use biomedical_embeddings::SpecializedTextModel;
pub use caching::CacheConfig;
pub use caching::CacheManager;
pub use caching::CachedEmbeddingModel;
pub use causal_representation_learning::CausalDiscoveryAlgorithm;
pub use causal_representation_learning::CausalDiscoveryConfig;
pub use causal_representation_learning::CausalGraph;
pub use causal_representation_learning::CausalRepresentationConfig;
pub use causal_representation_learning::CausalRepresentationModel;
pub use causal_representation_learning::ConstraintSettings;
pub use causal_representation_learning::CounterfactualConfig;
pub use causal_representation_learning::CounterfactualQuery;
pub use causal_representation_learning::DisentanglementConfig;
pub use causal_representation_learning::DisentanglementMethod;
pub use causal_representation_learning::ExplanationType;
pub use causal_representation_learning::IndependenceTest;
pub use causal_representation_learning::InterventionConfig;
pub use causal_representation_learning::ScoreSettings;
pub use causal_representation_learning::StructuralCausalModelConfig;
pub use cloud_integration::AWSSageMakerService;
pub use cloud_integration::AutoScalingConfig;
pub use cloud_integration::AzureMLService;
pub use cloud_integration::BackupConfig;
pub use cloud_integration::CloudIntegrationConfig;
pub use cloud_integration::CloudIntegrationManager;
pub use cloud_integration::CloudProvider;
pub use cloud_integration::CloudService;
pub use cloud_integration::ClusterStatus;
pub use cloud_integration::CostEstimate;
pub use cloud_integration::CostOptimizationResult;
pub use cloud_integration::CostOptimizationStrategy;
pub use cloud_integration::DeploymentConfig;
pub use cloud_integration::DeploymentResult;
pub use cloud_integration::DeploymentStatus;
pub use cloud_integration::EndpointInfo;
pub use cloud_integration::FunctionInvocationResult;
pub use cloud_integration::GPUClusterConfig;
pub use cloud_integration::GPUClusterResult;
pub use cloud_integration::LifecyclePolicy;
pub use cloud_integration::OptimizationAction;
pub use cloud_integration::PerformanceTier;
pub use cloud_integration::ReplicationType;
pub use cloud_integration::ServerlessDeploymentResult;
pub use cloud_integration::ServerlessFunctionConfig;
pub use cloud_integration::ServerlessStatus;
pub use cloud_integration::StorageConfig;
pub use cloud_integration::StorageResult;
pub use cloud_integration::StorageStatus;
pub use cloud_integration::StorageType;
pub use compression::CompressedModel;
pub use compression::CompressionStats;
pub use compression::CompressionTarget;
pub use compression::DistillationConfig;
pub use compression::ModelCompressionManager;
pub use compression::NASConfig;
pub use compression::OptimizationTarget;
pub use compression::PruningConfig;
pub use compression::PruningMethod;
pub use compression::QuantizationConfig;
pub use compression::QuantizationMethod;
pub use consciousness_aware_embeddings::AttentionMechanism;
pub use consciousness_aware_embeddings::ConsciousnessAwareEmbedding;
pub use consciousness_aware_embeddings::ConsciousnessInsights;
pub use consciousness_aware_embeddings::ConsciousnessLevel;
pub use consciousness_aware_embeddings::MetaCognition;
pub use consciousness_aware_embeddings::WorkingMemory;
pub use continual_learning::ArchitectureConfig;
pub use continual_learning::BoundaryDetection;
pub use continual_learning::ConsolidationConfig;
pub use continual_learning::ContinualLearningConfig;
pub use continual_learning::ContinualLearningModel;
pub use continual_learning::MemoryConfig;
pub use continual_learning::MemoryType;
pub use continual_learning::MemoryUpdateStrategy;
pub use continual_learning::RegularizationConfig;
pub use continual_learning::ReplayConfig;
pub use continual_learning::ReplayMethod;
pub use continual_learning::TaskConfig;
pub use continual_learning::TaskDetection;
pub use continual_learning::TaskSwitching;
pub use cross_module_performance::CoordinatorConfig;
pub use cross_module_performance::CrossModulePerformanceCoordinator;
pub use cross_module_performance::GlobalPerformanceMetrics;
pub use cross_module_performance::ModuleMetrics;
pub use cross_module_performance::ModulePerformanceMonitor;
pub use cross_module_performance::OptimizationCache;
pub use cross_module_performance::PerformanceSnapshot;
pub use cross_module_performance::PredictivePerformanceEngine;
pub use cross_module_performance::ResourceAllocator;
pub use cross_module_performance::ResourceTracker;
pub use delta::ChangeRecord;
pub use delta::ChangeStatistics;
pub use delta::ChangeType;
pub use delta::DeltaConfig;
pub use delta::DeltaManager;
pub use delta::DeltaResult;
pub use delta::DeltaStats;
pub use delta::IncrementalStrategy;
pub use enterprise_knowledge::BehaviorMetrics;
pub use enterprise_knowledge::CareerPredictions;
pub use enterprise_knowledge::Category;
pub use enterprise_knowledge::CategoryHierarchy;
pub use enterprise_knowledge::CategoryPerformance;
pub use enterprise_knowledge::ColdStartStrategy;
pub use enterprise_knowledge::CommunicationFrequency;
pub use enterprise_knowledge::CommunicationPreferences;
pub use enterprise_knowledge::CustomerEmbedding;
pub use enterprise_knowledge::CustomerPreferences;
pub use enterprise_knowledge::CustomerRatings;
pub use enterprise_knowledge::CustomerSegment;
pub use enterprise_knowledge::Department;
pub use enterprise_knowledge::DepartmentPerformance;
pub use enterprise_knowledge::EmployeeEmbedding;
pub use enterprise_knowledge::EnterpriseConfig;
pub use enterprise_knowledge::EnterpriseKnowledgeAnalyzer;
pub use enterprise_knowledge::EnterpriseMetrics;
pub use enterprise_knowledge::ExperienceLevel;
pub use enterprise_knowledge::FeatureType;
pub use enterprise_knowledge::MarketAnalysis;
pub use enterprise_knowledge::OrganizationalStructure;
pub use enterprise_knowledge::PerformanceMetrics as EnterprisePerformanceMetrics;
pub use enterprise_knowledge::ProductAvailability;
pub use enterprise_knowledge::ProductEmbedding;
pub use enterprise_knowledge::ProductFeature;
pub use enterprise_knowledge::ProductRecommendation;
pub use enterprise_knowledge::Project;
pub use enterprise_knowledge::ProjectOutcome;
pub use enterprise_knowledge::ProjectParticipation;
pub use enterprise_knowledge::ProjectPerformance;
pub use enterprise_knowledge::ProjectStatus;
pub use enterprise_knowledge::Purchase;
pub use enterprise_knowledge::PurchaseChannel;
pub use enterprise_knowledge::RecommendationConfig;
pub use enterprise_knowledge::RecommendationEngine;
pub use enterprise_knowledge::RecommendationEngineType;
pub use enterprise_knowledge::RecommendationPerformance;
pub use enterprise_knowledge::RecommendationReason;
pub use enterprise_knowledge::SalesMetrics;
pub use enterprise_knowledge::Skill;
pub use enterprise_knowledge::SkillCategory;
pub use enterprise_knowledge::Team;
pub use enterprise_knowledge::TeamPerformance;
pub use evaluation::QueryAnsweringEvaluator;
pub use evaluation::QueryEvaluationConfig;
pub use evaluation::QueryEvaluationResults;
pub use evaluation::QueryMetric;
pub use evaluation::QueryResult;
pub use evaluation::QueryTemplate;
pub use evaluation::QueryType;
pub use evaluation::ReasoningChain;
pub use evaluation::ReasoningEvaluationConfig;
pub use evaluation::ReasoningEvaluationResults;
pub use evaluation::ReasoningRule;
pub use evaluation::ReasoningStep;
pub use evaluation::ReasoningTaskEvaluator;
pub use evaluation::ReasoningType;
pub use evaluation::TypeSpecificResults;
pub use federated_learning::AggregationEngine;
pub use federated_learning::AggregationStrategy;
pub use federated_learning::AuthenticationConfig;
pub use federated_learning::AuthenticationMethod;
pub use federated_learning::CertificateConfig;
pub use federated_learning::ClippingMechanisms;
pub use federated_learning::ClippingMethod;
pub use federated_learning::CommunicationConfig;
pub use federated_learning::CommunicationManager;
pub use federated_learning::CommunicationProtocol;
pub use federated_learning::CompressionAlgorithm;
pub use federated_learning::CompressionConfig;
pub use federated_learning::CompressionEngine;
pub use federated_learning::ConvergenceMetrics;
pub use federated_learning::ConvergenceStatus;
pub use federated_learning::DataSelectionStrategy;
pub use federated_learning::DataStatistics;
pub use federated_learning::EncryptionScheme;
pub use federated_learning::FederatedConfig;
pub use federated_learning::FederatedCoordinator;
pub use federated_learning::FederatedEmbeddingModel;
pub use federated_learning::FederatedMessage;
pub use federated_learning::FederatedRound;
pub use federated_learning::FederationStats;
pub use federated_learning::GlobalModelState;
pub use federated_learning::HardwareAccelerator;
pub use federated_learning::KeyManager;
pub use federated_learning::LocalModelState;
pub use federated_learning::LocalTrainingStats;
pub use federated_learning::LocalUpdate;
pub use federated_learning::MetaLearningConfig;
pub use federated_learning::NoiseGenerator;
pub use federated_learning::NoiseMechanism;
pub use federated_learning::OutlierAction;
pub use federated_learning::OutlierDetection;
pub use federated_learning::OutlierDetectionMethod;
pub use federated_learning::Participant;
pub use federated_learning::ParticipantCapabilities;
pub use federated_learning::ParticipantStatus;
pub use federated_learning::PersonalizationConfig;
pub use federated_learning::PersonalizationStrategy;
pub use federated_learning::PrivacyAccountant;
pub use federated_learning::PrivacyConfig;
pub use federated_learning::PrivacyEngine;
pub use federated_learning::PrivacyMetrics;
pub use federated_learning::PrivacyParams;
pub use federated_learning::RoundMetrics;
pub use federated_learning::RoundStatus;
pub use federated_learning::SecurityConfig;
pub use federated_learning::SecurityFeature;
pub use federated_learning::SecurityManager;
pub use federated_learning::TrainingConfig;
pub use federated_learning::VerificationEngine;
pub use federated_learning::VerificationMechanism;
pub use federated_learning::VerificationResult;
pub use federated_learning::WeightingScheme;
pub use gpu_acceleration::GpuAccelerationConfig;
pub use gpu_acceleration::GpuAccelerationManager;
pub use gpu_acceleration::GpuMemoryPool;
pub use gpu_acceleration::GpuPerformanceStats;
pub use gpu_acceleration::MixedPrecisionProcessor;
pub use gpu_acceleration::MultiStreamProcessor;
pub use gpu_acceleration::TensorCache;
pub use graphql_api::create_schema;
pub use graphql_api::BatchEmbeddingInput;
pub use graphql_api::BatchEmbeddingResult;
pub use graphql_api::BatchStatus;
pub use graphql_api::DistanceMetric;
pub use graphql_api::EmbeddingFormat;
pub use graphql_api::EmbeddingQueryInput;
pub use graphql_api::EmbeddingResult;
pub use graphql_api::EmbeddingSchema;
pub use graphql_api::GraphQLContext;
pub use graphql_api::ModelInfo;
pub use graphql_api::ModelType;
pub use graphql_api::SimilarityResult;
pub use graphql_api::SimilaritySearchInput;
pub use models::AggregationType;
pub use models::ComplEx;
pub use models::DistMult;
pub use models::GNNConfig;
pub use models::GNNEmbedding;
pub use models::GNNType;
pub use models::HoLE;
pub use models::HoLEConfig;
pub use models::PoolingStrategy;
pub use models::RotatE;
pub use models::TransE;
pub use models::TransformerConfig;
pub use models::TransformerEmbedding;
pub use models::TransformerType;
pub use contextual::AccessibilityPreferences;
pub use contextual::ComplexityLevel;
pub use contextual::ContextualConfig;
pub use contextual::ContextualEmbeddingModel;
pub use contextual::DomainContext;
pub use contextual::EmbeddingContext;
pub use contextual::PerformanceRequirements;
pub use contextual::PriorityLevel;
pub use contextual::PrivacySettings;
pub use contextual::QueryContext;
pub use contextual::QueryType as ContextualQueryType;
pub use contextual::ResponseFormat;
pub use contextual::TaskConstraints;
pub use contextual::TaskContext;
pub use contextual::TaskType;
pub use contextual::UserContext;
pub use contextual::UserHistory;
pub use contextual::UserPreferences;
pub use distributed_training::AggregationMethod;
pub use distributed_training::CommunicationBackend;
pub use distributed_training::DistributedEmbeddingTrainer;
pub use distributed_training::DistributedStrategy;
pub use distributed_training::DistributedTrainingConfig;
pub use distributed_training::DistributedTrainingCoordinator;
pub use distributed_training::DistributedTrainingStats;
pub use distributed_training::FaultToleranceConfig;
pub use distributed_training::WorkerInfo;
pub use distributed_training::WorkerStatus;
pub use models::ConvE;
pub use models::ConvEConfig;
pub use monitoring::Alert;
pub use monitoring::AlertSeverity;
pub use monitoring::AlertThresholds;
pub use monitoring::AlertType;
pub use monitoring::CacheMetrics;
pub use monitoring::ConsoleAlertHandler;
pub use monitoring::DriftMetrics;
pub use monitoring::ErrorEvent;
pub use monitoring::ErrorMetrics;
pub use monitoring::ErrorSeverity;
pub use monitoring::LatencyMetrics;
pub use monitoring::MonitoringConfig;
pub use monitoring::PerformanceMetrics as MonitoringPerformanceMetrics;
pub use monitoring::PerformanceMonitor;
pub use monitoring::QualityAssessment;
pub use monitoring::QualityMetrics;
pub use monitoring::ResourceMetrics;
pub use monitoring::SlackAlertHandler;
pub use monitoring::ThroughputMetrics;
pub use multimodal::AlignmentNetwork;
pub use multimodal::AlignmentObjective;
pub use multimodal::ContrastiveConfig;
pub use multimodal::CrossDomainConfig;
pub use multimodal::CrossModalConfig;
pub use multimodal::KGEncoder;
pub use multimodal::MultiModalEmbedding;
pub use multimodal::MultiModalStats;
pub use multimodal::TextEncoder;
pub use neural_symbolic_integration::ConstraintSatisfactionConfig;
pub use neural_symbolic_integration::ConstraintType;
pub use neural_symbolic_integration::KnowledgeIntegrationConfig;
pub use neural_symbolic_integration::KnowledgeRule;
pub use neural_symbolic_integration::LogicIntegrationConfig;
pub use neural_symbolic_integration::LogicProgrammingConfig;
pub use neural_symbolic_integration::LogicalFormula;
pub use neural_symbolic_integration::NeuralSymbolicConfig;
pub use neural_symbolic_integration::NeuralSymbolicModel;
pub use neural_symbolic_integration::NeuroSymbolicArchitectureConfig;
pub use neural_symbolic_integration::OntologicalConfig;
pub use neural_symbolic_integration::ReasoningEngine;
pub use neural_symbolic_integration::RuleBasedConfig;
pub use neural_symbolic_integration::SymbolicReasoningConfig;
pub use novel_architectures::ActivationType;
pub use novel_architectures::ArchitectureParams;
pub use novel_architectures::ArchitectureState;
pub use novel_architectures::ArchitectureType;
pub use novel_architectures::CurvatureComputation;
pub use novel_architectures::CurvatureMethod;
pub use novel_architectures::CurvatureType;
pub use novel_architectures::DynamicsConfig;
pub use novel_architectures::EntanglementStructure;
pub use novel_architectures::EquivarianceGroup;
pub use novel_architectures::FlowType;
pub use novel_architectures::GeometricConfig;
pub use novel_architectures::GeometricParams;
pub use novel_architectures::GeometricSpace;
pub use novel_architectures::GeometricState;
pub use novel_architectures::GraphTransformerParams;
pub use novel_architectures::GraphTransformerState;
pub use novel_architectures::HyperbolicDistance;
pub use novel_architectures::HyperbolicInit;
pub use novel_architectures::HyperbolicManifold;
pub use novel_architectures::HyperbolicParams;
pub use novel_architectures::HyperbolicState;
pub use novel_architectures::IntegrationScheme;
pub use novel_architectures::IntegrationStats;
pub use novel_architectures::ManifoldLearning;
pub use novel_architectures::ManifoldMethod;
pub use novel_architectures::ManifoldOptimizer;
pub use novel_architectures::NeuralODEParams;
pub use novel_architectures::NeuralODEState;
pub use novel_architectures::NovelArchitectureConfig;
pub use novel_architectures::NovelArchitectureModel;
pub use novel_architectures::ODERegularization;
pub use novel_architectures::ODESolverType;
pub use novel_architectures::ParallelTransport;
pub use novel_architectures::QuantumGateSet;
pub use novel_architectures::QuantumMeasurement;
pub use novel_architectures::QuantumNoise;
pub use novel_architectures::QuantumParams;
pub use novel_architectures::QuantumState;
pub use novel_architectures::StabilityConstraints;
pub use novel_architectures::StructuralBias;
pub use novel_architectures::TimeEvolution;
pub use novel_architectures::TransportMethod;
pub use quantum_circuits::Complex;
pub use quantum_circuits::MeasurementStrategy;
pub use quantum_circuits::QNNLayerType;
pub use quantum_circuits::QuantumApproximateOptimization;
pub use quantum_circuits::QuantumCircuit;
pub use quantum_circuits::QuantumGate;
pub use quantum_circuits::QuantumNeuralNetwork;
pub use quantum_circuits::QuantumNeuralNetworkLayer;
pub use quantum_circuits::QuantumSimulator;
pub use quantum_circuits::VariationalQuantumEigensolver;
pub use research_networks::AuthorEmbedding;
pub use research_networks::Citation;
pub use research_networks::CitationNetwork;
pub use research_networks::CitationType;
pub use research_networks::Collaboration;
pub use research_networks::CollaborationNetwork;
pub use research_networks::NetworkMetrics;
pub use research_networks::PaperSection;
pub use research_networks::PublicationEmbedding;
pub use research_networks::PublicationType;
pub use research_networks::ResearchCommunity;
pub use research_networks::ResearchNetworkAnalyzer;
pub use research_networks::ResearchNetworkConfig;
pub use research_networks::TopicModel;
pub use research_networks::TopicModelingConfig;
pub use sparql_extension::ExpandedQuery;
pub use sparql_extension::Expansion;
pub use sparql_extension::ExpansionType;
pub use sparql_extension::QueryStatistics as SparqlQueryStatistics;
pub use sparql_extension::SparqlExtension;
pub use sparql_extension::SparqlExtensionConfig;
pub use storage_backend::DiskBackend;
pub use storage_backend::EmbeddingMetadata;
pub use storage_backend::EmbeddingVersion;
pub use storage_backend::MemoryBackend;
pub use storage_backend::StorageBackend;
pub use storage_backend::StorageBackendConfig;
pub use storage_backend::StorageBackendManager;
pub use storage_backend::StorageBackendType;
pub use storage_backend::StorageStats;
pub use temporal_embeddings::TemporalEmbeddingConfig;
pub use temporal_embeddings::TemporalEmbeddingModel;
pub use temporal_embeddings::TemporalEvent;
pub use temporal_embeddings::TemporalForecast;
pub use temporal_embeddings::TemporalGranularity;
pub use temporal_embeddings::TemporalScope;
pub use temporal_embeddings::TemporalStats;
pub use temporal_embeddings::TemporalTriple;
pub use vision_language_graph::AggregationFunction;
pub use vision_language_graph::CNNConfig;
pub use vision_language_graph::CrossAttentionConfig;
pub use vision_language_graph::DomainAdaptationConfig;
pub use vision_language_graph::DomainAdaptationMethod;
pub use vision_language_graph::EpisodeConfig;
pub use vision_language_graph::FewShotConfig;
pub use vision_language_graph::FewShotMethod;
pub use vision_language_graph::FusionStrategy;
pub use vision_language_graph::GraphArchitecture;
pub use vision_language_graph::GraphEncoder;
pub use vision_language_graph::GraphEncoderConfig;
pub use vision_language_graph::JointTrainingConfig;
pub use vision_language_graph::LanguageArchitecture;
pub use vision_language_graph::LanguageEncoder;
pub use vision_language_graph::LanguageEncoderConfig;
pub use vision_language_graph::LanguageTransformerConfig;
pub use vision_language_graph::MetaLearner;
pub use vision_language_graph::ModalityEncoding;
pub use vision_language_graph::MultiModalTransformer;
pub use vision_language_graph::MultiModalTransformerConfig;
pub use vision_language_graph::NormalizationType;
pub use vision_language_graph::PoolingType;
pub use vision_language_graph::PositionEncodingType;
pub use vision_language_graph::ReadoutFunction;
pub use vision_language_graph::TaskCategory;
pub use vision_language_graph::TaskSpecificParams;
pub use vision_language_graph::TrainingObjective;
pub use vision_language_graph::TransferLearningConfig;
pub use vision_language_graph::TransferStrategy;
pub use vision_language_graph::ViTConfig;
pub use vision_language_graph::VisionArchitecture;
pub use vision_language_graph::VisionEncoder;
pub use vision_language_graph::VisionEncoderConfig;
pub use vision_language_graph::VisionLanguageGraphConfig;
pub use vision_language_graph::VisionLanguageGraphModel;
pub use vision_language_graph::VisionLanguageGraphStats;
pub use vision_language_graph::ZeroShotConfig;
pub use vision_language_graph::ZeroShotMethod;
pub use models::TuckER;
pub use models::QuatD;
pub use crate::model_registry::ModelRegistry;
pub use crate::model_registry::ModelVersion;
pub use crate::model_registry::ResourceAllocation as ModelResourceAllocation;
pub use crate::model_selection::DatasetCharacteristics;
pub use crate::model_selection::MemoryRequirement;
pub use crate::model_selection::ModelComparison;
pub use crate::model_selection::ModelComparisonEntry;
pub use crate::model_selection::ModelRecommendation;
pub use crate::model_selection::ModelSelector;
pub use crate::model_selection::ModelType as SelectionModelType;
pub use crate::model_selection::TrainingTime;
pub use crate::model_selection::UseCaseType;
pub use crate::performance_profiler::OperationStats;
pub use crate::performance_profiler::OperationTimer;
pub use crate::performance_profiler::OperationType;
pub use crate::performance_profiler::PerformanceProfiler;
pub use crate::performance_profiler::PerformanceReport;

Modules§

acceleration
Hardware acceleration modules for embedding computations
adaptive_learning
Adaptive Learning System for Real-Time Embedding Enhancement
advanced_profiler
Advanced Performance Profiler
api
RESTful and GraphQL API endpoints for embedding services
application_tasks
Application-specific evaluation tasks for embedding models
batch_processing
Offline batch embedding generation with incremental updates
biological_computing
Biological Computing for Knowledge Graph Embeddings
biomedical_embeddings
Biomedical knowledge graph embeddings for scientific applications
caching
Advanced caching and precomputation system for embedding models
causal_representation_learning
Causal Representation Learning
cloud_integration
Cloud provider integration for embedding services
clustering
Clustering Support for Knowledge Graph Embeddings
community_detection
Community Detection for Knowledge Graphs
compression
Model compression and quantization for efficient embedding deployment
consciousness_aware_embeddings
Consciousness-Aware Embedding System
contextual
Contextual embeddings module - refactored for maintainability
continual_learning
Continual Learning Capabilities
cross_domain_transfer
Cross-domain transfer learning for embedding models
cross_module_performance
Cross-Module Performance Coordinator
delta
Delta computation and incremental update system for embeddings
diffusion_embeddings
Diffusion Model-Based Knowledge Graph Embeddings
distributed_training
Distributed Training Module for Knowledge Graph Embeddings
enterprise_knowledge
Enterprise Knowledge Graphs - Business Domain Embeddings
entity_linking
Entity Linking and Relation Prediction for Knowledge Graphs
evaluation
Evaluation module for embeddings and knowledge graphs
federated_learning
Federated learning module with organized sub-modules
fine_tuning
Fine-tuning Capabilities for Pre-trained Embedding Models
gpu_acceleration
GPU acceleration and optimization features for embedding models
graphql_api
Advanced GraphQL API for embedding queries and management
inference
High-performance inference engine for embedding models
integration
Integration utilities with other OxiRS components
interpretability
Model Interpretability Tools
link_prediction
Link Prediction for Knowledge Graph Completion
mamba_attention
Mamba and State Space Model Attention Mechanisms
mixed_precision
Mixed Precision Training for Knowledge Graph Embeddings
model_registry
Model Registry and Versioning System
model_selection
Model Selection Guidance
models
Embedding model implementations
monitoring
Comprehensive monitoring and metrics system for embedding models
multimodal
Multi-modal embeddings and cross-modal alignment for unified representation learning
neural_symbolic_integration
Neural-Symbolic Integration
neuro_evolution
Neuro-Evolution for Automated Neural Architecture Search
novel_architectures
Novel architectures for cutting-edge embedding techniques
performance_profiler
Performance Profiling for Embedding Operations
persistence
Model persistence and serialization utilities
quantization
Quantization Support for Model Compression
quantum_circuits
Advanced Quantum Circuit Implementations for Quantum-Inspired Embeddings
quick_start
Convenience functions for quick setup and common operations
real_time_fine_tuning
Real-time Fine-tuning System
real_time_optimization
Real-time optimization system for knowledge graph embeddings
research_networks
Research Publication Networks - Academic Knowledge Graph Embeddings
sparql_extension
SPARQL Extension for Advanced Embedding-Enhanced Queries
storage_backend
Storage Backend Integration for Persistent Embeddings
temporal_embeddings
Temporal Embeddings Module for Time-Aware Knowledge Graph Embeddings
training
Training utilities and advanced optimizers for embedding models
utils
Utility functions and helpers for embedding operations
vector_search
Vector Search Integration
vision_language_graph
Vision-Language-Graph Multi-Modal Integration
visualization
Embedding Visualization Tools

Structs§

ModelConfig
Configuration for embedding models
ModelStats
Model statistics
NamedNode
Named node for RDF resources
TrainingStats
Training statistics
Triple
Triple structure for RDF triples
VecVector
Multi-precision vector with enhanced functionality
Vector
Compatibility wrapper for Vector that provides the old interface while using the sophisticated oxirs-vec Vector internally

Enums§

EmbeddingError
Embedding errors

Traits§

EmbeddingModel
Basic embedding model trait