oxirs_embed/vision_language_graph/
encoders.rs

1//! Module for vision-language-graph integration
2
3use super::*;
4use anyhow::Result;
5use scirs2_core::ndarray_ext::{Array1, Array2, Array3, Array4, Axis};
6use scirs2_core::random::{Random, Rng};
7use std::collections::HashMap;
8
9#[derive(Debug, Clone)]
10pub struct VisionEncoder {
11    pub config: VisionEncoderConfig,
12    /// CNN backbone parameters
13    pub cnn_parameters: HashMap<String, Array4<f32>>,
14    /// Vision transformer parameters
15    pub vit_parameters: HashMap<String, Array2<f32>>,
16    /// Projection layer
17    pub projection: Array2<f32>,
18}
19
20impl VisionEncoder {
21    pub fn new(config: VisionEncoderConfig) -> Self {
22        let mut cnn_parameters = HashMap::new();
23        let mut vit_parameters = HashMap::new();
24
25        // Initialize CNN parameters
26        for (i, &filter_size) in config.cnn_config.filter_sizes.iter().enumerate() {
27            let layer_name = format!("conv_{i}");
28            let weight_shape = (
29                filter_size,
30                if i == 0 {
31                    config.channels
32                } else {
33                    config.cnn_config.filter_sizes[i - 1]
34                },
35                3,
36                3,
37            );
38            let mut random = Random::default();
39            cnn_parameters.insert(
40                layer_name,
41                Array4::from_shape_fn(weight_shape, |_| (random.random::<f32>() - 0.5) * 0.1),
42            );
43        }
44
45        // Initialize ViT parameters
46        let mut random = Random::default();
47        vit_parameters.insert(
48            "patch_embedding".to_string(),
49            Array2::from_shape_fn(
50                (
51                    config.channels * config.patch_size.0 * config.patch_size.1,
52                    config.vision_dim,
53                ),
54                |_| (random.random::<f32>() - 0.5) * 0.1,
55            ),
56        );
57
58        // Projection to unified dimension
59        let mut random = Random::default();
60        let projection = Array2::from_shape_fn((config.vision_dim, config.vision_dim), |_| {
61            (random.random::<f32>() - 0.5) * 0.1
62        });
63
64        Self {
65            config,
66            cnn_parameters,
67            vit_parameters,
68            projection,
69        }
70    }
71
72    /// Encode image to visual embeddings
73    pub fn encode_image(&self, image: &Array3<f32>) -> Result<Array1<f32>> {
74        match self.config.architecture {
75            VisionArchitecture::VisionTransformer => self.encode_with_vit(image),
76            VisionArchitecture::ResNet => self.encode_with_cnn(image),
77            _ => self.encode_with_vit(image), // Default to ViT
78        }
79    }
80
81    /// Encode with Vision Transformer
82    fn encode_with_vit(&self, image: &Array3<f32>) -> Result<Array1<f32>> {
83        // Simulate patch extraction and embedding
84        let (h, w, c) = image.dim();
85        let (patch_h, patch_w) = self.config.patch_size;
86
87        let num_patches_h = h / patch_h;
88        let num_patches_w = w / patch_w;
89        let num_patches = num_patches_h * num_patches_w;
90
91        // Extract patches and flatten
92        let mut patch_embeddings = Array2::zeros((num_patches, self.config.vision_dim));
93
94        for i in 0..num_patches_h {
95            for j in 0..num_patches_w {
96                let patch_idx = i * num_patches_w + j;
97
98                // Extract patch
99                let patch = image.slice(scirs2_core::ndarray_ext::s![
100                    i * patch_h..(i + 1) * patch_h,
101                    j * patch_w..(j + 1) * patch_w,
102                    ..
103                ]);
104
105                // Flatten patch
106                let patch_owned = patch.to_owned();
107                let flattened_patch = patch_owned
108                    .into_shape_with_order(c * patch_h * patch_w)
109                    .unwrap();
110
111                // Project to embedding space
112                if let Some(patch_embedding_matrix) = self.vit_parameters.get("patch_embedding") {
113                    let embedding = flattened_patch.dot(patch_embedding_matrix);
114                    patch_embeddings.row_mut(patch_idx).assign(&embedding);
115                }
116            }
117        }
118
119        // Global average pooling over patches
120        let global_embedding = patch_embeddings.mean_axis(Axis(0)).unwrap();
121
122        Ok(global_embedding)
123    }
124
125    /// Encode with CNN
126    fn encode_with_cnn(&self, image: &Array3<f32>) -> Result<Array1<f32>> {
127        // Simulate CNN forward pass
128        let mut features = image.clone();
129
130        // Apply multiple conv layers
131        for i in 0..self.config.cnn_config.num_layers.min(2) {
132            // Limit for simplicity
133            // Simulate convolution + pooling
134            let (h, w, c) = features.dim();
135            let new_h = h / 2; // Simulate stride 2
136            let new_w = w / 2;
137            let new_c = self.config.cnn_config.filter_sizes[i];
138
139            let mut new_features = Array3::zeros((new_h, new_w, new_c));
140
141            // Simple downsampling simulation
142            for new_i in 0..new_h {
143                for new_j in 0..new_w {
144                    for new_k in 0..new_c {
145                        let old_i = new_i * 2;
146                        let old_j = new_j * 2;
147
148                        if old_i < h && old_j < w {
149                            // Average over 2x2 region
150                            let mut sum = 0.0;
151                            let mut count = 0;
152                            for di in 0..2 {
153                                for dj in 0..2 {
154                                    if old_i + di < h && old_j + dj < w {
155                                        for k in 0..c.min(new_c) {
156                                            sum += features[[old_i + di, old_j + dj, k]];
157                                            count += 1;
158                                        }
159                                    }
160                                }
161                            }
162                            new_features[[new_i, new_j, new_k]] = sum / count as f32;
163                        }
164                    }
165                }
166            }
167
168            features = new_features;
169        }
170
171        // Global average pooling
172        let features_len = features.len();
173        let flattened = features.into_shape_with_order(features_len).unwrap();
174        let mut global_features = vec![0.0; self.config.vision_dim];
175
176        for i in 0..global_features.len().min(flattened.len()) {
177            global_features[i] = flattened[i];
178        }
179
180        Ok(Array1::from_vec(global_features))
181    }
182}
183
184/// Language encoder
185#[derive(Debug, Clone)]
186pub struct LanguageEncoder {
187    pub config: LanguageEncoderConfig,
188    /// Token embeddings
189    pub token_embeddings: Array2<f32>,
190    /// Position embeddings
191    pub position_embeddings: Array2<f32>,
192    /// Transformer parameters
193    pub transformer_parameters: HashMap<String, Array2<f32>>,
194}
195
196impl LanguageEncoder {
197    pub fn new(config: LanguageEncoderConfig) -> Self {
198        // Initialize embeddings
199        let mut random = Random::default();
200        let token_embeddings =
201            Array2::from_shape_fn((config.vocab_size, config.language_dim), |_| {
202                (random.random::<f32>() - 0.5) * 0.1
203            });
204
205        let mut random = Random::default();
206        let position_embeddings =
207            Array2::from_shape_fn((config.max_seq_length, config.language_dim), |_| {
208                (random.random::<f32>() - 0.5) * 0.1
209            });
210
211        let mut transformer_parameters = HashMap::new();
212
213        // Initialize transformer layers
214        for layer in 0..config.transformer_config.num_layers {
215            let mut random = Random::default();
216            transformer_parameters.insert(
217                format!("attention_weights_{layer}"),
218                Array2::from_shape_fn((config.language_dim, config.language_dim), |_| {
219                    (random.random::<f32>() - 0.5) * 0.1
220                }),
221            );
222
223            let mut random = Random::default();
224            transformer_parameters.insert(
225                format!("feed_forward_{layer}"),
226                Array2::from_shape_fn(
227                    (
228                        config.transformer_config.intermediate_dim,
229                        config.language_dim,
230                    ),
231                    |_| (random.random::<f32>() - 0.5) * 0.1,
232                ),
233            );
234        }
235
236        Self {
237            config,
238            token_embeddings,
239            position_embeddings,
240            transformer_parameters,
241        }
242    }
243
244    /// Encode text to language embeddings
245    pub fn encode_text(&self, text: &str) -> Result<Array1<f32>> {
246        // Simple tokenization (in real implementation would use proper tokenizer)
247        let tokens = self.tokenize(text);
248
249        // Get token embeddings
250        let mut sequence_embeddings = Array2::zeros((tokens.len(), self.config.language_dim));
251
252        for (i, &token_id) in tokens.iter().enumerate() {
253            if token_id < self.token_embeddings.nrows() {
254                let token_emb = self.token_embeddings.row(token_id);
255                let pos_emb = self
256                    .position_embeddings
257                    .row(i.min(self.config.max_seq_length - 1));
258
259                // Add token and position embeddings
260                let combined = &token_emb + &pos_emb;
261                sequence_embeddings.row_mut(i).assign(&combined);
262            }
263        }
264
265        // Apply transformer layers (simplified)
266        let mut hidden_states = sequence_embeddings;
267
268        for layer in 0..self.config.transformer_config.num_layers.min(2) {
269            // Limit for performance
270            if let Some(attention_weights) = self
271                .transformer_parameters
272                .get(&format!("attention_weights_{layer}"))
273            {
274                // Apply self-attention (simplified)
275                hidden_states = hidden_states.dot(attention_weights);
276
277                // Apply layer norm (simplified)
278                for mut row in hidden_states.rows_mut() {
279                    let mean = row.mean().unwrap_or(0.0);
280                    let var = row.var(0.0);
281                    row.mapv_inplace(|x| (x - mean) / (var + 1e-8).sqrt());
282                }
283            }
284        }
285
286        // Pool to sentence-level representation (mean pooling)
287        let sentence_embedding = hidden_states.mean_axis(Axis(0)).unwrap();
288
289        Ok(sentence_embedding)
290    }
291
292    /// Simple tokenization
293    fn tokenize(&self, text: &str) -> Vec<usize> {
294        text.split_whitespace()
295            .map(|word| {
296                // Simple hash-based token ID
297                let mut hash = 0usize;
298                for byte in word.bytes() {
299                    hash = hash.wrapping_mul(31).wrapping_add(byte as usize);
300                }
301                hash % self.config.vocab_size
302            })
303            .collect()
304    }
305}
306
307/// Graph encoder
308#[derive(Debug, Clone)]
309pub struct GraphEncoder {
310    pub config: GraphEncoderConfig,
311    /// Node transformation parameters
312    pub node_parameters: HashMap<String, Array2<f32>>,
313    /// Edge transformation parameters  
314    pub edge_parameters: HashMap<String, Array2<f32>>,
315    /// Graph-level parameters
316    pub graph_parameters: HashMap<String, Array2<f32>>,
317}
318
319impl GraphEncoder {
320    pub fn new(config: GraphEncoderConfig) -> Self {
321        let mut node_parameters = HashMap::new();
322        let mut edge_parameters = HashMap::new();
323        let mut graph_parameters = HashMap::new();
324
325        // Initialize node transformation layers
326        for layer in 0..config.num_layers {
327            let mut random = Random::default();
328            node_parameters.insert(
329                format!("node_transform_{layer}"),
330                Array2::from_shape_fn((config.node_dim, config.node_dim), |_| {
331                    (random.random::<f32>() - 0.5) * 0.1
332                }),
333            );
334        }
335
336        // Initialize edge transformation layers
337        for layer in 0..config.num_layers {
338            let mut random = Random::default();
339            edge_parameters.insert(
340                format!("edge_transform_{layer}"),
341                Array2::from_shape_fn((config.edge_dim, config.edge_dim), |_| {
342                    (random.random::<f32>() - 0.5) * 0.1
343                }),
344            );
345        }
346
347        // Graph readout parameters (for attention mechanism)
348        let mut random = Random::default();
349        graph_parameters.insert(
350            "readout".to_string(),
351            Array2::from_shape_fn(
352                (config.node_dim, 1), // Single attention score per node
353                |_| (random.random::<f32>() - 0.5) * 0.1,
354            ),
355        );
356
357        // Graph projection parameters (from node_dim to graph_dim)
358        let mut random = Random::default();
359        graph_parameters.insert(
360            "graph_projection".to_string(),
361            Array2::from_shape_fn((config.node_dim, config.graph_dim), |_| {
362                (random.random::<f32>() - 0.5) * 0.1
363            }),
364        );
365
366        Self {
367            config,
368            node_parameters,
369            edge_parameters,
370            graph_parameters,
371        }
372    }
373
374    /// Encode graph to graph embeddings
375    pub fn encode_graph(
376        &self,
377        node_features: &Array2<f32>,
378        edge_features: &Array2<f32>,
379        adjacency_matrix: &Array2<f32>,
380    ) -> Result<Array1<f32>> {
381        let mut node_embeddings = node_features.clone();
382
383        // Apply GNN layers
384        for layer in 0..self.config.num_layers.min(2) {
385            // Limit for performance
386            node_embeddings =
387                self.apply_gnn_layer(&node_embeddings, edge_features, adjacency_matrix, layer)?;
388        }
389
390        // Graph-level readout
391        let graph_embedding = self.graph_readout(&node_embeddings)?;
392
393        Ok(graph_embedding)
394    }
395
396    /// Apply a single GNN layer
397    fn apply_gnn_layer(
398        &self,
399        node_embeddings: &Array2<f32>,
400        _edge_features: &Array2<f32>,
401        adjacency_matrix: &Array2<f32>,
402        layer: usize,
403    ) -> Result<Array2<f32>> {
404        let transform_key = format!("node_transform_{layer}");
405
406        if let Some(transform_matrix) = self.node_parameters.get(&transform_key) {
407            // Message passing: aggregate neighbor features
408            let aggregated = adjacency_matrix.dot(node_embeddings);
409
410            // Apply transformation
411            let transformed = aggregated.dot(transform_matrix);
412
413            // Apply activation (ReLU)
414            let activated = transformed.mapv(|x| x.max(0.0));
415
416            Ok(activated)
417        } else {
418            Ok(node_embeddings.clone())
419        }
420    }
421
422    /// Graph-level readout
423    fn graph_readout(&self, node_embeddings: &Array2<f32>) -> Result<Array1<f32>> {
424        let node_level_embedding = match self.config.readout {
425            ReadoutFunction::GlobalMean => node_embeddings.mean_axis(Axis(0)).unwrap(),
426            ReadoutFunction::GlobalMax => {
427                node_embeddings.fold_axis(Axis(0), f32::NEG_INFINITY, |&a, &b| a.max(b))
428            }
429            ReadoutFunction::GlobalSum => node_embeddings.sum_axis(Axis(0)),
430            ReadoutFunction::GlobalAttention => {
431                if let Some(readout_matrix) = self.graph_parameters.get("readout") {
432                    // Attention-based readout
433                    let attention_scores = node_embeddings.dot(readout_matrix); // (num_nodes, 1)
434                    let attention_scores_1d = attention_scores.column(0).to_owned(); // (num_nodes,)
435                    let attention_weights = self.softmax_1d(&attention_scores_1d); // (num_nodes,)
436
437                    // Weighted average of node embeddings
438                    let mut weighted_sum = Array1::zeros(node_embeddings.ncols());
439                    for (i, &weight) in attention_weights.iter().enumerate() {
440                        let node_emb = node_embeddings.row(i);
441                        weighted_sum = weighted_sum + weight * &node_emb;
442                    }
443                    weighted_sum
444                } else {
445                    node_embeddings.mean_axis(Axis(0)).unwrap()
446                }
447            }
448            _ => node_embeddings.mean_axis(Axis(0)).unwrap(),
449        };
450
451        // Project from node_dim to graph_dim
452        if let Some(projection_matrix) = self.graph_parameters.get("graph_projection") {
453            Ok(projection_matrix.t().dot(&node_level_embedding))
454        } else {
455            Ok(node_level_embedding)
456        }
457    }
458
459    /// Apply softmax to 2D array
460    fn softmax_2d(&self, x: &Array2<f32>) -> Array2<f32> {
461        let mut result = x.clone();
462        for mut row in result.rows_mut() {
463            let max_val = row.fold(f32::NEG_INFINITY, |a, &b| a.max(b));
464            row.mapv_inplace(|v| (v - max_val).exp());
465            let sum = row.sum();
466            if sum > 0.0 {
467                row /= sum;
468            }
469        }
470        result
471    }
472
473    fn softmax_1d(&self, x: &Array1<f32>) -> Array1<f32> {
474        let max_val = x.fold(f32::NEG_INFINITY, |a, &b| a.max(b));
475        let mut result = x.mapv(|v| (v - max_val).exp());
476        let sum = result.sum();
477        if sum > 0.0 {
478            result /= sum;
479        }
480        result
481    }
482}