oxirs_embed/
research_networks.rs

1//! Research Publication Networks - Academic Knowledge Graph Embeddings
2//!
3//! This module provides specialized embeddings and analysis for research publication networks,
4//! including author embeddings, citation analysis, collaboration networks, and impact prediction.
5
6use crate::Vector;
7use anyhow::Result;
8use chrono::{DateTime, Utc};
9use scirs2_core::random::{Random, Rng};
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12use std::sync::{Arc, RwLock};
13use tokio::task::JoinHandle;
14use tracing::{debug, info};
15
16/// Research publication network analyzer and embedding generator
17pub struct ResearchNetworkAnalyzer {
18    /// Author embeddings cache
19    author_embeddings: Arc<RwLock<HashMap<String, AuthorEmbedding>>>,
20    /// Publication embeddings cache
21    publication_embeddings: Arc<RwLock<HashMap<String, PublicationEmbedding>>>,
22    /// Citation network graph
23    citation_network: Arc<RwLock<CitationNetwork>>,
24    /// Collaboration network
25    collaboration_network: Arc<RwLock<CollaborationNetwork>>,
26    /// Topic models
27    topic_models: Arc<RwLock<HashMap<String, TopicModel>>>,
28    /// Configuration
29    config: ResearchNetworkConfig,
30    /// Background analysis tasks
31    analysis_tasks: Vec<JoinHandle<()>>,
32}
33
34/// Configuration for research network analysis
35#[derive(Debug, Clone)]
36pub struct ResearchNetworkConfig {
37    /// Maximum number of authors to track
38    pub max_authors: usize,
39    /// Maximum number of publications to track
40    pub max_publications: usize,
41    /// Citation network update interval (hours)
42    pub citation_update_interval_hours: u64,
43    /// Collaboration analysis interval (hours)
44    pub collaboration_analysis_interval_hours: u64,
45    /// Impact prediction model refresh interval (hours)
46    pub impact_prediction_refresh_hours: u64,
47    /// Enable real-time citation tracking
48    pub enable_real_time_citation_tracking: bool,
49    /// Minimum citation count for impact analysis
50    pub min_citation_threshold: u32,
51    /// Topic modeling configuration
52    pub topic_config: TopicModelingConfig,
53    /// Embedding dimension
54    pub embedding_dimension: usize,
55}
56
57impl Default for ResearchNetworkConfig {
58    fn default() -> Self {
59        Self {
60            max_authors: 100_000,
61            max_publications: 1_000_000,
62            citation_update_interval_hours: 24,
63            collaboration_analysis_interval_hours: 12,
64            impact_prediction_refresh_hours: 48,
65            enable_real_time_citation_tracking: true,
66            min_citation_threshold: 5,
67            topic_config: TopicModelingConfig::default(),
68            embedding_dimension: 512,
69        }
70    }
71}
72
73/// Topic modeling configuration
74#[derive(Debug, Clone)]
75pub struct TopicModelingConfig {
76    /// Number of topics to extract
77    pub num_topics: usize,
78    /// Minimum word frequency
79    pub min_word_freq: u32,
80    /// Maximum document frequency ratio
81    pub max_doc_freq_ratio: f64,
82    /// LDA iterations
83    pub lda_iterations: u32,
84    /// Topic coherence threshold
85    pub coherence_threshold: f64,
86}
87
88impl Default for TopicModelingConfig {
89    fn default() -> Self {
90        Self {
91            num_topics: 50,
92            min_word_freq: 5,
93            max_doc_freq_ratio: 0.8,
94            lda_iterations: 1000,
95            coherence_threshold: 0.4,
96        }
97    }
98}
99
100/// Author information and embeddings
101#[derive(Debug, Clone, Serialize, Deserialize)]
102pub struct AuthorEmbedding {
103    /// Author unique identifier
104    pub author_id: String,
105    /// Author name
106    pub name: String,
107    /// Author affiliations
108    pub affiliations: Vec<String>,
109    /// Research interests/topics
110    pub research_topics: Vec<String>,
111    /// H-index
112    pub h_index: f64,
113    /// Total citation count
114    pub citation_count: u64,
115    /// Publication count
116    pub publication_count: u64,
117    /// Author embedding vector
118    pub embedding: Vector,
119    /// Collaboration score
120    pub collaboration_score: f64,
121    /// Impact score
122    pub impact_score: f64,
123    /// Career stage
124    pub career_stage: CareerStage,
125    /// Last updated
126    pub last_updated: DateTime<Utc>,
127}
128
129/// Publication information and embeddings
130#[derive(Debug, Clone, Serialize, Deserialize)]
131pub struct PublicationEmbedding {
132    /// Publication unique identifier
133    pub publication_id: String,
134    /// Title
135    pub title: String,
136    /// Abstract
137    pub abstract_text: String,
138    /// Authors
139    pub authors: Vec<String>,
140    /// Venue (journal/conference)
141    pub venue: String,
142    /// Publication year
143    pub year: u32,
144    /// Citation count
145    pub citation_count: u64,
146    /// Topic distribution
147    pub topic_distribution: Vec<f64>,
148    /// Publication embedding vector
149    pub embedding: Vector,
150    /// Impact prediction score
151    pub predicted_impact: f64,
152    /// Publication type
153    pub publication_type: PublicationType,
154    /// DOI or other identifier
155    pub doi: Option<String>,
156    /// Last updated
157    pub last_updated: DateTime<Utc>,
158}
159
160/// Career stage classification
161#[derive(Debug, Clone, Serialize, Deserialize)]
162pub enum CareerStage {
163    EarlyCareer,
164    MidCareer,
165    SeniorCareer,
166    Emeritus,
167    Unknown,
168}
169
170/// Publication type classification
171#[derive(Debug, Clone, Serialize, Deserialize)]
172pub enum PublicationType {
173    JournalArticle,
174    ConferencePaper,
175    BookChapter,
176    Book,
177    Preprint,
178    Thesis,
179    TechnicalReport,
180    Other,
181}
182
183/// Citation network representation
184#[derive(Debug, Clone)]
185pub struct CitationNetwork {
186    /// Citation edges: (citing_paper, cited_paper, citation_context)
187    pub citations: HashMap<String, Vec<Citation>>,
188    /// Co-citation relationships
189    pub co_citations: HashMap<String, Vec<CoCitation>>,
190    /// Bibliographic coupling
191    pub bibliographic_coupling: HashMap<String, Vec<BibliographicCoupling>>,
192    /// Citation patterns over time
193    pub temporal_patterns: HashMap<String, Vec<TemporalCitation>>,
194}
195
196/// Citation information
197#[derive(Debug, Clone, Serialize, Deserialize)]
198pub struct Citation {
199    /// Citing paper ID
200    pub citing_paper: String,
201    /// Cited paper ID
202    pub cited_paper: String,
203    /// Citation context/sentence
204    pub context: String,
205    /// Citation type (supportive, contrasting, neutral)
206    pub citation_type: CitationType,
207    /// Position in the paper (intro, methods, results, discussion)
208    pub section: PaperSection,
209    /// Timestamp of citation
210    pub timestamp: DateTime<Utc>,
211}
212
213/// Citation type classification
214#[derive(Debug, Clone, Serialize, Deserialize)]
215pub enum CitationType {
216    Supportive,
217    Contrasting,
218    Neutral,
219    Background,
220    Methodological,
221}
222
223/// Paper section where citation occurs
224#[derive(Debug, Clone, Serialize, Deserialize)]
225pub enum PaperSection {
226    Introduction,
227    RelatedWork,
228    Methods,
229    Results,
230    Discussion,
231    Conclusion,
232    Other,
233}
234
235/// Co-citation relationship
236#[derive(Debug, Clone, Serialize, Deserialize)]
237pub struct CoCitation {
238    /// First paper
239    pub paper1: String,
240    /// Second paper
241    pub paper2: String,
242    /// Number of papers citing both
243    pub co_citation_count: u32,
244    /// Similarity score
245    pub similarity_score: f64,
246}
247
248/// Bibliographic coupling
249#[derive(Debug, Clone, Serialize, Deserialize)]
250pub struct BibliographicCoupling {
251    /// First paper
252    pub paper1: String,
253    /// Second paper
254    pub paper2: String,
255    /// Number of shared references
256    pub shared_references: u32,
257    /// Coupling strength
258    pub coupling_strength: f64,
259}
260
261/// Temporal citation pattern
262#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct TemporalCitation {
264    /// Paper ID
265    pub paper_id: String,
266    /// Citation timestamp
267    pub timestamp: DateTime<Utc>,
268    /// Citations at this time
269    pub citation_count: u64,
270    /// Velocity (citations per time unit)
271    pub citation_velocity: f64,
272}
273
274/// Collaboration network
275#[derive(Debug, Clone)]
276pub struct CollaborationNetwork {
277    /// Author collaborations: (author1, author2, collaboration_strength)
278    pub collaborations: HashMap<String, Vec<Collaboration>>,
279    /// Research groups/communities
280    pub research_communities: Vec<ResearchCommunity>,
281    /// Collaboration patterns over time
282    pub temporal_collaborations: HashMap<String, Vec<TemporalCollaboration>>,
283}
284
285/// Collaboration between authors
286#[derive(Debug, Clone, Serialize, Deserialize)]
287pub struct Collaboration {
288    /// First author
289    pub author1: String,
290    /// Second author
291    pub author2: String,
292    /// Number of joint publications
293    pub joint_publications: u32,
294    /// Collaboration strength score
295    pub strength: f64,
296    /// Shared research topics
297    pub shared_topics: Vec<String>,
298    /// First collaboration date
299    pub first_collaboration: DateTime<Utc>,
300    /// Last collaboration date
301    pub last_collaboration: DateTime<Utc>,
302}
303
304/// Research community/cluster
305#[derive(Debug, Clone, Serialize, Deserialize)]
306pub struct ResearchCommunity {
307    /// Community ID
308    pub community_id: String,
309    /// Community members (author IDs)
310    pub members: Vec<String>,
311    /// Community topics
312    pub topics: Vec<String>,
313    /// Central/influential members
314    pub central_members: Vec<String>,
315    /// Community coherence score
316    pub coherence_score: f64,
317    /// Community size
318    pub size: usize,
319}
320
321/// Temporal collaboration pattern
322#[derive(Debug, Clone, Serialize, Deserialize)]
323pub struct TemporalCollaboration {
324    /// Author ID
325    pub author_id: String,
326    /// Time period
327    pub timestamp: DateTime<Utc>,
328    /// Active collaborations in this period
329    pub active_collaborations: u32,
330    /// New collaborations formed
331    pub new_collaborations: u32,
332}
333
334/// Topic model for research areas
335#[derive(Debug, Clone)]
336pub struct TopicModel {
337    /// Topic ID
338    pub topic_id: String,
339    /// Topic name/label
340    pub topic_name: String,
341    /// Topic words with probabilities
342    pub topic_words: Vec<(String, f64)>,
343    /// Document-topic distribution
344    pub document_topics: HashMap<String, f64>,
345    /// Topic coherence score
346    pub coherence_score: f64,
347    /// Topic trend over time
348    pub temporal_trend: Vec<TopicTrend>,
349}
350
351/// Topic trend over time
352#[derive(Debug, Clone, Serialize, Deserialize)]
353pub struct TopicTrend {
354    /// Time period
355    pub timestamp: DateTime<Utc>,
356    /// Topic popularity/frequency
357    pub popularity: f64,
358    /// Number of publications in this topic
359    pub publication_count: u64,
360    /// Topic growth rate
361    pub growth_rate: f64,
362}
363
364/// Impact prediction model
365#[derive(Debug, Clone)]
366pub struct ImpactPredictor {
367    /// Feature weights for impact prediction
368    pub feature_weights: HashMap<String, f64>,
369    /// Model performance metrics
370    pub performance_metrics: PredictionMetrics,
371    /// Last model update
372    pub last_update: DateTime<Utc>,
373}
374
375/// Prediction performance metrics
376#[derive(Debug, Clone, Serialize, Deserialize)]
377pub struct PredictionMetrics {
378    /// Mean absolute error
379    pub mae: f64,
380    /// Root mean square error
381    pub rmse: f64,
382    /// R-squared score
383    pub r2_score: f64,
384    /// Precision at different thresholds
385    pub precision_at_k: HashMap<u32, f64>,
386}
387
388impl ResearchNetworkAnalyzer {
389    /// Create new research network analyzer
390    pub fn new(config: ResearchNetworkConfig) -> Self {
391        Self {
392            author_embeddings: Arc::new(RwLock::new(HashMap::new())),
393            publication_embeddings: Arc::new(RwLock::new(HashMap::new())),
394            citation_network: Arc::new(RwLock::new(CitationNetwork {
395                citations: HashMap::new(),
396                co_citations: HashMap::new(),
397                bibliographic_coupling: HashMap::new(),
398                temporal_patterns: HashMap::new(),
399            })),
400            collaboration_network: Arc::new(RwLock::new(CollaborationNetwork {
401                collaborations: HashMap::new(),
402                research_communities: Vec::new(),
403                temporal_collaborations: HashMap::new(),
404            })),
405            topic_models: Arc::new(RwLock::new(HashMap::new())),
406            config,
407            analysis_tasks: Vec::new(),
408        }
409    }
410
411    /// Start background analysis tasks
412    pub async fn start(&mut self) -> Result<()> {
413        info!("Starting research network analysis system");
414
415        // Start citation network analysis task
416        let citation_task = self.start_citation_analysis().await;
417        self.analysis_tasks.push(citation_task);
418
419        // Start collaboration analysis task
420        let collaboration_task = self.start_collaboration_analysis().await;
421        self.analysis_tasks.push(collaboration_task);
422
423        // Start impact prediction task
424        let impact_task = self.start_impact_prediction().await;
425        self.analysis_tasks.push(impact_task);
426
427        // Start topic modeling task
428        let topic_task = self.start_topic_modeling().await;
429        self.analysis_tasks.push(topic_task);
430
431        info!("Research network analysis system started successfully");
432        Ok(())
433    }
434
435    /// Stop analysis tasks
436    pub async fn stop(&mut self) {
437        info!("Stopping research network analysis system");
438
439        for task in self.analysis_tasks.drain(..) {
440            task.abort();
441        }
442
443        info!("Research network analysis system stopped");
444    }
445
446    /// Generate author embedding based on publications and collaborations
447    pub async fn generate_author_embedding(&self, author_id: &str) -> Result<AuthorEmbedding> {
448        // Check if already computed
449        {
450            let embeddings = self
451                .author_embeddings
452                .read()
453                .expect("rwlock should not be poisoned");
454            if let Some(existing) = embeddings.get(author_id) {
455                return Ok(existing.clone());
456            }
457        }
458
459        info!("Generating author embedding for: {}", author_id);
460
461        // Collect author's publications
462        let author_publications = self.get_author_publications(author_id).await?;
463
464        // Get collaboration information
465        let collaborations = self.get_author_collaborations(author_id).await?;
466
467        // Compute research topics
468        let research_topics = self
469            .extract_author_topics(author_id, &author_publications)
470            .await?;
471
472        // Calculate metrics
473        let h_index = self.calculate_h_index(&author_publications).await?;
474        let citation_count = author_publications.iter().map(|p| p.citation_count).sum();
475        let collaboration_score = self.calculate_collaboration_score(&collaborations).await?;
476        let impact_score = self.calculate_author_impact_score(author_id).await?;
477
478        // Generate embedding vector
479        let embedding = self
480            .compute_author_embedding_vector(
481                &author_publications,
482                &collaborations,
483                &research_topics,
484            )
485            .await?;
486
487        // Determine career stage
488        let career_stage = self
489            .classify_career_stage(citation_count, author_publications.len() as u64, h_index)
490            .await?;
491
492        let author_embedding = AuthorEmbedding {
493            author_id: author_id.to_string(),
494            name: format!("Author_{author_id}"), // Placeholder - would get from database
495            affiliations: vec!["Unknown".to_string()], // Placeholder
496            research_topics,
497            h_index,
498            citation_count,
499            publication_count: author_publications.len() as u64,
500            embedding,
501            collaboration_score,
502            impact_score,
503            career_stage,
504            last_updated: Utc::now(),
505        };
506
507        // Cache the result
508        {
509            let mut embeddings = self
510                .author_embeddings
511                .write()
512                .expect("rwlock should not be poisoned");
513            embeddings.insert(author_id.to_string(), author_embedding.clone());
514        }
515
516        info!(
517            "Generated author embedding for {} with h-index: {:.2}",
518            author_id, h_index
519        );
520        Ok(author_embedding)
521    }
522
523    /// Generate publication embedding based on content and citations
524    pub async fn generate_publication_embedding(
525        &self,
526        publication_id: &str,
527    ) -> Result<PublicationEmbedding> {
528        // Check if already computed
529        {
530            let embeddings = self
531                .publication_embeddings
532                .read()
533                .expect("rwlock should not be poisoned");
534            if let Some(existing) = embeddings.get(publication_id) {
535                return Ok(existing.clone());
536            }
537        }
538
539        info!("Generating publication embedding for: {}", publication_id);
540
541        // Get publication metadata (would come from database)
542        let title = format!("Publication_{publication_id}");
543        let abstract_text = format!("Abstract for publication {publication_id}");
544        let authors = vec![format!("author_{}", publication_id)];
545        let venue = "Unknown Venue".to_string();
546        let year = 2023; // Placeholder
547        let doi = Some(format!("10.1000/{publication_id}"));
548
549        // Get citation information
550        let citation_count = self.get_publication_citation_count(publication_id).await?;
551
552        // Extract topics
553        let topic_distribution = self
554            .extract_publication_topics(publication_id, &abstract_text)
555            .await?;
556
557        // Generate content embedding
558        let embedding = self
559            .compute_publication_embedding_vector(&title, &abstract_text, &topic_distribution)
560            .await?;
561
562        // Predict impact
563        let predicted_impact = self
564            .predict_publication_impact(citation_count, &topic_distribution, &embedding)
565            .await?;
566
567        let publication_embedding = PublicationEmbedding {
568            publication_id: publication_id.to_string(),
569            title,
570            abstract_text,
571            authors,
572            venue,
573            year,
574            citation_count,
575            topic_distribution,
576            embedding,
577            predicted_impact,
578            publication_type: PublicationType::JournalArticle, // Default
579            doi,
580            last_updated: Utc::now(),
581        };
582
583        // Cache the result
584        {
585            let mut embeddings = self
586                .publication_embeddings
587                .write()
588                .expect("rwlock should not be poisoned");
589            embeddings.insert(publication_id.to_string(), publication_embedding.clone());
590        }
591
592        info!(
593            "Generated publication embedding for {} with predicted impact: {:.3}",
594            publication_id, predicted_impact
595        );
596        Ok(publication_embedding)
597    }
598
599    /// Analyze citation patterns and relationships
600    pub async fn analyze_citation_patterns(&self, publication_id: &str) -> Result<Vec<Citation>> {
601        let network = self
602            .citation_network
603            .read()
604            .expect("rwlock should not be poisoned");
605
606        if let Some(citations) = network.citations.get(publication_id) {
607            Ok(citations.clone())
608        } else {
609            Ok(Vec::new())
610        }
611    }
612
613    /// Find similar authors based on research interests and collaboration patterns
614    pub async fn find_similar_authors(
615        &self,
616        author_id: &str,
617        k: usize,
618    ) -> Result<Vec<(String, f64)>> {
619        let target_embedding = self.generate_author_embedding(author_id).await?;
620        let embeddings_data: Vec<(String, AuthorEmbedding)> = {
621            let embeddings = self
622                .author_embeddings
623                .read()
624                .expect("rwlock should not be poisoned");
625            embeddings
626                .iter()
627                .filter(|(other_id, _)| *other_id != author_id)
628                .map(|(id, emb)| (id.clone(), emb.clone()))
629                .collect()
630        };
631
632        let mut similarities = Vec::new();
633
634        for (other_id, other_embedding) in embeddings_data {
635            let similarity = self
636                .calculate_author_similarity(&target_embedding, &other_embedding)
637                .await?;
638            similarities.push((other_id, similarity));
639        }
640
641        // Sort by similarity and take top k
642        similarities.sort_by(|a, b| {
643            b.1.partial_cmp(&a.1)
644                .expect("similarity scores should be comparable")
645        });
646        similarities.truncate(k);
647
648        Ok(similarities)
649    }
650
651    /// Predict research impact for a publication
652    pub async fn predict_research_impact(&self, publication_id: &str) -> Result<f64> {
653        let publication = self.generate_publication_embedding(publication_id).await?;
654        Ok(publication.predicted_impact)
655    }
656
657    /// Analyze research trends over time
658    pub async fn analyze_research_trends(
659        &self,
660        topic: &str,
661        years: u32,
662    ) -> Result<Vec<TopicTrend>> {
663        let topics = self
664            .topic_models
665            .read()
666            .expect("rwlock should not be poisoned");
667
668        if let Some(topic_model) = topics.get(topic) {
669            // Filter trends for the specified time period
670            let cutoff_date = Utc::now() - chrono::Duration::days((years * 365) as i64);
671            let recent_trends: Vec<TopicTrend> = topic_model
672                .temporal_trend
673                .iter()
674                .filter(|trend| trend.timestamp > cutoff_date)
675                .cloned()
676                .collect();
677
678            Ok(recent_trends)
679        } else {
680            Ok(Vec::new())
681        }
682    }
683
684    /// Get research communities/clusters
685    pub async fn get_research_communities(&self) -> Result<Vec<ResearchCommunity>> {
686        let network = self
687            .collaboration_network
688            .read()
689            .expect("rwlock should not be poisoned");
690        Ok(network.research_communities.clone())
691    }
692
693    /// Update citation network with new citation
694    pub async fn add_citation(&self, citation: Citation) -> Result<()> {
695        let mut network = self
696            .citation_network
697            .write()
698            .expect("rwlock should not be poisoned");
699
700        network
701            .citations
702            .entry(citation.citing_paper.clone())
703            .or_default()
704            .push(citation);
705
706        info!("Added new citation to network");
707        Ok(())
708    }
709
710    // ===== PRIVATE HELPER METHODS =====
711
712    async fn get_author_publications(&self, _author_id: &str) -> Result<Vec<PublicationEmbedding>> {
713        // Placeholder - would query database
714        Ok(Vec::new())
715    }
716
717    async fn get_author_collaborations(&self, _author_id: &str) -> Result<Vec<Collaboration>> {
718        // Placeholder - would query collaboration network
719        Ok(Vec::new())
720    }
721
722    async fn extract_author_topics(
723        &self,
724        _author_id: &str,
725        _publications: &[PublicationEmbedding],
726    ) -> Result<Vec<String>> {
727        // Placeholder - would perform topic extraction
728        Ok(vec![
729            "machine_learning".to_string(),
730            "natural_language_processing".to_string(),
731        ])
732    }
733
734    async fn calculate_h_index(&self, publications: &[PublicationEmbedding]) -> Result<f64> {
735        let mut citation_counts: Vec<u64> = publications.iter().map(|p| p.citation_count).collect();
736
737        citation_counts.sort_by(|a, b| b.cmp(a));
738
739        let mut h_index = 0;
740        for (i, &citations) in citation_counts.iter().enumerate() {
741            if citations >= (i + 1) as u64 {
742                h_index = i + 1;
743            } else {
744                break;
745            }
746        }
747
748        Ok(h_index as f64)
749    }
750
751    async fn calculate_collaboration_score(&self, collaborations: &[Collaboration]) -> Result<f64> {
752        if collaborations.is_empty() {
753            return Ok(0.0);
754        }
755
756        let total_strength: f64 = collaborations.iter().map(|c| c.strength).sum();
757        Ok(total_strength / collaborations.len() as f64)
758    }
759
760    async fn calculate_author_impact_score(&self, _author_id: &str) -> Result<f64> {
761        // Placeholder - would calculate based on citations, h-index, collaboration network position
762        Ok(0.75)
763    }
764
765    async fn compute_author_embedding_vector(
766        &self,
767        _publications: &[PublicationEmbedding],
768        _collaborations: &[Collaboration],
769        _topics: &[String],
770    ) -> Result<Vector> {
771        // Placeholder - would compute actual embedding
772        let values = (0..self.config.embedding_dimension)
773            .map(|_| {
774                let mut random = Random::default();
775                random.random::<f32>()
776            })
777            .collect();
778        Ok(Vector::new(values))
779    }
780
781    async fn classify_career_stage(
782        &self,
783        citation_count: u64,
784        publication_count: u64,
785        h_index: f64,
786    ) -> Result<CareerStage> {
787        if citation_count < 100 && publication_count < 10 && h_index < 5.0 {
788            Ok(CareerStage::EarlyCareer)
789        } else if citation_count < 1000 && publication_count < 50 && h_index < 20.0 {
790            Ok(CareerStage::MidCareer)
791        } else if citation_count >= 1000 || publication_count >= 50 || h_index >= 20.0 {
792            Ok(CareerStage::SeniorCareer)
793        } else {
794            Ok(CareerStage::Unknown)
795        }
796    }
797
798    async fn get_publication_citation_count(&self, _publication_id: &str) -> Result<u64> {
799        // Placeholder - would query citation database
800        let mut random = Random::default();
801        Ok(random.random::<u64>() % 100)
802    }
803
804    async fn extract_publication_topics(
805        &self,
806        _publication_id: &str,
807        _abstract_text: &str,
808    ) -> Result<Vec<f64>> {
809        // Placeholder - would perform topic modeling
810        let num_topics = self.config.topic_config.num_topics;
811        let mut distribution = vec![0.0; num_topics];
812
813        // Generate random distribution that sums to 1.0
814        let total: f64 = (0..num_topics)
815            .map(|_| {
816                let mut random = Random::default();
817                random.random::<f64>()
818            })
819            .sum();
820        for item in distribution.iter_mut().take(num_topics) {
821            let mut random = Random::default();
822            *item = random.random::<f64>() / total;
823        }
824
825        Ok(distribution)
826    }
827
828    async fn compute_publication_embedding_vector(
829        &self,
830        _title: &str,
831        _abstract_text: &str,
832        _topic_distribution: &[f64],
833    ) -> Result<Vector> {
834        // Placeholder - would compute actual embedding
835        let values = (0..self.config.embedding_dimension)
836            .map(|_| {
837                let mut random = Random::default();
838                random.random::<f32>()
839            })
840            .collect();
841        Ok(Vector::new(values))
842    }
843
844    async fn predict_publication_impact(
845        &self,
846        citation_count: u64,
847        _topic_distribution: &[f64],
848        _embedding: &Vector,
849    ) -> Result<f64> {
850        // Placeholder - would use trained impact prediction model
851        let base_impact = (citation_count as f64).ln() / 10.0;
852        Ok(base_impact.clamp(0.0, 1.0))
853    }
854
855    async fn calculate_author_similarity(
856        &self,
857        author1: &AuthorEmbedding,
858        author2: &AuthorEmbedding,
859    ) -> Result<f64> {
860        // Calculate cosine similarity between embeddings
861        let embedding1 = &author1.embedding.values;
862        let embedding2 = &author2.embedding.values;
863
864        let dot_product: f32 = embedding1
865            .iter()
866            .zip(embedding2.iter())
867            .map(|(a, b)| a * b)
868            .sum();
869        let norm1: f32 = embedding1.iter().map(|x| x * x).sum::<f32>().sqrt();
870        let norm2: f32 = embedding2.iter().map(|x| x * x).sum::<f32>().sqrt();
871
872        let cosine_similarity = if norm1 > 0.0 && norm2 > 0.0 {
873            dot_product / (norm1 * norm2)
874        } else {
875            0.0
876        };
877
878        // Combine with topic similarity
879        let topic_similarity = self
880            .calculate_topic_similarity(&author1.research_topics, &author2.research_topics)
881            .await?;
882
883        // Weighted combination
884        let final_similarity = 0.7 * cosine_similarity as f64 + 0.3 * topic_similarity;
885
886        Ok(final_similarity)
887    }
888
889    async fn calculate_topic_similarity(
890        &self,
891        topics1: &[String],
892        topics2: &[String],
893    ) -> Result<f64> {
894        let set1: HashSet<_> = topics1.iter().collect();
895        let set2: HashSet<_> = topics2.iter().collect();
896
897        let intersection = set1.intersection(&set2).count();
898        let union = set1.union(&set2).count();
899
900        if union > 0 {
901            Ok(intersection as f64 / union as f64)
902        } else {
903            Ok(0.0)
904        }
905    }
906
907    // ===== BACKGROUND ANALYSIS TASKS =====
908
909    async fn start_citation_analysis(&self) -> JoinHandle<()> {
910        let _citation_network = Arc::clone(&self.citation_network);
911        let interval =
912            std::time::Duration::from_secs(self.config.citation_update_interval_hours * 3600);
913
914        tokio::spawn(async move {
915            let mut interval_timer = tokio::time::interval(interval);
916
917            loop {
918                interval_timer.tick().await;
919
920                // Perform citation network analysis
921                info!("Performing citation network analysis");
922
923                // Placeholder for actual analysis
924                // Would analyze citation patterns, identify influential papers, etc.
925
926                debug!("Citation network analysis completed");
927            }
928        })
929    }
930
931    async fn start_collaboration_analysis(&self) -> JoinHandle<()> {
932        let _collaboration_network = Arc::clone(&self.collaboration_network);
933        let interval = std::time::Duration::from_secs(
934            self.config.collaboration_analysis_interval_hours * 3600,
935        );
936
937        tokio::spawn(async move {
938            let mut interval_timer = tokio::time::interval(interval);
939
940            loop {
941                interval_timer.tick().await;
942
943                // Perform collaboration network analysis
944                info!("Performing collaboration network analysis");
945
946                // Placeholder for actual analysis
947                // Would detect research communities, analyze collaboration patterns, etc.
948
949                debug!("Collaboration network analysis completed");
950            }
951        })
952    }
953
954    async fn start_impact_prediction(&self) -> JoinHandle<()> {
955        let interval =
956            std::time::Duration::from_secs(self.config.impact_prediction_refresh_hours * 3600);
957
958        tokio::spawn(async move {
959            let mut interval_timer = tokio::time::interval(interval);
960
961            loop {
962                interval_timer.tick().await;
963
964                // Refresh impact prediction models
965                info!("Refreshing impact prediction models");
966
967                // Placeholder for actual model training/updating
968                // Would retrain models based on recent citation data
969
970                debug!("Impact prediction models refreshed");
971            }
972        })
973    }
974
975    async fn start_topic_modeling(&self) -> JoinHandle<()> {
976        let topic_models = Arc::clone(&self.topic_models);
977        let _config = self.config.clone();
978        let interval = std::time::Duration::from_secs(24 * 3600); // Daily
979
980        tokio::spawn(async move {
981            let mut interval_timer = tokio::time::interval(interval);
982
983            loop {
984                interval_timer.tick().await;
985
986                // Update topic models
987                info!("Updating topic models");
988
989                // Create sample topic model
990                let topic_model = TopicModel {
991                    topic_id: "machine_learning".to_string(),
992                    topic_name: "Machine Learning".to_string(),
993                    topic_words: vec![
994                        ("neural".to_string(), 0.1),
995                        ("network".to_string(), 0.09),
996                        ("learning".to_string(), 0.08),
997                        ("algorithm".to_string(), 0.07),
998                        ("model".to_string(), 0.06),
999                    ],
1000                    document_topics: HashMap::new(),
1001                    coherence_score: 0.75,
1002                    temporal_trend: vec![
1003                        TopicTrend {
1004                            timestamp: Utc::now() - chrono::Duration::days(365),
1005                            popularity: 0.6,
1006                            publication_count: 1000,
1007                            growth_rate: 0.15,
1008                        },
1009                        TopicTrend {
1010                            timestamp: Utc::now(),
1011                            popularity: 0.8,
1012                            publication_count: 1500,
1013                            growth_rate: 0.25,
1014                        },
1015                    ],
1016                };
1017
1018                {
1019                    let mut models = topic_models.write().expect("rwlock should not be poisoned");
1020                    models.insert("machine_learning".to_string(), topic_model);
1021                }
1022
1023                debug!("Topic models updated");
1024            }
1025        })
1026    }
1027}
1028
1029/// Research network metrics and statistics
1030#[derive(Debug, Clone, Serialize, Deserialize)]
1031pub struct NetworkMetrics {
1032    /// Total number of authors
1033    pub total_authors: usize,
1034    /// Total number of publications
1035    pub total_publications: usize,
1036    /// Total number of citations
1037    pub total_citations: u64,
1038    /// Average citations per paper
1039    pub avg_citations_per_paper: f64,
1040    /// Network density
1041    pub network_density: f64,
1042    /// Clustering coefficient
1043    pub clustering_coefficient: f64,
1044    /// Average path length
1045    pub average_path_length: f64,
1046    /// Most influential authors
1047    pub top_authors: Vec<String>,
1048    /// Trending topics
1049    pub trending_topics: Vec<String>,
1050}
1051
1052impl ResearchNetworkAnalyzer {
1053    /// Get comprehensive network metrics
1054    pub async fn get_network_metrics(&self) -> Result<NetworkMetrics> {
1055        let author_embeddings = self
1056            .author_embeddings
1057            .read()
1058            .expect("rwlock should not be poisoned");
1059        let publication_embeddings = self
1060            .publication_embeddings
1061            .read()
1062            .expect("rwlock should not be poisoned");
1063
1064        let total_authors = author_embeddings.len();
1065        let total_publications = publication_embeddings.len();
1066        let total_citations = publication_embeddings
1067            .values()
1068            .map(|p| p.citation_count)
1069            .sum();
1070
1071        let avg_citations_per_paper = if total_publications > 0 {
1072            total_citations as f64 / total_publications as f64
1073        } else {
1074            0.0
1075        };
1076
1077        // Get top authors by impact score
1078        let mut author_scores: Vec<_> = author_embeddings
1079            .iter()
1080            .map(|(id, embedding)| (id.clone(), embedding.impact_score))
1081            .collect();
1082        author_scores.sort_by(|a, b| {
1083            b.1.partial_cmp(&a.1)
1084                .expect("similarity scores should be comparable")
1085        });
1086        let top_authors: Vec<String> = author_scores
1087            .into_iter()
1088            .take(10)
1089            .map(|(id, _)| id)
1090            .collect();
1091
1092        Ok(NetworkMetrics {
1093            total_authors,
1094            total_publications,
1095            total_citations,
1096            avg_citations_per_paper,
1097            network_density: 0.1,        // Placeholder
1098            clustering_coefficient: 0.3, // Placeholder
1099            average_path_length: 4.5,    // Placeholder
1100            top_authors,
1101            trending_topics: vec!["machine_learning".to_string(), "deep_learning".to_string()],
1102        })
1103    }
1104}
1105
1106#[cfg(test)]
1107mod tests {
1108    use super::*;
1109
1110    #[tokio::test]
1111    async fn test_research_network_analyzer_creation() {
1112        let config = ResearchNetworkConfig::default();
1113        let analyzer = ResearchNetworkAnalyzer::new(config);
1114
1115        // Test that analyzer is created successfully
1116        assert_eq!(
1117            analyzer
1118                .author_embeddings
1119                .read()
1120                .expect("rwlock should not be poisoned")
1121                .len(),
1122            0
1123        );
1124        assert_eq!(
1125            analyzer
1126                .publication_embeddings
1127                .read()
1128                .expect("rwlock should not be poisoned")
1129                .len(),
1130            0
1131        );
1132    }
1133
1134    #[tokio::test]
1135    async fn test_author_embedding_generation() {
1136        let config = ResearchNetworkConfig::default();
1137        let analyzer = ResearchNetworkAnalyzer::new(config);
1138
1139        let result = analyzer.generate_author_embedding("test_author").await;
1140        assert!(result.is_ok());
1141
1142        let embedding = result.unwrap();
1143        assert_eq!(embedding.author_id, "test_author");
1144        assert!(embedding.h_index >= 0.0);
1145        assert_eq!(embedding.embedding.values.len(), 512); // Default dimension
1146    }
1147
1148    #[tokio::test]
1149    async fn test_publication_embedding_generation() {
1150        let config = ResearchNetworkConfig::default();
1151        let analyzer = ResearchNetworkAnalyzer::new(config);
1152
1153        let result = analyzer
1154            .generate_publication_embedding("test_publication")
1155            .await;
1156        assert!(result.is_ok());
1157
1158        let embedding = result.unwrap();
1159        assert_eq!(embedding.publication_id, "test_publication");
1160        assert!(embedding.predicted_impact >= 0.0);
1161        assert!(embedding.predicted_impact <= 1.0);
1162    }
1163
1164    #[tokio::test]
1165    async fn test_h_index_calculation() {
1166        let config = ResearchNetworkConfig::default();
1167        let analyzer = ResearchNetworkAnalyzer::new(config);
1168
1169        // Create test publications with different citation counts
1170        let publications = vec![
1171            PublicationEmbedding {
1172                publication_id: "p1".to_string(),
1173                title: "Test 1".to_string(),
1174                abstract_text: "Abstract 1".to_string(),
1175                authors: vec!["author1".to_string()],
1176                venue: "Venue 1".to_string(),
1177                year: 2023,
1178                citation_count: 10,
1179                topic_distribution: vec![],
1180                embedding: Vector::new(vec![]),
1181                predicted_impact: 0.5,
1182                publication_type: PublicationType::JournalArticle,
1183                doi: None,
1184                last_updated: Utc::now(),
1185            },
1186            PublicationEmbedding {
1187                publication_id: "p2".to_string(),
1188                title: "Test 2".to_string(),
1189                abstract_text: "Abstract 2".to_string(),
1190                authors: vec!["author1".to_string()],
1191                venue: "Venue 2".to_string(),
1192                year: 2023,
1193                citation_count: 5,
1194                topic_distribution: vec![],
1195                embedding: Vector::new(vec![]),
1196                predicted_impact: 0.3,
1197                publication_type: PublicationType::JournalArticle,
1198                doi: None,
1199                last_updated: Utc::now(),
1200            },
1201        ];
1202
1203        let h_index = analyzer.calculate_h_index(&publications).await.unwrap();
1204        assert_eq!(h_index, 2.0); // Both papers have at least 2 citations
1205    }
1206
1207    #[test]
1208    fn test_career_stage_classification() {
1209        // Test early career
1210        let rt = tokio::runtime::Runtime::new().unwrap();
1211        let config = ResearchNetworkConfig::default();
1212        let analyzer = ResearchNetworkAnalyzer::new(config);
1213
1214        let stage = rt
1215            .block_on(analyzer.classify_career_stage(50, 5, 3.0))
1216            .unwrap();
1217        assert!(matches!(stage, CareerStage::EarlyCareer));
1218
1219        // Test senior career
1220        let stage = rt
1221            .block_on(analyzer.classify_career_stage(2000, 100, 25.0))
1222            .unwrap();
1223        assert!(matches!(stage, CareerStage::SeniorCareer));
1224    }
1225
1226    #[tokio::test]
1227    async fn test_network_metrics() {
1228        let config = ResearchNetworkConfig::default();
1229        let analyzer = ResearchNetworkAnalyzer::new(config);
1230
1231        // Add some test data
1232        let _author_embedding = analyzer
1233            .generate_author_embedding("test_author")
1234            .await
1235            .unwrap();
1236        let _publication_embedding = analyzer
1237            .generate_publication_embedding("test_publication")
1238            .await
1239            .unwrap();
1240
1241        let metrics = analyzer.get_network_metrics().await.unwrap();
1242        assert_eq!(metrics.total_authors, 1);
1243        assert_eq!(metrics.total_publications, 1);
1244    }
1245}