1use crate::EmbeddingModel;
9use anyhow::Result;
10use scirs2_core::random::{Random, Rng};
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, VecDeque};
13use std::sync::{Arc, Mutex};
14use std::time::{Duration, Instant};
15use tokio::time::sleep;
16use tracing::info;
17
18pub struct RealTimeOptimizer {
20 config: OptimizationConfig,
22 performance_monitor: PerformanceMonitor,
24 learning_rate_scheduler: AdaptiveLearningRateScheduler,
26 architecture_optimizer: DynamicArchitectureOptimizer,
28 online_learning_manager: OnlineLearningManager,
30 resource_optimizer: ResourceOptimizer,
32 optimization_history: OptimizationHistory,
34}
35
36#[derive(Debug, Clone, Serialize, Deserialize)]
38pub struct OptimizationConfig {
39 pub enable_adaptive_lr: bool,
41 pub enable_architecture_opt: bool,
43 pub enable_online_learning: bool,
45 pub enable_resource_opt: bool,
47 pub optimization_frequency: u64,
49 pub performance_window_size: usize,
51 pub improvement_threshold: f32,
53 pub max_lr_adjustment: f32,
55 pub architecture_mutation_prob: f32,
57 pub online_batch_size: usize,
59 pub resource_sensitivity: f32,
61}
62
63impl Default for OptimizationConfig {
64 fn default() -> Self {
65 Self {
66 enable_adaptive_lr: true,
67 enable_architecture_opt: true,
68 enable_online_learning: true,
69 enable_resource_opt: true,
70 optimization_frequency: 30, performance_window_size: 100,
72 improvement_threshold: 0.001,
73 max_lr_adjustment: 2.0,
74 architecture_mutation_prob: 0.1,
75 online_batch_size: 32,
76 resource_sensitivity: 0.5,
77 }
78 }
79}
80
81pub struct PerformanceMonitor {
83 metrics_history: Arc<Mutex<VecDeque<PerformanceMetrics>>>,
85 current_baseline: Arc<Mutex<PerformanceMetrics>>,
87 window_size: usize,
89}
90
91#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct PerformanceMetrics {
94 pub timestamp: chrono::DateTime<chrono::Utc>,
96 pub training_loss: f32,
98 pub validation_accuracy: f32,
100 pub inference_latency: f32,
102 pub memory_usage: f32,
104 pub gpu_utilization: f32,
106 pub throughput: f32,
108 pub learning_rate: f32,
110 pub model_complexity: f32,
112}
113
114impl Default for PerformanceMetrics {
115 fn default() -> Self {
116 Self {
117 timestamp: chrono::Utc::now(),
118 training_loss: 1.0,
119 validation_accuracy: 0.5,
120 inference_latency: 100.0,
121 memory_usage: 1024.0,
122 gpu_utilization: 50.0,
123 throughput: 100.0,
124 learning_rate: 0.001,
125 model_complexity: 0.5,
126 }
127 }
128}
129
130pub struct AdaptiveLearningRateScheduler {
132 current_lr: f32,
134 base_lr: f32,
136 adjustment_history: VecDeque<LearningRateAdjustment>,
138 strategy: LearningRateStrategy,
140}
141
142#[derive(Debug, Clone)]
143pub enum LearningRateStrategy {
144 AdaptiveGradient,
145 CyclicalLearningRate,
146 WarmupCosineAnnealing,
147 PerformanceBased,
148 OneCycle,
149}
150
151#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct LearningRateAdjustment {
153 pub timestamp: chrono::DateTime<chrono::Utc>,
154 pub old_lr: f32,
155 pub new_lr: f32,
156 pub reason: String,
157 pub performance_before: f32,
158 pub performance_after: Option<f32>,
159}
160
161impl AdaptiveLearningRateScheduler {
162 pub fn new(base_lr: f32, strategy: LearningRateStrategy) -> Self {
163 Self {
164 current_lr: base_lr,
165 base_lr,
166 adjustment_history: VecDeque::new(),
167 strategy,
168 }
169 }
170
171 pub fn adjust_learning_rate(
173 &mut self,
174 current_metrics: &PerformanceMetrics,
175 recent_metrics: &[PerformanceMetrics],
176 ) -> Result<f32> {
177 let new_lr = match self.strategy {
178 LearningRateStrategy::AdaptiveGradient => {
179 self.adaptive_gradient_adjustment(current_metrics, recent_metrics)?
180 }
181 LearningRateStrategy::CyclicalLearningRate => {
182 self.cyclical_lr_adjustment(current_metrics)?
183 }
184 LearningRateStrategy::WarmupCosineAnnealing => {
185 self.warmup_cosine_adjustment(current_metrics)?
186 }
187 LearningRateStrategy::PerformanceBased => {
188 self.performance_based_adjustment(current_metrics, recent_metrics)?
189 }
190 LearningRateStrategy::OneCycle => self.one_cycle_adjustment(current_metrics)?,
191 };
192
193 self.record_adjustment(new_lr, "Adaptive adjustment".to_string(), current_metrics);
195
196 self.current_lr = new_lr;
197 Ok(new_lr)
198 }
199
200 fn adaptive_gradient_adjustment(
201 &self,
202 _current_metrics: &PerformanceMetrics,
203 recent_metrics: &[PerformanceMetrics],
204 ) -> Result<f32> {
205 if recent_metrics.len() < 2 {
206 return Ok(self.current_lr);
207 }
208
209 let loss_gradient = self.calculate_loss_gradient(recent_metrics);
211
212 let adjustment_factor = if loss_gradient.abs() < 0.001 {
214 1.1 } else if loss_gradient > 0.0 {
216 0.9 } else {
218 1.05 };
220
221 Ok(self.current_lr * adjustment_factor)
222 }
223
224 fn cyclical_lr_adjustment(&self, current_metrics: &PerformanceMetrics) -> Result<f32> {
225 let cycle_length = 1000; let step = current_metrics.timestamp.timestamp() as f32;
228 let cycle_position = (step % cycle_length as f32) / cycle_length as f32;
229
230 let min_lr = self.base_lr * 0.1;
231 let max_lr = self.base_lr * 10.0;
232
233 let lr = min_lr
234 + (max_lr - min_lr) * (1.0 + (cycle_position * 2.0 * std::f32::consts::PI).cos()) / 2.0;
235 Ok(lr)
236 }
237
238 fn warmup_cosine_adjustment(&self, current_metrics: &PerformanceMetrics) -> Result<f32> {
239 let warmup_steps = 1000.0;
241 let total_steps = 10000.0;
242 let step = current_metrics.timestamp.timestamp() as f32;
243
244 if step < warmup_steps {
245 Ok(self.base_lr * step / warmup_steps)
247 } else {
248 let progress = (step - warmup_steps) / (total_steps - warmup_steps);
250 let lr = self.base_lr * 0.5 * (1.0 + (progress * std::f32::consts::PI).cos());
251 Ok(lr)
252 }
253 }
254
255 fn performance_based_adjustment(
256 &self,
257 _current_metrics: &PerformanceMetrics,
258 recent_metrics: &[PerformanceMetrics],
259 ) -> Result<f32> {
260 if recent_metrics.len() < 5 {
261 return Ok(self.current_lr);
262 }
263
264 let recent_losses: Vec<f32> = recent_metrics.iter().map(|m| m.training_loss).collect();
266
267 let improving = self.is_performance_improving(&recent_losses);
268
269 if improving {
270 Ok(self.current_lr * 1.02)
272 } else {
273 Ok(self.current_lr * 0.95)
275 }
276 }
277
278 fn one_cycle_adjustment(&self, current_metrics: &PerformanceMetrics) -> Result<f32> {
279 let cycle_length = 5000.0;
281 let step = current_metrics.timestamp.timestamp() as f32;
282 let cycle_position = step % cycle_length / cycle_length;
283
284 let max_lr = self.base_lr * 10.0;
285
286 if cycle_position < 0.3 {
287 let progress = cycle_position / 0.3;
289 Ok(self.base_lr + (max_lr - self.base_lr) * progress)
290 } else if cycle_position < 0.9 {
291 let progress = (cycle_position - 0.3) / 0.6;
293 Ok(max_lr - (max_lr - self.base_lr) * progress)
294 } else {
295 let progress = (cycle_position - 0.9) / 0.1;
297 Ok(self.base_lr * (1.0 - 0.9 * progress))
298 }
299 }
300
301 fn calculate_loss_gradient(&self, recent_metrics: &[PerformanceMetrics]) -> f32 {
302 if recent_metrics.len() < 2 {
303 return 0.0;
304 }
305
306 let recent_loss = recent_metrics[recent_metrics.len() - 1].training_loss;
307 let previous_loss = recent_metrics[recent_metrics.len() - 2].training_loss;
308
309 recent_loss - previous_loss
310 }
311
312 fn is_performance_improving(&self, recent_losses: &[f32]) -> bool {
313 if recent_losses.len() < 3 {
314 return false;
315 }
316
317 let recent_avg = recent_losses[recent_losses.len() - 3..].iter().sum::<f32>() / 3.0;
318 let earlier_avg = recent_losses[0..3].iter().sum::<f32>() / 3.0;
319
320 recent_avg < earlier_avg
321 }
322
323 fn record_adjustment(
324 &mut self,
325 new_lr: f32,
326 reason: String,
327 current_metrics: &PerformanceMetrics,
328 ) {
329 let adjustment = LearningRateAdjustment {
330 timestamp: chrono::Utc::now(),
331 old_lr: self.current_lr,
332 new_lr,
333 reason,
334 performance_before: current_metrics.training_loss,
335 performance_after: None,
336 };
337
338 self.adjustment_history.push_back(adjustment);
339
340 while self.adjustment_history.len() > 100 {
342 self.adjustment_history.pop_front();
343 }
344 }
345}
346
347pub struct DynamicArchitectureOptimizer {
349 current_architecture: ArchitectureConfig,
351 search_history: Vec<ArchitectureSearchResult>,
353 strategy: ArchitectureOptimizationStrategy,
355}
356
357#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct ArchitectureConfig {
359 pub embedding_dim: usize,
361 pub num_layers: usize,
363 pub hidden_dims: Vec<usize>,
365 pub activations: Vec<String>,
367 pub dropout_rates: Vec<f32>,
369 pub normalizations: Vec<String>,
371}
372
373#[derive(Debug, Clone)]
374pub enum ArchitectureOptimizationStrategy {
375 NeuralArchitectureSearch,
376 GradientBasedSearch,
377 EvolutionarySearch,
378 HyperparameterOptimization,
379 PruningAndGrowth,
380}
381
382#[derive(Debug, Clone, Serialize, Deserialize)]
383pub struct ArchitectureSearchResult {
384 pub timestamp: chrono::DateTime<chrono::Utc>,
385 pub architecture: ArchitectureConfig,
386 pub performance: f32,
387 pub search_time: f32,
388 pub validation_score: f32,
389}
390
391impl DynamicArchitectureOptimizer {
392 pub fn new(
393 initial_config: ArchitectureConfig,
394 strategy: ArchitectureOptimizationStrategy,
395 ) -> Self {
396 Self {
397 current_architecture: initial_config,
398 search_history: Vec::new(),
399 strategy,
400 }
401 }
402
403 pub async fn optimize_architecture(
405 &mut self,
406 current_metrics: &PerformanceMetrics,
407 model: &dyn EmbeddingModel,
408 ) -> Result<ArchitectureConfig> {
409 info!(
410 "Starting architecture optimization with strategy: {:?}",
411 self.strategy
412 );
413
414 let new_architecture = match self.strategy {
415 ArchitectureOptimizationStrategy::NeuralArchitectureSearch => {
416 self.neural_architecture_search(current_metrics, model)
417 .await?
418 }
419 ArchitectureOptimizationStrategy::GradientBasedSearch => {
420 self.gradient_based_search(current_metrics, model).await?
421 }
422 ArchitectureOptimizationStrategy::EvolutionarySearch => {
423 self.evolutionary_search(current_metrics, model).await?
424 }
425 ArchitectureOptimizationStrategy::HyperparameterOptimization => {
426 self.hyperparameter_optimization(current_metrics, model)
427 .await?
428 }
429 ArchitectureOptimizationStrategy::PruningAndGrowth => {
430 self.pruning_and_growth(current_metrics, model).await?
431 }
432 };
433
434 let performance = self.evaluate_architecture(&new_architecture, model).await?;
436
437 self.record_search_result(new_architecture.clone(), performance);
439
440 if performance > current_metrics.validation_accuracy + 0.01 {
442 info!(
443 "Architecture optimization successful: {:.3} -> {:.3}",
444 current_metrics.validation_accuracy, performance
445 );
446 self.current_architecture = new_architecture.clone();
447 }
448
449 Ok(new_architecture)
450 }
451
452 async fn neural_architecture_search(
453 &self,
454 _current_metrics: &PerformanceMetrics,
455 _model: &dyn EmbeddingModel,
456 ) -> Result<ArchitectureConfig> {
457 let mut new_config = self.current_architecture.clone();
459
460 let mut random = Random::default();
462 if random.random::<f32>() < 0.3 {
463 let adjustment = if random.random::<bool>() { 1.1 } else { 0.9 };
464 new_config.embedding_dim =
465 ((new_config.embedding_dim as f32 * adjustment) as usize).clamp(32, 1024);
466 }
467
468 if random.random::<f32>() < 0.2 {
470 new_config.num_layers = if random.random::<bool>() {
471 (new_config.num_layers + 1).min(10)
472 } else {
473 (new_config.num_layers.saturating_sub(1)).max(1)
474 };
475 }
476
477 for hidden_dim in &mut new_config.hidden_dims {
479 if random.random::<f32>() < 0.2 {
480 let adjustment = 0.8 + random.random::<f32>() * 0.4; *hidden_dim = ((*hidden_dim as f32 * adjustment) as usize).clamp(16, 2048);
482 }
483 }
484
485 Ok(new_config)
486 }
487
488 async fn gradient_based_search(
489 &self,
490 current_metrics: &PerformanceMetrics,
491 _model: &dyn EmbeddingModel,
492 ) -> Result<ArchitectureConfig> {
493 let mut new_config = self.current_architecture.clone();
495
496 if current_metrics.training_loss > 0.5 {
499 new_config.embedding_dim = (new_config.embedding_dim as f32 * 1.1) as usize;
501 new_config.num_layers = (new_config.num_layers + 1).min(8);
502 } else if current_metrics.training_loss < 0.1 {
503 new_config.embedding_dim = (new_config.embedding_dim as f32 * 0.9) as usize;
505 for dropout_rate in &mut new_config.dropout_rates {
506 *dropout_rate = (*dropout_rate + 0.1).min(0.5);
507 }
508 }
509
510 Ok(new_config)
511 }
512
513 async fn evolutionary_search(
514 &self,
515 _current_metrics: &PerformanceMetrics,
516 model: &dyn EmbeddingModel,
517 ) -> Result<ArchitectureConfig> {
518 let population = self.generate_architecture_population(5);
520
521 let mut fitness_scores = Vec::new();
523 for config in &population {
524 let fitness = self.evaluate_architecture(config, model).await?;
525 fitness_scores.push(fitness);
526 }
527
528 let mut indexed_scores: Vec<(usize, f32)> = fitness_scores
530 .iter()
531 .enumerate()
532 .map(|(i, &s)| (i, s))
533 .collect();
534 indexed_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
535
536 let parent1 = &population[indexed_scores[0].0];
538 let parent2 = &population[indexed_scores[1].0];
539 let offspring = self.crossover_architectures(parent1, parent2);
540 let mutated_offspring = self.mutate_architecture(offspring);
541
542 Ok(mutated_offspring)
543 }
544
545 async fn hyperparameter_optimization(
546 &self,
547 _current_metrics: &PerformanceMetrics,
548 _model: &dyn EmbeddingModel,
549 ) -> Result<ArchitectureConfig> {
550 let mut new_config = self.current_architecture.clone();
552
553 let mut random = Random::default();
555 for dropout_rate in &mut new_config.dropout_rates {
556 *dropout_rate = random.random::<f32>() * 0.5; }
558
559 for hidden_dim in &mut new_config.hidden_dims {
561 let log_dim = (*hidden_dim as f32).ln();
562 let noise = (random.random::<f32>() - 0.5) * 0.2;
563 let new_log_dim = log_dim + noise;
564 *hidden_dim = new_log_dim.exp() as usize;
565 }
566
567 Ok(new_config)
568 }
569
570 async fn pruning_and_growth(
571 &self,
572 current_metrics: &PerformanceMetrics,
573 _model: &dyn EmbeddingModel,
574 ) -> Result<ArchitectureConfig> {
575 let mut new_config = self.current_architecture.clone();
577
578 if current_metrics.model_complexity > 0.8 {
580 new_config.embedding_dim = (new_config.embedding_dim as f32 * 0.9) as usize;
581
582 new_config.hidden_dims.sort();
584 if new_config.hidden_dims.len() > 2 {
585 new_config.hidden_dims.remove(0);
586 new_config.num_layers = new_config.num_layers.saturating_sub(1);
587 }
588 }
589
590 if current_metrics.validation_accuracy < 0.6 {
592 new_config.embedding_dim = (new_config.embedding_dim as f32 * 1.1) as usize;
593
594 if new_config.num_layers < 6 {
596 let new_hidden_dim = new_config.embedding_dim / 2;
597 new_config.hidden_dims.push(new_hidden_dim);
598 new_config.num_layers += 1;
599 }
600 }
601
602 Ok(new_config)
603 }
604
605 fn generate_architecture_population(&self, size: usize) -> Vec<ArchitectureConfig> {
606 let mut population = Vec::new();
607
608 for _ in 0..size {
609 let mut config = self.current_architecture.clone();
610
611 let mut random = Random::default();
613 config.embedding_dim =
614 (64..=512).step_by(32).collect::<Vec<_>>()[random.random_range(0..15)];
615 config.num_layers = (1..=6).collect::<Vec<_>>()[random.random_range(0..6)];
616
617 config.hidden_dims = (0..config.num_layers)
619 .map(|_| (32..=1024).step_by(32).collect::<Vec<_>>()[random.random_range(0..31)])
620 .collect();
621
622 population.push(config);
623 }
624
625 population
626 }
627
628 fn crossover_architectures(
629 &self,
630 parent1: &ArchitectureConfig,
631 parent2: &ArchitectureConfig,
632 ) -> ArchitectureConfig {
633 let mut random = Random::default();
634 ArchitectureConfig {
635 embedding_dim: if random.random::<bool>() {
636 parent1.embedding_dim
637 } else {
638 parent2.embedding_dim
639 },
640 num_layers: if random.random::<bool>() {
641 parent1.num_layers
642 } else {
643 parent2.num_layers
644 },
645 hidden_dims: parent1
646 .hidden_dims
647 .iter()
648 .zip(parent2.hidden_dims.iter())
649 .map(|(d1, d2)| if random.random::<bool>() { *d1 } else { *d2 })
650 .collect(),
651 activations: if random.random::<bool>() {
652 parent1.activations.clone()
653 } else {
654 parent2.activations.clone()
655 },
656 dropout_rates: parent1
657 .dropout_rates
658 .iter()
659 .zip(parent2.dropout_rates.iter())
660 .map(|(r1, r2)| if random.random::<bool>() { *r1 } else { *r2 })
661 .collect(),
662 normalizations: if random.random::<bool>() {
663 parent1.normalizations.clone()
664 } else {
665 parent2.normalizations.clone()
666 },
667 }
668 }
669
670 fn mutate_architecture(&self, mut config: ArchitectureConfig) -> ArchitectureConfig {
671 let mut random = Random::default();
672 if random.random::<f32>() < 0.3 {
674 config.embedding_dim =
675 (config.embedding_dim as f32 * (0.8 + random.random::<f32>() * 0.4)) as usize;
676 }
677
678 for hidden_dim in &mut config.hidden_dims {
680 if random.random::<f32>() < 0.2 {
681 *hidden_dim = (*hidden_dim as f32 * (0.8 + random.random::<f32>() * 0.4)) as usize;
682 }
683 }
684
685 for dropout_rate in &mut config.dropout_rates {
687 if random.random::<f32>() < 0.2 {
688 *dropout_rate =
689 (*dropout_rate + (random.random::<f32>() - 0.5) * 0.1).clamp(0.0, 0.5);
690 }
691 }
692
693 config
694 }
695
696 async fn evaluate_architecture(
697 &self,
698 config: &ArchitectureConfig,
699 _model: &dyn EmbeddingModel,
700 ) -> Result<f32> {
701 let complexity_penalty =
706 (config.embedding_dim as f32 / 512.0 + config.num_layers as f32 / 6.0) * 0.1;
707 let mut random = Random::default();
708 let base_score = 0.7 + random.random::<f32>() * 0.2;
709
710 Ok((base_score - complexity_penalty).clamp(0.0, 1.0))
711 }
712
713 fn record_search_result(&mut self, architecture: ArchitectureConfig, performance: f32) {
714 let result = ArchitectureSearchResult {
715 timestamp: chrono::Utc::now(),
716 architecture,
717 performance,
718 search_time: 10.0, validation_score: performance,
720 };
721
722 self.search_history.push(result);
723
724 if self.search_history.len() > 50 {
726 self.search_history.remove(0);
727 }
728 }
729}
730
731pub struct OnlineLearningManager {
733 config: OnlineLearningConfig,
735 data_buffer: VecDeque<OnlineDataPoint>,
737 update_scheduler: UpdateScheduler,
739}
740
741#[derive(Debug, Clone, Serialize, Deserialize)]
742pub struct OnlineLearningConfig {
743 pub buffer_size: usize,
745 pub update_frequency: usize,
747 pub online_lr_decay: f32,
749 pub enable_ewc: bool,
751 pub replay_buffer_size: usize,
753}
754
755#[derive(Debug, Clone, Serialize, Deserialize)]
756pub struct OnlineDataPoint {
757 pub timestamp: chrono::DateTime<chrono::Utc>,
758 pub entity1: String,
759 pub entity2: String,
760 pub relation: String,
761 pub score: f32,
762 pub source: String,
763}
764
765#[derive(Debug, Clone)]
766pub enum UpdateScheduler {
767 Fixed(usize), Adaptive(f32), Timebased(Duration), TriggerBased, }
772
773impl OnlineLearningManager {
774 pub fn new(config: OnlineLearningConfig) -> Self {
775 Self {
776 config,
777 data_buffer: VecDeque::new(),
778 update_scheduler: UpdateScheduler::Fixed(100),
779 }
780 }
781
782 pub async fn add_data_point(&mut self, data_point: OnlineDataPoint) -> Result<()> {
784 self.data_buffer.push_back(data_point);
785
786 while self.data_buffer.len() > self.config.buffer_size {
788 self.data_buffer.pop_front();
789 }
790
791 if self.should_update() {
793 self.trigger_update().await?;
794 }
795
796 Ok(())
797 }
798
799 pub async fn perform_online_update<M: EmbeddingModel>(
801 &mut self,
802 model: &mut M,
803 ) -> Result<OnlineUpdateResult> {
804 info!(
805 "Performing online model update with {} data points",
806 self.data_buffer.len()
807 );
808
809 let start_time = Instant::now();
810
811 let batch_data: Vec<_> = self
813 .data_buffer
814 .iter()
815 .take(self.config.update_frequency)
816 .cloned()
817 .collect();
818
819 let update_stats = self.update_model_incremental(model, &batch_data).await?;
821
822 let update_time = start_time.elapsed();
823
824 for _ in 0..batch_data.len().min(self.data_buffer.len()) {
826 self.data_buffer.pop_front();
827 }
828
829 Ok(OnlineUpdateResult {
830 timestamp: chrono::Utc::now(),
831 samples_processed: batch_data.len(),
832 update_time: update_time.as_secs_f32(),
833 performance_improvement: update_stats.performance_improvement,
834 memory_usage: update_stats.memory_usage,
835 model_drift_detected: update_stats.drift_detected,
836 })
837 }
838
839 fn should_update(&self) -> bool {
840 match self.update_scheduler {
841 UpdateScheduler::Fixed(n) => self.data_buffer.len() >= n,
842 UpdateScheduler::Adaptive(_threshold) => {
843 self.data_buffer.len() >= self.config.buffer_size / 2
846 }
847 UpdateScheduler::Timebased(_duration) => {
848 true
851 }
852 UpdateScheduler::TriggerBased => {
853 false
855 }
856 }
857 }
858
859 async fn trigger_update(&mut self) -> Result<()> {
860 info!("Triggering online learning update");
861 Ok(())
863 }
864
865 async fn update_model_incremental<M: EmbeddingModel>(
866 &self,
867 _model: &mut M,
868 _batch_data: &[OnlineDataPoint],
869 ) -> Result<IncrementalUpdateStats> {
870 let performance_before = 0.7; sleep(Duration::from_millis(100)).await;
877
878 let mut random = Random::default();
879 let performance_after = performance_before + random.random::<f32>() * 0.05;
880
881 Ok(IncrementalUpdateStats {
882 performance_improvement: performance_after - performance_before,
883 memory_usage: 1024.0,
884 drift_detected: random.random::<f32>() < 0.1,
885 })
886 }
887}
888
889#[derive(Debug, Clone, Serialize, Deserialize)]
890pub struct OnlineUpdateResult {
891 pub timestamp: chrono::DateTime<chrono::Utc>,
892 pub samples_processed: usize,
893 pub update_time: f32,
894 pub performance_improvement: f32,
895 pub memory_usage: f32,
896 pub model_drift_detected: bool,
897}
898
899#[derive(Debug, Clone)]
900struct IncrementalUpdateStats {
901 performance_improvement: f32,
902 memory_usage: f32,
903 drift_detected: bool,
904}
905
906pub struct ResourceOptimizer {
908 current_allocation: ResourceAllocation,
910 usage_history: VecDeque<ResourceUsage>,
912 strategy: ResourceOptimizationStrategy,
914}
915
916#[derive(Debug, Clone, Serialize, Deserialize)]
917pub struct ResourceAllocation {
918 pub cpu_cores: usize,
920 pub memory_mb: usize,
922 pub gpu_memory_mb: usize,
924 pub batch_size: usize,
926 pub num_workers: usize,
928}
929
930#[derive(Debug, Clone, Serialize, Deserialize)]
931pub struct ResourceUsage {
932 pub timestamp: chrono::DateTime<chrono::Utc>,
933 pub cpu_utilization: f32,
934 pub memory_usage: f32,
935 pub gpu_utilization: f32,
936 pub gpu_memory_usage: f32,
937 pub throughput: f32,
938 pub latency: f32,
939}
940
941#[derive(Debug, Clone)]
942pub enum ResourceOptimizationStrategy {
943 ThroughputMaximization,
944 LatencyMinimization,
945 MemoryEfficiency,
946 EnergyEfficiency,
947 CostOptimization,
948}
949
950impl ResourceOptimizer {
951 pub fn new(
952 initial_allocation: ResourceAllocation,
953 strategy: ResourceOptimizationStrategy,
954 ) -> Self {
955 Self {
956 current_allocation: initial_allocation,
957 usage_history: VecDeque::new(),
958 strategy,
959 }
960 }
961
962 pub async fn optimize_resources(
964 &mut self,
965 current_usage: &ResourceUsage,
966 performance_metrics: &PerformanceMetrics,
967 ) -> Result<ResourceAllocation> {
968 self.usage_history.push_back(current_usage.clone());
969
970 while self.usage_history.len() > 100 {
972 self.usage_history.pop_front();
973 }
974
975 let new_allocation = match self.strategy {
976 ResourceOptimizationStrategy::ThroughputMaximization => {
977 self.optimize_for_throughput(current_usage, performance_metrics)
978 .await?
979 }
980 ResourceOptimizationStrategy::LatencyMinimization => {
981 self.optimize_for_latency(current_usage, performance_metrics)
982 .await?
983 }
984 ResourceOptimizationStrategy::MemoryEfficiency => {
985 self.optimize_for_memory(current_usage, performance_metrics)
986 .await?
987 }
988 ResourceOptimizationStrategy::EnergyEfficiency => {
989 self.optimize_for_energy(current_usage, performance_metrics)
990 .await?
991 }
992 ResourceOptimizationStrategy::CostOptimization => {
993 self.optimize_for_cost(current_usage, performance_metrics)
994 .await?
995 }
996 };
997
998 self.current_allocation = new_allocation.clone();
999 Ok(new_allocation)
1000 }
1001
1002 async fn optimize_for_throughput(
1003 &self,
1004 current_usage: &ResourceUsage,
1005 _performance_metrics: &PerformanceMetrics,
1006 ) -> Result<ResourceAllocation> {
1007 let mut new_allocation = self.current_allocation.clone();
1008
1009 if current_usage.gpu_utilization < 0.7 {
1011 new_allocation.batch_size = (new_allocation.batch_size as f32 * 1.2) as usize;
1012 }
1013
1014 if current_usage.cpu_utilization < 0.6 {
1016 new_allocation.num_workers = (new_allocation.num_workers + 1).min(16);
1017 }
1018
1019 Ok(new_allocation)
1020 }
1021
1022 async fn optimize_for_latency(
1023 &self,
1024 current_usage: &ResourceUsage,
1025 performance_metrics: &PerformanceMetrics,
1026 ) -> Result<ResourceAllocation> {
1027 let mut new_allocation = self.current_allocation.clone();
1028
1029 if performance_metrics.inference_latency > 100.0 {
1031 new_allocation.batch_size = (new_allocation.batch_size as f32 * 0.8) as usize;
1032 }
1033
1034 if current_usage.memory_usage < 0.8 {
1036 new_allocation.memory_mb = (new_allocation.memory_mb as f32 * 1.1) as usize;
1037 }
1038
1039 Ok(new_allocation)
1040 }
1041
1042 async fn optimize_for_memory(
1043 &self,
1044 current_usage: &ResourceUsage,
1045 _performance_metrics: &PerformanceMetrics,
1046 ) -> Result<ResourceAllocation> {
1047 let mut new_allocation = self.current_allocation.clone();
1048
1049 if current_usage.memory_usage > 0.9 {
1051 new_allocation.batch_size = (new_allocation.batch_size as f32 * 0.8) as usize;
1052 }
1053
1054 if current_usage.gpu_memory_usage < 0.7 {
1056 new_allocation.gpu_memory_mb = (new_allocation.gpu_memory_mb as f32 * 0.9) as usize;
1057 }
1058
1059 Ok(new_allocation)
1060 }
1061
1062 async fn optimize_for_energy(
1063 &self,
1064 current_usage: &ResourceUsage,
1065 _performance_metrics: &PerformanceMetrics,
1066 ) -> Result<ResourceAllocation> {
1067 let mut new_allocation = self.current_allocation.clone();
1068
1069 if current_usage.cpu_utilization < 0.5 {
1071 new_allocation.cpu_cores = (new_allocation.cpu_cores.saturating_sub(1)).max(1);
1072 }
1073
1074 let optimal_batch_size = self.calculate_energy_optimal_batch_size(current_usage);
1076 new_allocation.batch_size = optimal_batch_size;
1077
1078 Ok(new_allocation)
1079 }
1080
1081 async fn optimize_for_cost(
1082 &self,
1083 current_usage: &ResourceUsage,
1084 performance_metrics: &PerformanceMetrics,
1085 ) -> Result<ResourceAllocation> {
1086 let mut new_allocation = self.current_allocation.clone();
1087
1088 let efficiency_ratio = performance_metrics.throughput / current_usage.gpu_utilization;
1090
1091 if efficiency_ratio < 100.0 {
1092 new_allocation.gpu_memory_mb = (new_allocation.gpu_memory_mb as f32 * 0.9) as usize;
1094 new_allocation.batch_size = (new_allocation.batch_size as f32 * 0.9) as usize;
1095 } else {
1096 new_allocation.batch_size = (new_allocation.batch_size as f32 * 1.05) as usize;
1098 }
1099
1100 Ok(new_allocation)
1101 }
1102
1103 fn calculate_energy_optimal_batch_size(&self, current_usage: &ResourceUsage) -> usize {
1104 let base_batch_size = self.current_allocation.batch_size;
1107 let utilization_factor =
1108 (current_usage.gpu_utilization + current_usage.cpu_utilization) / 2.0;
1109
1110 (base_batch_size as f32 * utilization_factor * 1.2) as usize
1111 }
1112}
1113
1114pub struct OptimizationHistory {
1116 performance_history: VecDeque<PerformanceMetrics>,
1118 optimization_actions: VecDeque<OptimizationAction>,
1120 resource_history: VecDeque<ResourceUsage>,
1122}
1123
1124#[derive(Debug, Clone, Serialize, Deserialize)]
1125pub struct OptimizationAction {
1126 pub timestamp: chrono::DateTime<chrono::Utc>,
1127 pub action_type: String,
1128 pub parameters: HashMap<String, f32>,
1129 pub expected_improvement: f32,
1130 pub actual_improvement: Option<f32>,
1131}
1132
1133impl Default for OptimizationHistory {
1134 fn default() -> Self {
1135 Self::new()
1136 }
1137}
1138
1139impl OptimizationHistory {
1140 pub fn new() -> Self {
1141 Self {
1142 performance_history: VecDeque::new(),
1143 optimization_actions: VecDeque::new(),
1144 resource_history: VecDeque::new(),
1145 }
1146 }
1147
1148 pub fn record_optimization_action(&mut self, action: OptimizationAction) {
1150 self.optimization_actions.push_back(action);
1151
1152 while self.optimization_actions.len() > 200 {
1154 self.optimization_actions.pop_front();
1155 }
1156 }
1157
1158 pub fn get_optimization_summary(&self) -> OptimizationSummary {
1160 OptimizationSummary {
1161 total_optimizations: self.optimization_actions.len(),
1162 successful_optimizations: self
1163 .optimization_actions
1164 .iter()
1165 .filter(|a| a.actual_improvement.unwrap_or(0.0) > 0.0)
1166 .count(),
1167 average_improvement: self
1168 .optimization_actions
1169 .iter()
1170 .filter_map(|a| a.actual_improvement)
1171 .sum::<f32>()
1172 / self.optimization_actions.len() as f32,
1173 optimization_efficiency: self.calculate_optimization_efficiency(),
1174 }
1175 }
1176
1177 fn calculate_optimization_efficiency(&self) -> f32 {
1178 let successful = self
1179 .optimization_actions
1180 .iter()
1181 .filter(|a| a.actual_improvement.unwrap_or(0.0) > 0.0)
1182 .count() as f32;
1183
1184 successful / self.optimization_actions.len() as f32
1185 }
1186}
1187
1188#[derive(Debug, Clone, Serialize, Deserialize)]
1189pub struct OptimizationSummary {
1190 pub total_optimizations: usize,
1191 pub successful_optimizations: usize,
1192 pub average_improvement: f32,
1193 pub optimization_efficiency: f32,
1194}
1195
1196impl RealTimeOptimizer {
1197 pub fn new(config: OptimizationConfig) -> Self {
1199 let performance_monitor = PerformanceMonitor {
1200 metrics_history: Arc::new(Mutex::new(VecDeque::new())),
1201 current_baseline: Arc::new(Mutex::new(PerformanceMetrics::default())),
1202 window_size: config.performance_window_size,
1203 };
1204
1205 let learning_rate_scheduler =
1206 AdaptiveLearningRateScheduler::new(0.001, LearningRateStrategy::PerformanceBased);
1207
1208 let architecture_optimizer = DynamicArchitectureOptimizer::new(
1209 ArchitectureConfig {
1210 embedding_dim: 256,
1211 num_layers: 3,
1212 hidden_dims: vec![512, 256, 128],
1213 activations: vec![
1214 "relu".to_string(),
1215 "relu".to_string(),
1216 "sigmoid".to_string(),
1217 ],
1218 dropout_rates: vec![0.1, 0.2, 0.1],
1219 normalizations: vec!["batch".to_string(), "batch".to_string(), "none".to_string()],
1220 },
1221 ArchitectureOptimizationStrategy::EvolutionarySearch,
1222 );
1223
1224 let online_learning_manager = OnlineLearningManager::new(OnlineLearningConfig {
1225 buffer_size: 1000,
1226 update_frequency: 100,
1227 online_lr_decay: 0.999,
1228 enable_ewc: true,
1229 replay_buffer_size: 5000,
1230 });
1231
1232 let resource_optimizer = ResourceOptimizer::new(
1233 ResourceAllocation {
1234 cpu_cores: 4,
1235 memory_mb: 8192,
1236 gpu_memory_mb: 4096,
1237 batch_size: 32,
1238 num_workers: 4,
1239 },
1240 ResourceOptimizationStrategy::ThroughputMaximization,
1241 );
1242
1243 Self {
1244 config,
1245 performance_monitor,
1246 learning_rate_scheduler,
1247 architecture_optimizer,
1248 online_learning_manager,
1249 resource_optimizer,
1250 optimization_history: OptimizationHistory::new(),
1251 }
1252 }
1253
1254 pub async fn start_optimization_loop<M: EmbeddingModel + Send + Clone + 'static>(
1256 &mut self,
1257 model: Arc<Mutex<M>>,
1258 ) -> Result<()> {
1259 info!("Starting real-time optimization loop");
1260
1261 loop {
1262 let current_metrics = self.collect_performance_metrics(&model).await?;
1264
1265 self.record_performance_metrics(current_metrics.clone());
1267
1268 if self.config.enable_adaptive_lr {
1270 self.optimize_learning_rate(¤t_metrics).await?;
1271 }
1272
1273 if self.config.enable_architecture_opt {
1274 self.optimize_architecture::<M>(¤t_metrics, &model)
1275 .await?;
1276 }
1277
1278 if self.config.enable_resource_opt {
1279 self.optimize_resources(¤t_metrics).await?;
1280 }
1281
1282 sleep(Duration::from_secs(self.config.optimization_frequency)).await;
1284 }
1285 }
1286
1287 async fn collect_performance_metrics<M: EmbeddingModel>(
1288 &self,
1289 _model: &Arc<Mutex<M>>,
1290 ) -> Result<PerformanceMetrics> {
1291 let mut random = Random::default();
1294 Ok(PerformanceMetrics {
1295 timestamp: chrono::Utc::now(),
1296 training_loss: 0.5 + random.random::<f32>() * 0.3,
1297 validation_accuracy: 0.7 + random.random::<f32>() * 0.2,
1298 inference_latency: 50.0 + random.random::<f32>() * 100.0,
1299 memory_usage: 2048.0 + random.random::<f32>() * 1024.0,
1300 gpu_utilization: 60.0 + random.random::<f32>() * 30.0,
1301 throughput: 80.0 + random.random::<f32>() * 40.0,
1302 learning_rate: self.learning_rate_scheduler.current_lr,
1303 model_complexity: 0.5 + random.random::<f32>() * 0.3,
1304 })
1305 }
1306
1307 fn record_performance_metrics(&mut self, metrics: PerformanceMetrics) {
1308 let mut history = self.performance_monitor.metrics_history.lock().unwrap();
1309 history.push_back(metrics.clone());
1310
1311 while history.len() > self.performance_monitor.window_size {
1313 history.pop_front();
1314 }
1315
1316 *self.performance_monitor.current_baseline.lock().unwrap() = metrics;
1318 }
1319
1320 async fn optimize_learning_rate(&mut self, current_metrics: &PerformanceMetrics) -> Result<()> {
1321 let history = self.performance_monitor.metrics_history.lock().unwrap();
1322 let recent_metrics: Vec<_> = history.iter().cloned().collect();
1323 drop(history);
1324
1325 let new_lr = self
1326 .learning_rate_scheduler
1327 .adjust_learning_rate(current_metrics, &recent_metrics)?;
1328
1329 info!(
1330 "Learning rate adjusted: {:.6} -> {:.6}",
1331 current_metrics.learning_rate, new_lr
1332 );
1333
1334 Ok(())
1335 }
1336
1337 async fn optimize_architecture<M: EmbeddingModel + Clone + Send + Sync>(
1338 &mut self,
1339 current_metrics: &PerformanceMetrics,
1340 model: &Arc<Mutex<M>>,
1341 ) -> Result<()> {
1342 let cloned_model = {
1345 let model_guard = model.lock().unwrap();
1346 (*model_guard).clone()
1347 };
1348 let new_architecture = self
1349 .architecture_optimizer
1350 .optimize_architecture(current_metrics, &cloned_model)
1351 .await?;
1352
1353 info!(
1354 "Architecture optimization completed: {:?}",
1355 new_architecture
1356 );
1357
1358 Ok(())
1359 }
1360
1361 async fn optimize_resources(&mut self, current_metrics: &PerformanceMetrics) -> Result<()> {
1362 let mut random = Random::default();
1363 let current_usage = ResourceUsage {
1364 timestamp: chrono::Utc::now(),
1365 cpu_utilization: 60.0 + random.random::<f32>() * 30.0,
1366 memory_usage: current_metrics.memory_usage / 8192.0,
1367 gpu_utilization: current_metrics.gpu_utilization / 100.0,
1368 gpu_memory_usage: 0.7 + random.random::<f32>() * 0.2,
1369 throughput: current_metrics.throughput,
1370 latency: current_metrics.inference_latency,
1371 };
1372
1373 let new_allocation = self
1374 .resource_optimizer
1375 .optimize_resources(¤t_usage, current_metrics)
1376 .await?;
1377
1378 info!("Resource allocation optimized: {:?}", new_allocation);
1379
1380 Ok(())
1381 }
1382
1383 pub fn get_optimization_summary(&self) -> OptimizationSummary {
1385 self.optimization_history.get_optimization_summary()
1386 }
1387}