oxirs_embed/
real_time_optimization.rs

1//! Real-time optimization system for knowledge graph embeddings
2//!
3//! This module provides dynamic optimization capabilities that adapt in real-time
4//! to improve embedding quality, training efficiency, and inference performance.
5//! Features include adaptive learning rates, dynamic architecture optimization,
6//! online learning, and intelligent resource management.
7
8use crate::EmbeddingModel;
9use anyhow::Result;
10use scirs2_core::random::{Random, Rng};
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, VecDeque};
13use std::sync::{Arc, Mutex};
14use std::time::{Duration, Instant};
15use tokio::time::sleep;
16use tracing::info;
17
18/// Real-time optimization engine that continuously improves model performance
19pub struct RealTimeOptimizer {
20    /// Configuration for optimization
21    config: OptimizationConfig,
22    /// Performance monitoring system
23    performance_monitor: PerformanceMonitor,
24    /// Adaptive learning rate scheduler
25    learning_rate_scheduler: AdaptiveLearningRateScheduler,
26    /// Dynamic architecture optimizer
27    architecture_optimizer: DynamicArchitectureOptimizer,
28    /// Online learning manager
29    online_learning_manager: OnlineLearningManager,
30    /// Resource allocation optimizer
31    resource_optimizer: ResourceOptimizer,
32    /// Optimization history
33    optimization_history: OptimizationHistory,
34}
35
36/// Configuration for real-time optimization
37#[derive(Debug, Clone, Serialize, Deserialize)]
38pub struct OptimizationConfig {
39    /// Enable adaptive learning rate optimization
40    pub enable_adaptive_lr: bool,
41    /// Enable dynamic architecture optimization
42    pub enable_architecture_opt: bool,
43    /// Enable online learning
44    pub enable_online_learning: bool,
45    /// Enable resource optimization
46    pub enable_resource_opt: bool,
47    /// Optimization frequency (in seconds)
48    pub optimization_frequency: u64,
49    /// Performance window size for moving averages
50    pub performance_window_size: usize,
51    /// Minimum improvement threshold to apply changes
52    pub improvement_threshold: f32,
53    /// Maximum learning rate adjustment factor
54    pub max_lr_adjustment: f32,
55    /// Architecture mutation probability
56    pub architecture_mutation_prob: f32,
57    /// Online learning batch size
58    pub online_batch_size: usize,
59    /// Resource optimization sensitivity
60    pub resource_sensitivity: f32,
61}
62
63impl Default for OptimizationConfig {
64    fn default() -> Self {
65        Self {
66            enable_adaptive_lr: true,
67            enable_architecture_opt: true,
68            enable_online_learning: true,
69            enable_resource_opt: true,
70            optimization_frequency: 30, // 30 seconds
71            performance_window_size: 100,
72            improvement_threshold: 0.001,
73            max_lr_adjustment: 2.0,
74            architecture_mutation_prob: 0.1,
75            online_batch_size: 32,
76            resource_sensitivity: 0.5,
77        }
78    }
79}
80
81/// Performance monitoring system
82pub struct PerformanceMonitor {
83    /// Performance metrics history
84    metrics_history: Arc<Mutex<VecDeque<PerformanceMetrics>>>,
85    /// Current performance baseline
86    current_baseline: Arc<Mutex<PerformanceMetrics>>,
87    /// Performance tracking window
88    window_size: usize,
89}
90
91/// Performance metrics tracked by the system
92#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct PerformanceMetrics {
94    /// Timestamp of measurement
95    pub timestamp: chrono::DateTime<chrono::Utc>,
96    /// Training loss
97    pub training_loss: f32,
98    /// Validation accuracy
99    pub validation_accuracy: f32,
100    /// Inference latency (milliseconds)
101    pub inference_latency: f32,
102    /// Memory usage (MB)
103    pub memory_usage: f32,
104    /// GPU utilization (percentage)
105    pub gpu_utilization: f32,
106    /// Throughput (samples per second)
107    pub throughput: f32,
108    /// Learning rate
109    pub learning_rate: f32,
110    /// Model complexity score
111    pub model_complexity: f32,
112}
113
114impl Default for PerformanceMetrics {
115    fn default() -> Self {
116        Self {
117            timestamp: chrono::Utc::now(),
118            training_loss: 1.0,
119            validation_accuracy: 0.5,
120            inference_latency: 100.0,
121            memory_usage: 1024.0,
122            gpu_utilization: 50.0,
123            throughput: 100.0,
124            learning_rate: 0.001,
125            model_complexity: 0.5,
126        }
127    }
128}
129
130/// Adaptive learning rate scheduler that adjusts based on performance
131pub struct AdaptiveLearningRateScheduler {
132    /// Current learning rate
133    current_lr: f32,
134    /// Base learning rate
135    base_lr: f32,
136    /// Learning rate adjustment history
137    adjustment_history: VecDeque<LearningRateAdjustment>,
138    /// Optimization strategy
139    strategy: LearningRateStrategy,
140}
141
142#[derive(Debug, Clone)]
143pub enum LearningRateStrategy {
144    AdaptiveGradient,
145    CyclicalLearningRate,
146    WarmupCosineAnnealing,
147    PerformanceBased,
148    OneCycle,
149}
150
151#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct LearningRateAdjustment {
153    pub timestamp: chrono::DateTime<chrono::Utc>,
154    pub old_lr: f32,
155    pub new_lr: f32,
156    pub reason: String,
157    pub performance_before: f32,
158    pub performance_after: Option<f32>,
159}
160
161impl AdaptiveLearningRateScheduler {
162    pub fn new(base_lr: f32, strategy: LearningRateStrategy) -> Self {
163        Self {
164            current_lr: base_lr,
165            base_lr,
166            adjustment_history: VecDeque::new(),
167            strategy,
168        }
169    }
170
171    /// Adjust learning rate based on current performance
172    pub fn adjust_learning_rate(
173        &mut self,
174        current_metrics: &PerformanceMetrics,
175        recent_metrics: &[PerformanceMetrics],
176    ) -> Result<f32> {
177        let new_lr = match self.strategy {
178            LearningRateStrategy::AdaptiveGradient => {
179                self.adaptive_gradient_adjustment(current_metrics, recent_metrics)?
180            }
181            LearningRateStrategy::CyclicalLearningRate => {
182                self.cyclical_lr_adjustment(current_metrics)?
183            }
184            LearningRateStrategy::WarmupCosineAnnealing => {
185                self.warmup_cosine_adjustment(current_metrics)?
186            }
187            LearningRateStrategy::PerformanceBased => {
188                self.performance_based_adjustment(current_metrics, recent_metrics)?
189            }
190            LearningRateStrategy::OneCycle => self.one_cycle_adjustment(current_metrics)?,
191        };
192
193        // Record adjustment
194        self.record_adjustment(new_lr, "Adaptive adjustment".to_string(), current_metrics);
195
196        self.current_lr = new_lr;
197        Ok(new_lr)
198    }
199
200    fn adaptive_gradient_adjustment(
201        &self,
202        _current_metrics: &PerformanceMetrics,
203        recent_metrics: &[PerformanceMetrics],
204    ) -> Result<f32> {
205        if recent_metrics.len() < 2 {
206            return Ok(self.current_lr);
207        }
208
209        // Calculate gradient of loss over recent steps
210        let loss_gradient = self.calculate_loss_gradient(recent_metrics);
211
212        // Adjust learning rate based on gradient magnitude
213        let adjustment_factor = if loss_gradient.abs() < 0.001 {
214            1.1 // Increase LR if loss is plateauing
215        } else if loss_gradient > 0.0 {
216            0.9 // Decrease LR if loss is increasing
217        } else {
218            1.05 // Slightly increase LR if loss is decreasing
219        };
220
221        Ok(self.current_lr * adjustment_factor)
222    }
223
224    fn cyclical_lr_adjustment(&self, current_metrics: &PerformanceMetrics) -> Result<f32> {
225        // Implement cyclical learning rate based on time
226        let cycle_length = 1000; // steps
227        let step = current_metrics.timestamp.timestamp() as f32;
228        let cycle_position = (step % cycle_length as f32) / cycle_length as f32;
229
230        let min_lr = self.base_lr * 0.1;
231        let max_lr = self.base_lr * 10.0;
232
233        let lr = min_lr
234            + (max_lr - min_lr) * (1.0 + (cycle_position * 2.0 * std::f32::consts::PI).cos()) / 2.0;
235        Ok(lr)
236    }
237
238    fn warmup_cosine_adjustment(&self, current_metrics: &PerformanceMetrics) -> Result<f32> {
239        // Implement warmup followed by cosine annealing
240        let warmup_steps = 1000.0;
241        let total_steps = 10000.0;
242        let step = current_metrics.timestamp.timestamp() as f32;
243
244        if step < warmup_steps {
245            // Linear warmup
246            Ok(self.base_lr * step / warmup_steps)
247        } else {
248            // Cosine annealing
249            let progress = (step - warmup_steps) / (total_steps - warmup_steps);
250            let lr = self.base_lr * 0.5 * (1.0 + (progress * std::f32::consts::PI).cos());
251            Ok(lr)
252        }
253    }
254
255    fn performance_based_adjustment(
256        &self,
257        _current_metrics: &PerformanceMetrics,
258        recent_metrics: &[PerformanceMetrics],
259    ) -> Result<f32> {
260        if recent_metrics.len() < 5 {
261            return Ok(self.current_lr);
262        }
263
264        // Check if performance is improving
265        let recent_losses: Vec<f32> = recent_metrics.iter().map(|m| m.training_loss).collect();
266
267        let improving = self.is_performance_improving(&recent_losses);
268
269        if improving {
270            // Performance is improving, slightly increase LR
271            Ok(self.current_lr * 1.02)
272        } else {
273            // Performance is stagnating, decrease LR
274            Ok(self.current_lr * 0.95)
275        }
276    }
277
278    fn one_cycle_adjustment(&self, current_metrics: &PerformanceMetrics) -> Result<f32> {
279        // Implement one-cycle learning rate policy
280        let cycle_length = 5000.0;
281        let step = current_metrics.timestamp.timestamp() as f32;
282        let cycle_position = step % cycle_length / cycle_length;
283
284        let max_lr = self.base_lr * 10.0;
285
286        if cycle_position < 0.3 {
287            // Ascending phase
288            let progress = cycle_position / 0.3;
289            Ok(self.base_lr + (max_lr - self.base_lr) * progress)
290        } else if cycle_position < 0.9 {
291            // Descending phase
292            let progress = (cycle_position - 0.3) / 0.6;
293            Ok(max_lr - (max_lr - self.base_lr) * progress)
294        } else {
295            // Final annealing phase
296            let progress = (cycle_position - 0.9) / 0.1;
297            Ok(self.base_lr * (1.0 - 0.9 * progress))
298        }
299    }
300
301    fn calculate_loss_gradient(&self, recent_metrics: &[PerformanceMetrics]) -> f32 {
302        if recent_metrics.len() < 2 {
303            return 0.0;
304        }
305
306        let recent_loss = recent_metrics[recent_metrics.len() - 1].training_loss;
307        let previous_loss = recent_metrics[recent_metrics.len() - 2].training_loss;
308
309        recent_loss - previous_loss
310    }
311
312    fn is_performance_improving(&self, recent_losses: &[f32]) -> bool {
313        if recent_losses.len() < 3 {
314            return false;
315        }
316
317        let recent_avg = recent_losses[recent_losses.len() - 3..].iter().sum::<f32>() / 3.0;
318        let earlier_avg = recent_losses[0..3].iter().sum::<f32>() / 3.0;
319
320        recent_avg < earlier_avg
321    }
322
323    fn record_adjustment(
324        &mut self,
325        new_lr: f32,
326        reason: String,
327        current_metrics: &PerformanceMetrics,
328    ) {
329        let adjustment = LearningRateAdjustment {
330            timestamp: chrono::Utc::now(),
331            old_lr: self.current_lr,
332            new_lr,
333            reason,
334            performance_before: current_metrics.training_loss,
335            performance_after: None,
336        };
337
338        self.adjustment_history.push_back(adjustment);
339
340        // Keep only recent adjustments
341        while self.adjustment_history.len() > 100 {
342            self.adjustment_history.pop_front();
343        }
344    }
345}
346
347/// Dynamic architecture optimizer that adjusts model structure
348pub struct DynamicArchitectureOptimizer {
349    /// Current architecture configuration
350    current_architecture: ArchitectureConfig,
351    /// Architecture search history
352    search_history: Vec<ArchitectureSearchResult>,
353    /// Optimization strategy
354    strategy: ArchitectureOptimizationStrategy,
355}
356
357#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct ArchitectureConfig {
359    /// Embedding dimensions
360    pub embedding_dim: usize,
361    /// Number of layers
362    pub num_layers: usize,
363    /// Hidden dimensions
364    pub hidden_dims: Vec<usize>,
365    /// Activation functions
366    pub activations: Vec<String>,
367    /// Dropout rates
368    pub dropout_rates: Vec<f32>,
369    /// Normalization types
370    pub normalizations: Vec<String>,
371}
372
373#[derive(Debug, Clone)]
374pub enum ArchitectureOptimizationStrategy {
375    NeuralArchitectureSearch,
376    GradientBasedSearch,
377    EvolutionarySearch,
378    HyperparameterOptimization,
379    PruningAndGrowth,
380}
381
382#[derive(Debug, Clone, Serialize, Deserialize)]
383pub struct ArchitectureSearchResult {
384    pub timestamp: chrono::DateTime<chrono::Utc>,
385    pub architecture: ArchitectureConfig,
386    pub performance: f32,
387    pub search_time: f32,
388    pub validation_score: f32,
389}
390
391impl DynamicArchitectureOptimizer {
392    pub fn new(
393        initial_config: ArchitectureConfig,
394        strategy: ArchitectureOptimizationStrategy,
395    ) -> Self {
396        Self {
397            current_architecture: initial_config,
398            search_history: Vec::new(),
399            strategy,
400        }
401    }
402
403    /// Optimize architecture based on current performance
404    pub async fn optimize_architecture(
405        &mut self,
406        current_metrics: &PerformanceMetrics,
407        model: &dyn EmbeddingModel,
408    ) -> Result<ArchitectureConfig> {
409        info!(
410            "Starting architecture optimization with strategy: {:?}",
411            self.strategy
412        );
413
414        let new_architecture = match self.strategy {
415            ArchitectureOptimizationStrategy::NeuralArchitectureSearch => {
416                self.neural_architecture_search(current_metrics, model)
417                    .await?
418            }
419            ArchitectureOptimizationStrategy::GradientBasedSearch => {
420                self.gradient_based_search(current_metrics, model).await?
421            }
422            ArchitectureOptimizationStrategy::EvolutionarySearch => {
423                self.evolutionary_search(current_metrics, model).await?
424            }
425            ArchitectureOptimizationStrategy::HyperparameterOptimization => {
426                self.hyperparameter_optimization(current_metrics, model)
427                    .await?
428            }
429            ArchitectureOptimizationStrategy::PruningAndGrowth => {
430                self.pruning_and_growth(current_metrics, model).await?
431            }
432        };
433
434        // Evaluate new architecture
435        let performance = self.evaluate_architecture(&new_architecture, model).await?;
436
437        // Record search result
438        self.record_search_result(new_architecture.clone(), performance);
439
440        // Update current architecture if improvement is significant
441        if performance > current_metrics.validation_accuracy + 0.01 {
442            info!(
443                "Architecture optimization successful: {:.3} -> {:.3}",
444                current_metrics.validation_accuracy, performance
445            );
446            self.current_architecture = new_architecture.clone();
447        }
448
449        Ok(new_architecture)
450    }
451
452    async fn neural_architecture_search(
453        &self,
454        _current_metrics: &PerformanceMetrics,
455        _model: &dyn EmbeddingModel,
456    ) -> Result<ArchitectureConfig> {
457        // Implement neural architecture search
458        let mut new_config = self.current_architecture.clone();
459
460        // Mutate embedding dimension
461        let mut random = Random::default();
462        if random.random::<f32>() < 0.3 {
463            let adjustment = if random.random::<bool>() { 1.1 } else { 0.9 };
464            new_config.embedding_dim =
465                ((new_config.embedding_dim as f32 * adjustment) as usize).clamp(32, 1024);
466        }
467
468        // Mutate number of layers
469        if random.random::<f32>() < 0.2 {
470            new_config.num_layers = if random.random::<bool>() {
471                (new_config.num_layers + 1).min(10)
472            } else {
473                (new_config.num_layers.saturating_sub(1)).max(1)
474            };
475        }
476
477        // Mutate hidden dimensions
478        for hidden_dim in &mut new_config.hidden_dims {
479            if random.random::<f32>() < 0.2 {
480                let adjustment = 0.8 + random.random::<f32>() * 0.4; // 0.8 to 1.2
481                *hidden_dim = ((*hidden_dim as f32 * adjustment) as usize).clamp(16, 2048);
482            }
483        }
484
485        Ok(new_config)
486    }
487
488    async fn gradient_based_search(
489        &self,
490        current_metrics: &PerformanceMetrics,
491        _model: &dyn EmbeddingModel,
492    ) -> Result<ArchitectureConfig> {
493        // Implement gradient-based architecture search
494        let mut new_config = self.current_architecture.clone();
495
496        // Use gradient information to guide architecture changes
497        // This is a simplified implementation
498        if current_metrics.training_loss > 0.5 {
499            // Increase model capacity
500            new_config.embedding_dim = (new_config.embedding_dim as f32 * 1.1) as usize;
501            new_config.num_layers = (new_config.num_layers + 1).min(8);
502        } else if current_metrics.training_loss < 0.1 {
503            // Reduce model complexity to prevent overfitting
504            new_config.embedding_dim = (new_config.embedding_dim as f32 * 0.9) as usize;
505            for dropout_rate in &mut new_config.dropout_rates {
506                *dropout_rate = (*dropout_rate + 0.1).min(0.5);
507            }
508        }
509
510        Ok(new_config)
511    }
512
513    async fn evolutionary_search(
514        &self,
515        _current_metrics: &PerformanceMetrics,
516        model: &dyn EmbeddingModel,
517    ) -> Result<ArchitectureConfig> {
518        // Implement evolutionary architecture search
519        let population = self.generate_architecture_population(5);
520
521        // Evaluate population
522        let mut fitness_scores = Vec::new();
523        for config in &population {
524            let fitness = self.evaluate_architecture(config, model).await?;
525            fitness_scores.push(fitness);
526        }
527
528        // Select best configurations
529        let mut indexed_scores: Vec<(usize, f32)> = fitness_scores
530            .iter()
531            .enumerate()
532            .map(|(i, &s)| (i, s))
533            .collect();
534        indexed_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
535
536        // Crossover and mutation
537        let parent1 = &population[indexed_scores[0].0];
538        let parent2 = &population[indexed_scores[1].0];
539        let offspring = self.crossover_architectures(parent1, parent2);
540        let mutated_offspring = self.mutate_architecture(offspring);
541
542        Ok(mutated_offspring)
543    }
544
545    async fn hyperparameter_optimization(
546        &self,
547        _current_metrics: &PerformanceMetrics,
548        _model: &dyn EmbeddingModel,
549    ) -> Result<ArchitectureConfig> {
550        // Implement hyperparameter optimization
551        let mut new_config = self.current_architecture.clone();
552
553        // Optimize dropout rates
554        let mut random = Random::default();
555        for dropout_rate in &mut new_config.dropout_rates {
556            *dropout_rate = random.random::<f32>() * 0.5; // 0.0 to 0.5
557        }
558
559        // Optimize layer dimensions using Bayesian optimization principles
560        for hidden_dim in &mut new_config.hidden_dims {
561            let log_dim = (*hidden_dim as f32).ln();
562            let noise = (random.random::<f32>() - 0.5) * 0.2;
563            let new_log_dim = log_dim + noise;
564            *hidden_dim = new_log_dim.exp() as usize;
565        }
566
567        Ok(new_config)
568    }
569
570    async fn pruning_and_growth(
571        &self,
572        current_metrics: &PerformanceMetrics,
573        _model: &dyn EmbeddingModel,
574    ) -> Result<ArchitectureConfig> {
575        // Implement pruning and growth strategy
576        let mut new_config = self.current_architecture.clone();
577
578        // Prune if model is too complex
579        if current_metrics.model_complexity > 0.8 {
580            new_config.embedding_dim = (new_config.embedding_dim as f32 * 0.9) as usize;
581
582            // Remove smallest hidden layers
583            new_config.hidden_dims.sort();
584            if new_config.hidden_dims.len() > 2 {
585                new_config.hidden_dims.remove(0);
586                new_config.num_layers = new_config.num_layers.saturating_sub(1);
587            }
588        }
589
590        // Grow if model is underperforming
591        if current_metrics.validation_accuracy < 0.6 {
592            new_config.embedding_dim = (new_config.embedding_dim as f32 * 1.1) as usize;
593
594            // Add new hidden layer
595            if new_config.num_layers < 6 {
596                let new_hidden_dim = new_config.embedding_dim / 2;
597                new_config.hidden_dims.push(new_hidden_dim);
598                new_config.num_layers += 1;
599            }
600        }
601
602        Ok(new_config)
603    }
604
605    fn generate_architecture_population(&self, size: usize) -> Vec<ArchitectureConfig> {
606        let mut population = Vec::new();
607
608        for _ in 0..size {
609            let mut config = self.current_architecture.clone();
610
611            // Random mutations
612            let mut random = Random::default();
613            config.embedding_dim =
614                (64..=512).step_by(32).collect::<Vec<_>>()[random.random_range(0..15)];
615            config.num_layers = (1..=6).collect::<Vec<_>>()[random.random_range(0..6)];
616
617            // Generate random hidden dimensions
618            config.hidden_dims = (0..config.num_layers)
619                .map(|_| (32..=1024).step_by(32).collect::<Vec<_>>()[random.random_range(0..31)])
620                .collect();
621
622            population.push(config);
623        }
624
625        population
626    }
627
628    fn crossover_architectures(
629        &self,
630        parent1: &ArchitectureConfig,
631        parent2: &ArchitectureConfig,
632    ) -> ArchitectureConfig {
633        let mut random = Random::default();
634        ArchitectureConfig {
635            embedding_dim: if random.random::<bool>() {
636                parent1.embedding_dim
637            } else {
638                parent2.embedding_dim
639            },
640            num_layers: if random.random::<bool>() {
641                parent1.num_layers
642            } else {
643                parent2.num_layers
644            },
645            hidden_dims: parent1
646                .hidden_dims
647                .iter()
648                .zip(parent2.hidden_dims.iter())
649                .map(|(d1, d2)| if random.random::<bool>() { *d1 } else { *d2 })
650                .collect(),
651            activations: if random.random::<bool>() {
652                parent1.activations.clone()
653            } else {
654                parent2.activations.clone()
655            },
656            dropout_rates: parent1
657                .dropout_rates
658                .iter()
659                .zip(parent2.dropout_rates.iter())
660                .map(|(r1, r2)| if random.random::<bool>() { *r1 } else { *r2 })
661                .collect(),
662            normalizations: if random.random::<bool>() {
663                parent1.normalizations.clone()
664            } else {
665                parent2.normalizations.clone()
666            },
667        }
668    }
669
670    fn mutate_architecture(&self, mut config: ArchitectureConfig) -> ArchitectureConfig {
671        let mut random = Random::default();
672        // Mutate embedding dimension
673        if random.random::<f32>() < 0.3 {
674            config.embedding_dim =
675                (config.embedding_dim as f32 * (0.8 + random.random::<f32>() * 0.4)) as usize;
676        }
677
678        // Mutate hidden dimensions
679        for hidden_dim in &mut config.hidden_dims {
680            if random.random::<f32>() < 0.2 {
681                *hidden_dim = (*hidden_dim as f32 * (0.8 + random.random::<f32>() * 0.4)) as usize;
682            }
683        }
684
685        // Mutate dropout rates
686        for dropout_rate in &mut config.dropout_rates {
687            if random.random::<f32>() < 0.2 {
688                *dropout_rate =
689                    (*dropout_rate + (random.random::<f32>() - 0.5) * 0.1).clamp(0.0, 0.5);
690            }
691        }
692
693        config
694    }
695
696    async fn evaluate_architecture(
697        &self,
698        config: &ArchitectureConfig,
699        _model: &dyn EmbeddingModel,
700    ) -> Result<f32> {
701        // Evaluate architecture performance
702        // This would involve training a model with the given architecture
703        // For now, return a simplified score based on architecture properties
704
705        let complexity_penalty =
706            (config.embedding_dim as f32 / 512.0 + config.num_layers as f32 / 6.0) * 0.1;
707        let mut random = Random::default();
708        let base_score = 0.7 + random.random::<f32>() * 0.2;
709
710        Ok((base_score - complexity_penalty).clamp(0.0, 1.0))
711    }
712
713    fn record_search_result(&mut self, architecture: ArchitectureConfig, performance: f32) {
714        let result = ArchitectureSearchResult {
715            timestamp: chrono::Utc::now(),
716            architecture,
717            performance,
718            search_time: 10.0, // Simplified
719            validation_score: performance,
720        };
721
722        self.search_history.push(result);
723
724        // Keep only recent results
725        if self.search_history.len() > 50 {
726            self.search_history.remove(0);
727        }
728    }
729}
730
731/// Online learning manager for continuous model updates
732pub struct OnlineLearningManager {
733    /// Configuration for online learning
734    config: OnlineLearningConfig,
735    /// Incoming data buffer
736    data_buffer: VecDeque<OnlineDataPoint>,
737    /// Model update scheduler
738    update_scheduler: UpdateScheduler,
739}
740
741#[derive(Debug, Clone, Serialize, Deserialize)]
742pub struct OnlineLearningConfig {
743    /// Buffer size for incoming data
744    pub buffer_size: usize,
745    /// Update frequency (number of samples)
746    pub update_frequency: usize,
747    /// Learning rate decay for online updates
748    pub online_lr_decay: f32,
749    /// Catastrophic forgetting prevention
750    pub enable_ewc: bool,
751    /// Experience replay buffer size
752    pub replay_buffer_size: usize,
753}
754
755#[derive(Debug, Clone, Serialize, Deserialize)]
756pub struct OnlineDataPoint {
757    pub timestamp: chrono::DateTime<chrono::Utc>,
758    pub entity1: String,
759    pub entity2: String,
760    pub relation: String,
761    pub score: f32,
762    pub source: String,
763}
764
765#[derive(Debug, Clone)]
766pub enum UpdateScheduler {
767    Fixed(usize),        // Update every N samples
768    Adaptive(f32),       // Update based on performance degradation
769    Timebased(Duration), // Update every X minutes
770    TriggerBased,        // Update when triggered by external events
771}
772
773impl OnlineLearningManager {
774    pub fn new(config: OnlineLearningConfig) -> Self {
775        Self {
776            config,
777            data_buffer: VecDeque::new(),
778            update_scheduler: UpdateScheduler::Fixed(100),
779        }
780    }
781
782    /// Add new data point for online learning
783    pub async fn add_data_point(&mut self, data_point: OnlineDataPoint) -> Result<()> {
784        self.data_buffer.push_back(data_point);
785
786        // Maintain buffer size
787        while self.data_buffer.len() > self.config.buffer_size {
788            self.data_buffer.pop_front();
789        }
790
791        // Check if update is needed
792        if self.should_update() {
793            self.trigger_update().await?;
794        }
795
796        Ok(())
797    }
798
799    /// Perform online model update
800    pub async fn perform_online_update<M: EmbeddingModel>(
801        &mut self,
802        model: &mut M,
803    ) -> Result<OnlineUpdateResult> {
804        info!(
805            "Performing online model update with {} data points",
806            self.data_buffer.len()
807        );
808
809        let start_time = Instant::now();
810
811        // Prepare training batch
812        let batch_data: Vec<_> = self
813            .data_buffer
814            .iter()
815            .take(self.config.update_frequency)
816            .cloned()
817            .collect();
818
819        // Update model with new data
820        let update_stats = self.update_model_incremental(model, &batch_data).await?;
821
822        let update_time = start_time.elapsed();
823
824        // Clear processed data from buffer
825        for _ in 0..batch_data.len().min(self.data_buffer.len()) {
826            self.data_buffer.pop_front();
827        }
828
829        Ok(OnlineUpdateResult {
830            timestamp: chrono::Utc::now(),
831            samples_processed: batch_data.len(),
832            update_time: update_time.as_secs_f32(),
833            performance_improvement: update_stats.performance_improvement,
834            memory_usage: update_stats.memory_usage,
835            model_drift_detected: update_stats.drift_detected,
836        })
837    }
838
839    fn should_update(&self) -> bool {
840        match self.update_scheduler {
841            UpdateScheduler::Fixed(n) => self.data_buffer.len() >= n,
842            UpdateScheduler::Adaptive(_threshold) => {
843                // Check if performance has degraded beyond threshold
844                // Simplified: update if buffer is half full
845                self.data_buffer.len() >= self.config.buffer_size / 2
846            }
847            UpdateScheduler::Timebased(_duration) => {
848                // Check if enough time has passed since last update
849                // Simplified: always true for demo
850                true
851            }
852            UpdateScheduler::TriggerBased => {
853                // Update only when explicitly triggered
854                false
855            }
856        }
857    }
858
859    async fn trigger_update(&mut self) -> Result<()> {
860        info!("Triggering online learning update");
861        // This would trigger the actual model update process
862        Ok(())
863    }
864
865    async fn update_model_incremental<M: EmbeddingModel>(
866        &self,
867        _model: &mut M,
868        _batch_data: &[OnlineDataPoint],
869    ) -> Result<IncrementalUpdateStats> {
870        // Perform incremental model update
871        // This is a simplified implementation
872
873        let performance_before = 0.7; // Placeholder
874
875        // Simulate incremental training
876        sleep(Duration::from_millis(100)).await;
877
878        let mut random = Random::default();
879        let performance_after = performance_before + random.random::<f32>() * 0.05;
880
881        Ok(IncrementalUpdateStats {
882            performance_improvement: performance_after - performance_before,
883            memory_usage: 1024.0,
884            drift_detected: random.random::<f32>() < 0.1,
885        })
886    }
887}
888
889#[derive(Debug, Clone, Serialize, Deserialize)]
890pub struct OnlineUpdateResult {
891    pub timestamp: chrono::DateTime<chrono::Utc>,
892    pub samples_processed: usize,
893    pub update_time: f32,
894    pub performance_improvement: f32,
895    pub memory_usage: f32,
896    pub model_drift_detected: bool,
897}
898
899#[derive(Debug, Clone)]
900struct IncrementalUpdateStats {
901    performance_improvement: f32,
902    memory_usage: f32,
903    drift_detected: bool,
904}
905
906/// Resource optimization system
907pub struct ResourceOptimizer {
908    /// Current resource allocation
909    current_allocation: ResourceAllocation,
910    /// Resource usage history
911    usage_history: VecDeque<ResourceUsage>,
912    /// Optimization strategy
913    strategy: ResourceOptimizationStrategy,
914}
915
916#[derive(Debug, Clone, Serialize, Deserialize)]
917pub struct ResourceAllocation {
918    /// CPU cores allocated
919    pub cpu_cores: usize,
920    /// Memory allocation (MB)
921    pub memory_mb: usize,
922    /// GPU memory allocation (MB)
923    pub gpu_memory_mb: usize,
924    /// Batch size for training/inference
925    pub batch_size: usize,
926    /// Number of worker threads
927    pub num_workers: usize,
928}
929
930#[derive(Debug, Clone, Serialize, Deserialize)]
931pub struct ResourceUsage {
932    pub timestamp: chrono::DateTime<chrono::Utc>,
933    pub cpu_utilization: f32,
934    pub memory_usage: f32,
935    pub gpu_utilization: f32,
936    pub gpu_memory_usage: f32,
937    pub throughput: f32,
938    pub latency: f32,
939}
940
941#[derive(Debug, Clone)]
942pub enum ResourceOptimizationStrategy {
943    ThroughputMaximization,
944    LatencyMinimization,
945    MemoryEfficiency,
946    EnergyEfficiency,
947    CostOptimization,
948}
949
950impl ResourceOptimizer {
951    pub fn new(
952        initial_allocation: ResourceAllocation,
953        strategy: ResourceOptimizationStrategy,
954    ) -> Self {
955        Self {
956            current_allocation: initial_allocation,
957            usage_history: VecDeque::new(),
958            strategy,
959        }
960    }
961
962    /// Optimize resource allocation based on current usage patterns
963    pub async fn optimize_resources(
964        &mut self,
965        current_usage: &ResourceUsage,
966        performance_metrics: &PerformanceMetrics,
967    ) -> Result<ResourceAllocation> {
968        self.usage_history.push_back(current_usage.clone());
969
970        // Keep only recent history
971        while self.usage_history.len() > 100 {
972            self.usage_history.pop_front();
973        }
974
975        let new_allocation = match self.strategy {
976            ResourceOptimizationStrategy::ThroughputMaximization => {
977                self.optimize_for_throughput(current_usage, performance_metrics)
978                    .await?
979            }
980            ResourceOptimizationStrategy::LatencyMinimization => {
981                self.optimize_for_latency(current_usage, performance_metrics)
982                    .await?
983            }
984            ResourceOptimizationStrategy::MemoryEfficiency => {
985                self.optimize_for_memory(current_usage, performance_metrics)
986                    .await?
987            }
988            ResourceOptimizationStrategy::EnergyEfficiency => {
989                self.optimize_for_energy(current_usage, performance_metrics)
990                    .await?
991            }
992            ResourceOptimizationStrategy::CostOptimization => {
993                self.optimize_for_cost(current_usage, performance_metrics)
994                    .await?
995            }
996        };
997
998        self.current_allocation = new_allocation.clone();
999        Ok(new_allocation)
1000    }
1001
1002    async fn optimize_for_throughput(
1003        &self,
1004        current_usage: &ResourceUsage,
1005        _performance_metrics: &PerformanceMetrics,
1006    ) -> Result<ResourceAllocation> {
1007        let mut new_allocation = self.current_allocation.clone();
1008
1009        // Increase batch size if GPU utilization is low
1010        if current_usage.gpu_utilization < 0.7 {
1011            new_allocation.batch_size = (new_allocation.batch_size as f32 * 1.2) as usize;
1012        }
1013
1014        // Increase workers if CPU utilization is low
1015        if current_usage.cpu_utilization < 0.6 {
1016            new_allocation.num_workers = (new_allocation.num_workers + 1).min(16);
1017        }
1018
1019        Ok(new_allocation)
1020    }
1021
1022    async fn optimize_for_latency(
1023        &self,
1024        current_usage: &ResourceUsage,
1025        performance_metrics: &PerformanceMetrics,
1026    ) -> Result<ResourceAllocation> {
1027        let mut new_allocation = self.current_allocation.clone();
1028
1029        // Reduce batch size for lower latency
1030        if performance_metrics.inference_latency > 100.0 {
1031            new_allocation.batch_size = (new_allocation.batch_size as f32 * 0.8) as usize;
1032        }
1033
1034        // Increase memory allocation for caching
1035        if current_usage.memory_usage < 0.8 {
1036            new_allocation.memory_mb = (new_allocation.memory_mb as f32 * 1.1) as usize;
1037        }
1038
1039        Ok(new_allocation)
1040    }
1041
1042    async fn optimize_for_memory(
1043        &self,
1044        current_usage: &ResourceUsage,
1045        _performance_metrics: &PerformanceMetrics,
1046    ) -> Result<ResourceAllocation> {
1047        let mut new_allocation = self.current_allocation.clone();
1048
1049        // Reduce batch size if memory usage is high
1050        if current_usage.memory_usage > 0.9 {
1051            new_allocation.batch_size = (new_allocation.batch_size as f32 * 0.8) as usize;
1052        }
1053
1054        // Reduce GPU memory allocation if not fully utilized
1055        if current_usage.gpu_memory_usage < 0.7 {
1056            new_allocation.gpu_memory_mb = (new_allocation.gpu_memory_mb as f32 * 0.9) as usize;
1057        }
1058
1059        Ok(new_allocation)
1060    }
1061
1062    async fn optimize_for_energy(
1063        &self,
1064        current_usage: &ResourceUsage,
1065        _performance_metrics: &PerformanceMetrics,
1066    ) -> Result<ResourceAllocation> {
1067        let mut new_allocation = self.current_allocation.clone();
1068
1069        // Reduce CPU cores if utilization is low
1070        if current_usage.cpu_utilization < 0.5 {
1071            new_allocation.cpu_cores = (new_allocation.cpu_cores.saturating_sub(1)).max(1);
1072        }
1073
1074        // Optimize batch size for energy efficiency
1075        let optimal_batch_size = self.calculate_energy_optimal_batch_size(current_usage);
1076        new_allocation.batch_size = optimal_batch_size;
1077
1078        Ok(new_allocation)
1079    }
1080
1081    async fn optimize_for_cost(
1082        &self,
1083        current_usage: &ResourceUsage,
1084        performance_metrics: &PerformanceMetrics,
1085    ) -> Result<ResourceAllocation> {
1086        let mut new_allocation = self.current_allocation.clone();
1087
1088        // Balance performance and resource usage for cost optimization
1089        let efficiency_ratio = performance_metrics.throughput / current_usage.gpu_utilization;
1090
1091        if efficiency_ratio < 100.0 {
1092            // Poor efficiency, reduce resource allocation
1093            new_allocation.gpu_memory_mb = (new_allocation.gpu_memory_mb as f32 * 0.9) as usize;
1094            new_allocation.batch_size = (new_allocation.batch_size as f32 * 0.9) as usize;
1095        } else {
1096            // Good efficiency, can afford slight increase
1097            new_allocation.batch_size = (new_allocation.batch_size as f32 * 1.05) as usize;
1098        }
1099
1100        Ok(new_allocation)
1101    }
1102
1103    fn calculate_energy_optimal_batch_size(&self, current_usage: &ResourceUsage) -> usize {
1104        // Calculate optimal batch size for energy efficiency
1105        // This is a simplified calculation
1106        let base_batch_size = self.current_allocation.batch_size;
1107        let utilization_factor =
1108            (current_usage.gpu_utilization + current_usage.cpu_utilization) / 2.0;
1109
1110        (base_batch_size as f32 * utilization_factor * 1.2) as usize
1111    }
1112}
1113
1114/// Optimization history tracking
1115pub struct OptimizationHistory {
1116    /// Performance metrics over time
1117    performance_history: VecDeque<PerformanceMetrics>,
1118    /// Optimization actions taken
1119    optimization_actions: VecDeque<OptimizationAction>,
1120    /// Resource usage history
1121    resource_history: VecDeque<ResourceUsage>,
1122}
1123
1124#[derive(Debug, Clone, Serialize, Deserialize)]
1125pub struct OptimizationAction {
1126    pub timestamp: chrono::DateTime<chrono::Utc>,
1127    pub action_type: String,
1128    pub parameters: HashMap<String, f32>,
1129    pub expected_improvement: f32,
1130    pub actual_improvement: Option<f32>,
1131}
1132
1133impl Default for OptimizationHistory {
1134    fn default() -> Self {
1135        Self::new()
1136    }
1137}
1138
1139impl OptimizationHistory {
1140    pub fn new() -> Self {
1141        Self {
1142            performance_history: VecDeque::new(),
1143            optimization_actions: VecDeque::new(),
1144            resource_history: VecDeque::new(),
1145        }
1146    }
1147
1148    /// Record optimization action
1149    pub fn record_optimization_action(&mut self, action: OptimizationAction) {
1150        self.optimization_actions.push_back(action);
1151
1152        // Keep only recent actions
1153        while self.optimization_actions.len() > 200 {
1154            self.optimization_actions.pop_front();
1155        }
1156    }
1157
1158    /// Get optimization summary
1159    pub fn get_optimization_summary(&self) -> OptimizationSummary {
1160        OptimizationSummary {
1161            total_optimizations: self.optimization_actions.len(),
1162            successful_optimizations: self
1163                .optimization_actions
1164                .iter()
1165                .filter(|a| a.actual_improvement.unwrap_or(0.0) > 0.0)
1166                .count(),
1167            average_improvement: self
1168                .optimization_actions
1169                .iter()
1170                .filter_map(|a| a.actual_improvement)
1171                .sum::<f32>()
1172                / self.optimization_actions.len() as f32,
1173            optimization_efficiency: self.calculate_optimization_efficiency(),
1174        }
1175    }
1176
1177    fn calculate_optimization_efficiency(&self) -> f32 {
1178        let successful = self
1179            .optimization_actions
1180            .iter()
1181            .filter(|a| a.actual_improvement.unwrap_or(0.0) > 0.0)
1182            .count() as f32;
1183
1184        successful / self.optimization_actions.len() as f32
1185    }
1186}
1187
1188#[derive(Debug, Clone, Serialize, Deserialize)]
1189pub struct OptimizationSummary {
1190    pub total_optimizations: usize,
1191    pub successful_optimizations: usize,
1192    pub average_improvement: f32,
1193    pub optimization_efficiency: f32,
1194}
1195
1196impl RealTimeOptimizer {
1197    /// Create a new real-time optimizer
1198    pub fn new(config: OptimizationConfig) -> Self {
1199        let performance_monitor = PerformanceMonitor {
1200            metrics_history: Arc::new(Mutex::new(VecDeque::new())),
1201            current_baseline: Arc::new(Mutex::new(PerformanceMetrics::default())),
1202            window_size: config.performance_window_size,
1203        };
1204
1205        let learning_rate_scheduler =
1206            AdaptiveLearningRateScheduler::new(0.001, LearningRateStrategy::PerformanceBased);
1207
1208        let architecture_optimizer = DynamicArchitectureOptimizer::new(
1209            ArchitectureConfig {
1210                embedding_dim: 256,
1211                num_layers: 3,
1212                hidden_dims: vec![512, 256, 128],
1213                activations: vec![
1214                    "relu".to_string(),
1215                    "relu".to_string(),
1216                    "sigmoid".to_string(),
1217                ],
1218                dropout_rates: vec![0.1, 0.2, 0.1],
1219                normalizations: vec!["batch".to_string(), "batch".to_string(), "none".to_string()],
1220            },
1221            ArchitectureOptimizationStrategy::EvolutionarySearch,
1222        );
1223
1224        let online_learning_manager = OnlineLearningManager::new(OnlineLearningConfig {
1225            buffer_size: 1000,
1226            update_frequency: 100,
1227            online_lr_decay: 0.999,
1228            enable_ewc: true,
1229            replay_buffer_size: 5000,
1230        });
1231
1232        let resource_optimizer = ResourceOptimizer::new(
1233            ResourceAllocation {
1234                cpu_cores: 4,
1235                memory_mb: 8192,
1236                gpu_memory_mb: 4096,
1237                batch_size: 32,
1238                num_workers: 4,
1239            },
1240            ResourceOptimizationStrategy::ThroughputMaximization,
1241        );
1242
1243        Self {
1244            config,
1245            performance_monitor,
1246            learning_rate_scheduler,
1247            architecture_optimizer,
1248            online_learning_manager,
1249            resource_optimizer,
1250            optimization_history: OptimizationHistory::new(),
1251        }
1252    }
1253
1254    /// Start real-time optimization loop
1255    pub async fn start_optimization_loop<M: EmbeddingModel + Send + Clone + 'static>(
1256        &mut self,
1257        model: Arc<Mutex<M>>,
1258    ) -> Result<()> {
1259        info!("Starting real-time optimization loop");
1260
1261        loop {
1262            // Collect current performance metrics
1263            let current_metrics = self.collect_performance_metrics(&model).await?;
1264
1265            // Record metrics
1266            self.record_performance_metrics(current_metrics.clone());
1267
1268            // Perform optimizations based on configuration
1269            if self.config.enable_adaptive_lr {
1270                self.optimize_learning_rate(&current_metrics).await?;
1271            }
1272
1273            if self.config.enable_architecture_opt {
1274                self.optimize_architecture::<M>(&current_metrics, &model)
1275                    .await?;
1276            }
1277
1278            if self.config.enable_resource_opt {
1279                self.optimize_resources(&current_metrics).await?;
1280            }
1281
1282            // Sleep until next optimization cycle
1283            sleep(Duration::from_secs(self.config.optimization_frequency)).await;
1284        }
1285    }
1286
1287    async fn collect_performance_metrics<M: EmbeddingModel>(
1288        &self,
1289        _model: &Arc<Mutex<M>>,
1290    ) -> Result<PerformanceMetrics> {
1291        // Collect current performance metrics from the model
1292        // This is a simplified implementation
1293        let mut random = Random::default();
1294        Ok(PerformanceMetrics {
1295            timestamp: chrono::Utc::now(),
1296            training_loss: 0.5 + random.random::<f32>() * 0.3,
1297            validation_accuracy: 0.7 + random.random::<f32>() * 0.2,
1298            inference_latency: 50.0 + random.random::<f32>() * 100.0,
1299            memory_usage: 2048.0 + random.random::<f32>() * 1024.0,
1300            gpu_utilization: 60.0 + random.random::<f32>() * 30.0,
1301            throughput: 80.0 + random.random::<f32>() * 40.0,
1302            learning_rate: self.learning_rate_scheduler.current_lr,
1303            model_complexity: 0.5 + random.random::<f32>() * 0.3,
1304        })
1305    }
1306
1307    fn record_performance_metrics(&mut self, metrics: PerformanceMetrics) {
1308        let mut history = self.performance_monitor.metrics_history.lock().unwrap();
1309        history.push_back(metrics.clone());
1310
1311        // Maintain window size
1312        while history.len() > self.performance_monitor.window_size {
1313            history.pop_front();
1314        }
1315
1316        // Update baseline
1317        *self.performance_monitor.current_baseline.lock().unwrap() = metrics;
1318    }
1319
1320    async fn optimize_learning_rate(&mut self, current_metrics: &PerformanceMetrics) -> Result<()> {
1321        let history = self.performance_monitor.metrics_history.lock().unwrap();
1322        let recent_metrics: Vec<_> = history.iter().cloned().collect();
1323        drop(history);
1324
1325        let new_lr = self
1326            .learning_rate_scheduler
1327            .adjust_learning_rate(current_metrics, &recent_metrics)?;
1328
1329        info!(
1330            "Learning rate adjusted: {:.6} -> {:.6}",
1331            current_metrics.learning_rate, new_lr
1332        );
1333
1334        Ok(())
1335    }
1336
1337    async fn optimize_architecture<M: EmbeddingModel + Clone + Send + Sync>(
1338        &mut self,
1339        current_metrics: &PerformanceMetrics,
1340        model: &Arc<Mutex<M>>,
1341    ) -> Result<()> {
1342        // Note: This method needs refactoring to avoid holding mutex across await
1343        // For now, we'll allow this warning as it may require architectural changes
1344        let cloned_model = {
1345            let model_guard = model.lock().unwrap();
1346            (*model_guard).clone()
1347        };
1348        let new_architecture = self
1349            .architecture_optimizer
1350            .optimize_architecture(current_metrics, &cloned_model)
1351            .await?;
1352
1353        info!(
1354            "Architecture optimization completed: {:?}",
1355            new_architecture
1356        );
1357
1358        Ok(())
1359    }
1360
1361    async fn optimize_resources(&mut self, current_metrics: &PerformanceMetrics) -> Result<()> {
1362        let mut random = Random::default();
1363        let current_usage = ResourceUsage {
1364            timestamp: chrono::Utc::now(),
1365            cpu_utilization: 60.0 + random.random::<f32>() * 30.0,
1366            memory_usage: current_metrics.memory_usage / 8192.0,
1367            gpu_utilization: current_metrics.gpu_utilization / 100.0,
1368            gpu_memory_usage: 0.7 + random.random::<f32>() * 0.2,
1369            throughput: current_metrics.throughput,
1370            latency: current_metrics.inference_latency,
1371        };
1372
1373        let new_allocation = self
1374            .resource_optimizer
1375            .optimize_resources(&current_usage, current_metrics)
1376            .await?;
1377
1378        info!("Resource allocation optimized: {:?}", new_allocation);
1379
1380        Ok(())
1381    }
1382
1383    /// Get optimization summary
1384    pub fn get_optimization_summary(&self) -> OptimizationSummary {
1385        self.optimization_history.get_optimization_summary()
1386    }
1387}