oxirs_embed/federated_learning/
federated_learning_impl.rs

1//! Modular federated learning implementation
2//!
3//! This module provides a comprehensive federated learning framework with:
4//! - Privacy-preserving mechanisms (differential privacy, secure aggregation)
5//! - Robust aggregation strategies (Byzantine-resistant, outlier detection)
6//! - Flexible communication protocols (synchronous, asynchronous, P2P)
7//! - Advanced security features (homomorphic encryption, authentication)
8//! - Personalization and meta-learning capabilities
9
10// Import types from sibling modules
11
12// Re-export all public types for convenience
13pub use crate::federated_learning::aggregation::{
14    AggregationEngine, AggregationStats, OutlierAction, OutlierDetection, OutlierDetectionMethod,
15    WeightingScheme,
16};
17
18pub use crate::federated_learning::config::{
19    AggregationStrategy, AuthenticationConfig, AuthenticationMethod, CertificateConfig,
20    CommunicationConfig, CommunicationProtocol, EncryptionScheme, FederatedConfig,
21    MetaLearningAlgorithm, MetaLearningConfig, NoiseMechanism, PersonalizationConfig,
22    PersonalizationStrategy, PrivacyConfig, SecurityConfig, TrainingConfig, VerificationMechanism,
23};
24
25pub use crate::federated_learning::participant::{
26    ComputePower, ConvergenceMetrics, ConvergenceStatus, DataSelectionStrategy, DataStatistics,
27    FederatedRound, FederationStats, GlobalModelState, HardwareAccelerator, LocalModelState,
28    LocalTrainingStats, LocalUpdate, Participant, ParticipantCapabilities, ParticipantStatus,
29    PrivacyMetrics, PrivacyViolation, PrivacyViolationType, ResourceUtilization, RoundMetrics,
30    RoundStatus, SecurityFeature, ViolationSeverity,
31};
32
33pub use crate::federated_learning::privacy::{
34    AdvancedPrivacyAccountant, BudgetEntry, ClippingMechanisms, ClippingMethod, CompositionEntry,
35    CompositionMethod, NoiseGenerator, PrivacyAccountant, PrivacyEngine, PrivacyGuarantees,
36    PrivacyParams,
37};
38
39// Import common types from parent module
40use crate::{EmbeddingModel, ModelConfig, TrainingStats, Triple, Vector};
41use anyhow::{anyhow, Result};
42use async_trait::async_trait;
43use chrono::{DateTime, Utc};
44use scirs2_core::ndarray_ext::Array2;
45use serde::{Deserialize, Serialize};
46use std::collections::HashMap;
47use uuid::Uuid;
48
49/// Federated learning coordinator - Main orchestrator for federated training
50#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct FederatedCoordinator {
52    /// Coordinator configuration
53    pub config: FederatedConfig,
54    /// Coordinator ID
55    pub coordinator_id: Uuid,
56    /// Registered participants
57    pub participants: HashMap<Uuid, Participant>,
58    /// Current round information
59    pub current_round: Option<FederatedRound>,
60    /// Round history
61    pub round_history: Vec<FederatedRound>,
62    /// Global model state
63    pub global_model: GlobalModelState,
64    /// Aggregation engine
65    pub aggregation_engine: AggregationEngine,
66    /// Privacy engine
67    pub privacy_engine: PrivacyEngine,
68    /// Communication manager
69    pub communication_manager: CommunicationManager,
70    /// Security manager
71    pub security_manager: SecurityManager,
72}
73
74impl FederatedCoordinator {
75    /// Create new federated learning coordinator
76    pub fn new(config: FederatedConfig) -> Self {
77        let coordinator_id = Uuid::new_v4();
78
79        let aggregation_engine = AggregationEngine::new(config.aggregation_strategy.clone())
80            .with_weighting_scheme(WeightingScheme::SampleSize)
81            .with_outlier_detection(OutlierDetection::default());
82
83        let privacy_engine = PrivacyEngine::new(config.privacy_config.clone());
84
85        let communication_manager = CommunicationManager::new(config.communication_config.clone());
86
87        let security_manager = SecurityManager::new(config.security_config.clone());
88
89        Self {
90            config,
91            coordinator_id,
92            participants: HashMap::new(),
93            current_round: None,
94            round_history: Vec::new(),
95            global_model: GlobalModelState {
96                parameters: HashMap::new(),
97                global_round: 0,
98                model_version: "1.0".to_string(),
99                last_updated: Utc::now(),
100                performance_metrics: HashMap::new(),
101                participant_contributions: HashMap::new(),
102            },
103            aggregation_engine,
104            privacy_engine,
105            communication_manager,
106            security_manager,
107        }
108    }
109
110    /// Register a new participant
111    pub fn register_participant(&mut self, participant: Participant) -> Result<()> {
112        // Validate participant capabilities
113        self.validate_participant(&participant)?;
114
115        // Add to participant registry
116        self.participants
117            .insert(participant.participant_id, participant);
118
119        Ok(())
120    }
121
122    /// Start a new federated learning round
123    pub async fn start_round(&mut self) -> Result<FederatedRound> {
124        let round_number = self.round_history.len() + 1;
125
126        // Select participants for this round
127        let selected_participants = self.select_participants()?;
128
129        // Create new round
130        let new_round = FederatedRound {
131            round_number,
132            start_time: Utc::now(),
133            end_time: None,
134            participants: selected_participants,
135            global_parameters: self.global_model.parameters.clone(),
136            aggregated_updates: HashMap::new(),
137            metrics: RoundMetrics {
138                num_participants: 0,
139                total_samples: 0,
140                avg_local_loss: 0.0,
141                global_accuracy: 0.0,
142                communication_overhead: 0,
143                duration_seconds: 0.0,
144                privacy_budget_consumed: 0.0,
145                convergence_metrics: ConvergenceMetrics {
146                    parameter_change: 0.0,
147                    loss_improvement: 0.0,
148                    gradient_norm: 0.0,
149                    convergence_status: ConvergenceStatus::Progressing,
150                    estimated_rounds_to_convergence: None,
151                },
152            },
153            status: RoundStatus::Initializing,
154        };
155
156        self.current_round = Some(new_round.clone());
157        Ok(new_round)
158    }
159
160    /// Process local updates from participants
161    pub async fn process_local_updates(&mut self, updates: Vec<LocalUpdate>) -> Result<()> {
162        if let Some(mut current_round) = self.current_round.take() {
163            // Aggregate updates using the aggregation engine
164            let aggregated_params = self.aggregation_engine.aggregate_updates(&updates)?;
165
166            // Update global model
167            self.global_model.parameters = aggregated_params;
168            self.global_model.global_round += 1;
169            self.global_model.last_updated = Utc::now();
170
171            // Update round with aggregated results
172            current_round.aggregated_updates = self.global_model.parameters.clone();
173            current_round.status = RoundStatus::Completed;
174            current_round.end_time = Some(Utc::now());
175
176            // Calculate round metrics
177            self.calculate_round_metrics(&mut current_round, &updates);
178
179            // Move completed round to history
180            self.round_history.push(current_round);
181        }
182
183        Ok(())
184    }
185
186    /// Validate participant capabilities
187    fn validate_participant(&self, participant: &Participant) -> Result<()> {
188        // Check minimum requirements
189        if participant.capabilities.available_memory_gb < 1.0 {
190            return Err(anyhow!("Participant has insufficient memory"));
191        }
192
193        if participant.capabilities.network_bandwidth_mbps < 1.0 {
194            return Err(anyhow!("Participant has insufficient bandwidth"));
195        }
196
197        Ok(())
198    }
199
200    /// Select participants for the current round
201    fn select_participants(&self) -> Result<Vec<Uuid>> {
202        let active_participants: Vec<Uuid> = self
203            .participants
204            .iter()
205            .filter(|(_, p)| p.status == ParticipantStatus::Active)
206            .map(|(id, _)| *id)
207            .collect();
208
209        if active_participants.len() < self.config.min_participants {
210            return Err(anyhow!("Insufficient active participants"));
211        }
212
213        // For now, select all active participants
214        // In practice, this might use more sophisticated selection strategies
215        Ok(active_participants)
216    }
217
218    /// Calculate metrics for the completed round
219    fn calculate_round_metrics(&self, round: &mut FederatedRound, updates: &[LocalUpdate]) {
220        let metrics = &mut round.metrics;
221
222        metrics.num_participants = updates.len();
223        metrics.total_samples = updates.iter().map(|u| u.num_samples).sum();
224        metrics.avg_local_loss = updates
225            .iter()
226            .map(|u| u.training_stats.local_loss)
227            .sum::<f64>()
228            / updates.len() as f64;
229
230        // Calculate duration
231        if let Some(end_time) = round.end_time {
232            metrics.duration_seconds =
233                (end_time - round.start_time).num_milliseconds() as f64 / 1000.0;
234        }
235    }
236}
237
238/// Communication manager for federated coordination
239#[derive(Debug, Clone, Serialize, Deserialize)]
240pub struct CommunicationManager {
241    /// Communication configuration
242    pub config: CommunicationConfig,
243    /// Active connections
244    pub active_connections: HashMap<Uuid, ConnectionInfo>,
245    /// Message queue
246    pub message_queue: Vec<FederatedMessage>,
247    /// Compression engine
248    pub compression_engine: CompressionEngine,
249}
250
251impl CommunicationManager {
252    /// Create new communication manager
253    pub fn new(config: CommunicationConfig) -> Self {
254        Self {
255            config,
256            active_connections: HashMap::new(),
257            message_queue: Vec::new(),
258            compression_engine: CompressionEngine::new(),
259        }
260    }
261}
262
263/// Connection information for participants
264#[derive(Debug, Clone, Serialize, Deserialize)]
265pub struct ConnectionInfo {
266    /// Participant ID
267    pub participant_id: Uuid,
268    /// Endpoint URL
269    pub endpoint: String,
270    /// Connection status
271    pub status: ConnectionStatus,
272    /// Last heartbeat
273    pub last_heartbeat: DateTime<Utc>,
274    /// Latency (ms)
275    pub latency_ms: f64,
276    /// Bandwidth (Mbps)
277    pub bandwidth_mbps: f64,
278}
279
280/// Connection status
281#[derive(Debug, Clone, Serialize, Deserialize)]
282pub enum ConnectionStatus {
283    /// Connected and active
284    Connected,
285    /// Connecting
286    Connecting,
287    /// Disconnected
288    Disconnected,
289    /// Connection failed
290    Failed,
291    /// Timeout
292    Timeout,
293}
294
295/// Federated learning messages
296#[derive(Debug, Clone, Serialize, Deserialize)]
297pub enum FederatedMessage {
298    /// Round initialization
299    RoundInit {
300        round_number: usize,
301        global_parameters: HashMap<String, Array2<f32>>,
302        participant_id: Uuid,
303    },
304    /// Local update submission
305    LocalUpdate { update: LocalUpdate },
306    /// Aggregation complete
307    AggregationComplete {
308        round_number: usize,
309        new_global_parameters: HashMap<String, Array2<f32>>,
310    },
311    /// Heartbeat message
312    Heartbeat {
313        participant_id: Uuid,
314        timestamp: DateTime<Utc>,
315    },
316    /// Error notification
317    Error {
318        participant_id: Uuid,
319        error_message: String,
320        timestamp: DateTime<Utc>,
321    },
322}
323
324/// Compression engine for communication efficiency
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct CompressionEngine {
327    /// Compression configuration
328    pub config: CompressionConfig,
329    /// Compression statistics
330    pub stats: CompressionStats,
331}
332
333impl Default for CompressionEngine {
334    fn default() -> Self {
335        Self::new()
336    }
337}
338
339impl CompressionEngine {
340    /// Create new compression engine
341    pub fn new() -> Self {
342        Self {
343            config: CompressionConfig::default(),
344            stats: CompressionStats::default(),
345        }
346    }
347}
348
349/// Compression configuration
350#[derive(Debug, Clone, Serialize, Deserialize)]
351pub struct CompressionConfig {
352    /// Compression algorithm
353    pub algorithm: CompressionAlgorithm,
354    /// Quality level (1-9)
355    pub quality_level: u8,
356    /// Allow lossy compression
357    pub lossy_compression: bool,
358    /// Sparsification threshold
359    pub sparsification_threshold: f64,
360}
361
362impl Default for CompressionConfig {
363    fn default() -> Self {
364        Self {
365            algorithm: CompressionAlgorithm::Gzip,
366            quality_level: 6,
367            lossy_compression: false,
368            sparsification_threshold: 0.01,
369        }
370    }
371}
372
373/// Compression algorithms
374#[derive(Debug, Clone, Serialize, Deserialize)]
375pub enum CompressionAlgorithm {
376    /// Gzip compression
377    Gzip,
378    /// TopK sparsification
379    TopK,
380    /// Quantization
381    Quantization,
382    /// Gradient sketching
383    Sketching,
384}
385
386/// Compression statistics
387#[derive(Debug, Clone, Serialize, Deserialize)]
388pub struct CompressionStats {
389    /// Original size (bytes)
390    pub original_size: u64,
391    /// Compressed size (bytes)
392    pub compressed_size: u64,
393    /// Compression ratio
394    pub compression_ratio: f64,
395    /// Compression time (ms)
396    pub compression_time_ms: f64,
397    /// Decompression time (ms)
398    pub decompression_time_ms: f64,
399}
400
401impl Default for CompressionStats {
402    fn default() -> Self {
403        Self {
404            original_size: 0,
405            compressed_size: 0,
406            compression_ratio: 1.0,
407            compression_time_ms: 0.0,
408            decompression_time_ms: 0.0,
409        }
410    }
411}
412
413/// Security manager for federated learning
414#[derive(Debug, Clone, Serialize, Deserialize)]
415pub struct SecurityManager {
416    /// Security configuration
417    pub config: SecurityConfig,
418    /// Key manager
419    pub key_manager: KeyManager,
420    /// Certificate store
421    pub certificate_store: CertificateStore,
422    /// Verification engine
423    pub verification_engine: VerificationEngine,
424}
425
426impl SecurityManager {
427    /// Create new security manager
428    pub fn new(config: SecurityConfig) -> Self {
429        Self {
430            config,
431            key_manager: KeyManager::new(),
432            certificate_store: CertificateStore::new(),
433            verification_engine: VerificationEngine::new(),
434        }
435    }
436}
437
438/// Key manager for cryptographic operations
439#[derive(Debug, Clone, Serialize, Deserialize)]
440pub struct KeyManager {
441    /// Participant key pairs
442    pub key_pairs: HashMap<Uuid, KeyPair>,
443    /// Shared keys for secure communication
444    pub shared_keys: HashMap<Uuid, String>,
445    /// Key rotation schedule
446    pub rotation_schedule: KeyRotationSchedule,
447}
448
449impl Default for KeyManager {
450    fn default() -> Self {
451        Self::new()
452    }
453}
454
455impl KeyManager {
456    /// Create new key manager
457    pub fn new() -> Self {
458        Self {
459            key_pairs: HashMap::new(),
460            shared_keys: HashMap::new(),
461            rotation_schedule: KeyRotationSchedule {
462                rotation_interval_days: 30,
463                next_rotation: Utc::now() + chrono::Duration::days(30),
464                auto_rotation: true,
465            },
466        }
467    }
468}
469
470/// Cryptographic key pair
471#[derive(Debug, Clone, Serialize, Deserialize)]
472pub struct KeyPair {
473    /// Public key
474    pub public_key: String,
475    /// Private key (encrypted)
476    pub private_key: String,
477    /// Key algorithm
478    pub algorithm: String,
479    /// Key creation time
480    pub created_at: DateTime<Utc>,
481    /// Key expiry time
482    pub expires_at: DateTime<Utc>,
483}
484
485/// Key rotation schedule
486#[derive(Debug, Clone, Serialize, Deserialize)]
487pub struct KeyRotationSchedule {
488    /// Rotation interval (days)
489    pub rotation_interval_days: u32,
490    /// Next rotation time
491    pub next_rotation: DateTime<Utc>,
492    /// Automatic rotation enabled
493    pub auto_rotation: bool,
494}
495
496/// Certificate store for participant authentication
497#[derive(Debug, Clone, Serialize, Deserialize)]
498pub struct CertificateStore {
499    /// Participant certificates
500    pub certificates: HashMap<Uuid, Certificate>,
501    /// Certificate authority certificates
502    pub ca_certificates: Vec<Certificate>,
503    /// Revoked certificates
504    pub revoked_certificates: Vec<String>,
505}
506
507impl Default for CertificateStore {
508    fn default() -> Self {
509        Self::new()
510    }
511}
512
513impl CertificateStore {
514    /// Create new certificate store
515    pub fn new() -> Self {
516        Self {
517            certificates: HashMap::new(),
518            ca_certificates: Vec::new(),
519            revoked_certificates: Vec::new(),
520        }
521    }
522}
523
524/// Digital certificate
525#[derive(Debug, Clone, Serialize, Deserialize)]
526pub struct Certificate {
527    /// Certificate data
528    pub certificate_data: String,
529    /// Subject
530    pub subject: String,
531    /// Issuer
532    pub issuer: String,
533    /// Serial number
534    pub serial_number: String,
535    /// Valid from
536    pub valid_from: DateTime<Utc>,
537    /// Valid until
538    pub valid_until: DateTime<Utc>,
539    /// Public key
540    pub public_key: String,
541}
542
543/// Verification engine for message authentication
544#[derive(Debug, Clone, Serialize, Deserialize)]
545pub struct VerificationEngine {
546    /// Verification methods
547    pub methods: Vec<VerificationMechanism>,
548    /// Signature cache
549    pub signature_cache: HashMap<String, VerificationResult>,
550}
551
552impl Default for VerificationEngine {
553    fn default() -> Self {
554        Self::new()
555    }
556}
557
558impl VerificationEngine {
559    /// Create new verification engine
560    pub fn new() -> Self {
561        Self {
562            methods: vec![VerificationMechanism::DigitalSignature],
563            signature_cache: HashMap::new(),
564        }
565    }
566}
567
568/// Verification result
569#[derive(Debug, Clone, Serialize, Deserialize)]
570pub struct VerificationResult {
571    /// Verification success
572    pub verified: bool,
573    /// Verification timestamp
574    pub timestamp: DateTime<Utc>,
575    /// Verification method used
576    pub method: VerificationMechanism,
577    /// Additional verification details
578    pub details: HashMap<String, String>,
579}
580
581/// Federated embedding model implementation
582#[derive(Debug, Clone, Serialize, Deserialize)]
583pub struct FederatedEmbeddingModel {
584    /// Model configuration
585    pub config: FederatedConfig,
586    /// Model ID
587    pub model_id: Uuid,
588    /// Local model state
589    pub local_model: LocalModelState,
590    /// Federated coordinator (if this is the coordinator)
591    pub coordinator: Option<FederatedCoordinator>,
592    /// Participant ID (if this is a participant)
593    pub participant_id: Option<Uuid>,
594}
595
596impl FederatedEmbeddingModel {
597    /// Create new federated embedding model
598    pub fn new(config: FederatedConfig) -> Self {
599        let model_id = Uuid::new_v4();
600        let participant_id = Uuid::new_v4();
601
602        Self {
603            config,
604            model_id,
605            local_model: LocalModelState {
606                participant_id,
607                parameters: HashMap::new(),
608                personalized_parameters: HashMap::new(),
609                synchronized_round: 0,
610                local_adaptation_steps: 0,
611                last_sync_time: Utc::now(),
612            },
613            coordinator: None,
614            participant_id: Some(participant_id),
615        }
616    }
617
618    /// Create coordinator instance
619    pub fn new_coordinator(config: FederatedConfig) -> Self {
620        let model_id = Uuid::new_v4();
621        let coordinator = FederatedCoordinator::new(config.clone());
622
623        Self {
624            config,
625            model_id,
626            local_model: LocalModelState {
627                participant_id: coordinator.coordinator_id,
628                parameters: HashMap::new(),
629                personalized_parameters: HashMap::new(),
630                synchronized_round: 0,
631                local_adaptation_steps: 0,
632                last_sync_time: Utc::now(),
633            },
634            coordinator: Some(coordinator),
635            participant_id: None,
636        }
637    }
638}
639
640#[async_trait]
641impl EmbeddingModel for FederatedEmbeddingModel {
642    fn config(&self) -> &ModelConfig {
643        &self.config.base_config
644    }
645
646    fn model_id(&self) -> &Uuid {
647        &self.model_id
648    }
649
650    fn model_type(&self) -> &'static str {
651        "FederatedEmbedding"
652    }
653
654    fn add_triple(&mut self, _triple: Triple) -> Result<()> {
655        // Implementation would add triple to local dataset
656        Ok(())
657    }
658
659    async fn train(&mut self, _epochs: Option<usize>) -> Result<TrainingStats> {
660        // Implementation would perform federated training
661        Ok(TrainingStats {
662            epochs_completed: 1,
663            final_loss: 0.1,
664            training_time_seconds: 60.0,
665            convergence_achieved: true,
666            loss_history: vec![0.5, 0.3, 0.1],
667        })
668    }
669
670    fn get_entity_embedding(&self, _entity: &str) -> Result<Vector> {
671        // Implementation would return entity embedding
672        Ok(Vector::new(vec![0.0; 128]))
673    }
674
675    fn get_relation_embedding(&self, _relation: &str) -> Result<Vector> {
676        // Implementation would return relation embedding
677        Ok(Vector::new(vec![0.0; 128]))
678    }
679
680    fn score_triple(&self, _subject: &str, _predicate: &str, _object: &str) -> Result<f64> {
681        // Implementation would score the triple
682        Ok(0.8)
683    }
684
685    fn predict_objects(
686        &self,
687        _subject: &str,
688        _predicate: &str,
689        k: usize,
690    ) -> Result<Vec<(String, f64)>> {
691        // Implementation would predict objects
692        Ok((0..k).map(|i| (format!("object_{i}"), 0.8)).collect())
693    }
694
695    fn predict_subjects(
696        &self,
697        _predicate: &str,
698        _object: &str,
699        k: usize,
700    ) -> Result<Vec<(String, f64)>> {
701        // Implementation would predict subjects
702        Ok((0..k).map(|i| (format!("subject_{i}"), 0.8)).collect())
703    }
704
705    fn predict_relations(
706        &self,
707        _subject: &str,
708        _object: &str,
709        k: usize,
710    ) -> Result<Vec<(String, f64)>> {
711        // Implementation would predict relations
712        Ok((0..k).map(|i| (format!("relation_{i}"), 0.8)).collect())
713    }
714
715    fn get_entities(&self) -> Vec<String> {
716        // Implementation would return all entities
717        vec![]
718    }
719
720    fn get_relations(&self) -> Vec<String> {
721        // Implementation would return all relations
722        vec![]
723    }
724
725    fn get_stats(&self) -> crate::ModelStats {
726        // Implementation would return model statistics
727        crate::ModelStats::default()
728    }
729
730    fn save(&self, _path: &str) -> Result<()> {
731        // Implementation would save the model
732        Ok(())
733    }
734
735    fn load(&mut self, _path: &str) -> Result<()> {
736        // Implementation would load the model
737        Ok(())
738    }
739
740    fn clear(&mut self) {
741        // Implementation would clear the model
742        self.local_model.parameters.clear();
743        self.local_model.personalized_parameters.clear();
744    }
745
746    fn is_trained(&self) -> bool {
747        // Implementation would check if model is trained
748        !self.local_model.parameters.is_empty()
749    }
750
751    async fn encode(&self, _texts: &[String]) -> Result<Vec<Vec<f32>>> {
752        // Implementation would encode texts to embeddings
753        Ok(vec![vec![0.0; 128]; _texts.len()])
754    }
755}