oxirs_embed/
causal_representation_learning.rs

1//! Causal Representation Learning
2//!
3//! This module implements causal representation learning for discovering and learning
4//! causal structures in embedding spaces with interventional learning, structural
5//! causal models, and counterfactual reasoning capabilities.
6
7use crate::{EmbeddingModel, ModelConfig, TrainingStats, Triple, Vector};
8use anyhow::{anyhow, Result};
9use async_trait::async_trait;
10use chrono::Utc;
11use scirs2_core::ndarray_ext::{Array1, Array2};
12use serde::{Deserialize, Serialize};
13use std::collections::{HashMap, HashSet};
14use uuid::Uuid;
15
16/// Configuration for causal representation learning
17#[derive(Debug, Clone, Serialize, Deserialize, Default)]
18pub struct CausalRepresentationConfig {
19    pub base_config: ModelConfig,
20    /// Causal discovery configuration
21    pub causal_discovery: CausalDiscoveryConfig,
22    /// Structural causal model configuration
23    pub scm_config: StructuralCausalModelConfig,
24    /// Interventional learning configuration
25    pub intervention_config: InterventionConfig,
26    /// Counterfactual reasoning configuration
27    pub counterfactual_config: CounterfactualConfig,
28    /// Disentanglement configuration
29    pub disentanglement_config: DisentanglementConfig,
30}
31
32/// Causal discovery configuration
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct CausalDiscoveryConfig {
35    /// Discovery algorithm
36    pub algorithm: CausalDiscoveryAlgorithm,
37    /// Significance threshold for causal relationships
38    pub significance_threshold: f32,
39    /// Maximum number of parents per variable
40    pub max_parents: usize,
41    /// Use interventional data
42    pub use_interventions: bool,
43    /// Constraint-based settings
44    pub constraint_settings: ConstraintSettings,
45    /// Score-based settings
46    pub score_settings: ScoreSettings,
47}
48
49impl Default for CausalDiscoveryConfig {
50    fn default() -> Self {
51        Self {
52            algorithm: CausalDiscoveryAlgorithm::PC,
53            significance_threshold: 0.05,
54            max_parents: 5,
55            use_interventions: true,
56            constraint_settings: ConstraintSettings::default(),
57            score_settings: ScoreSettings::default(),
58        }
59    }
60}
61
62/// Causal discovery algorithms
63#[derive(Debug, Clone, Serialize, Deserialize)]
64pub enum CausalDiscoveryAlgorithm {
65    /// PC algorithm (constraint-based)
66    PC,
67    /// Fast Causal Inference (FCI)
68    FCI,
69    /// Greedy Equivalence Search (GES)
70    GES,
71    /// Linear Non-Gaussian Acyclic Model (LiNGAM)
72    LiNGAM,
73    /// NOTEARS (continuous optimization)
74    NOTEARS,
75    /// DirectLiNGAM
76    DirectLiNGAM,
77    /// Causal Additive Models (CAM)
78    CAM,
79}
80
81/// Constraint-based algorithm settings
82#[derive(Debug, Clone, Serialize, Deserialize)]
83pub struct ConstraintSettings {
84    /// Independence test type
85    pub independence_test: IndependenceTest,
86    /// Alpha level for tests
87    pub alpha: f32,
88    /// Use stable PC algorithm
89    pub stable: bool,
90    /// Maximum conditioning set size
91    pub max_cond_set_size: usize,
92}
93
94impl Default for ConstraintSettings {
95    fn default() -> Self {
96        Self {
97            independence_test: IndependenceTest::PartialCorrelation,
98            alpha: 0.05,
99            stable: true,
100            max_cond_set_size: 3,
101        }
102    }
103}
104
105/// Independence tests for constraint-based algorithms
106#[derive(Debug, Clone, Serialize, Deserialize)]
107pub enum IndependenceTest {
108    PartialCorrelation,
109    MutualInformation,
110    KernelTest,
111    DistanceCorrelation,
112    HilbertSchmidt,
113}
114
115/// Score-based algorithm settings
116#[derive(Debug, Clone, Serialize, Deserialize)]
117pub struct ScoreSettings {
118    /// Scoring function
119    pub score_function: ScoreFunction,
120    /// Penalty parameter
121    pub penalty: f32,
122    /// Search strategy
123    pub search_strategy: SearchStrategy,
124    /// Maximum number of iterations
125    pub max_iterations: usize,
126}
127
128impl Default for ScoreSettings {
129    fn default() -> Self {
130        Self {
131            score_function: ScoreFunction::BIC,
132            penalty: 1.0,
133            search_strategy: SearchStrategy::GreedyHillClimbing,
134            max_iterations: 1000,
135        }
136    }
137}
138
139/// Scoring functions for causal models
140#[derive(Debug, Clone, Serialize, Deserialize)]
141pub enum ScoreFunction {
142    BIC,
143    AIC,
144    LogLikelihood,
145    MDL,
146    BDeu,
147    BGe,
148}
149
150/// Search strategies for structure learning
151#[derive(Debug, Clone, Serialize, Deserialize)]
152pub enum SearchStrategy {
153    GreedyHillClimbing,
154    TabuSearch,
155    SimulatedAnnealing,
156    GeneticAlgorithm,
157    BeamSearch,
158}
159
160/// Structural causal model configuration
161#[derive(Debug, Clone, Serialize, Deserialize)]
162pub struct StructuralCausalModelConfig {
163    /// Variable types
164    pub variable_types: HashMap<String, VariableType>,
165    /// Functional form assumptions
166    pub functional_forms: HashMap<String, FunctionalForm>,
167    /// Noise model
168    pub noise_model: NoiseModel,
169    /// Identification strategy
170    pub identification: IdentificationStrategy,
171}
172
173impl Default for StructuralCausalModelConfig {
174    fn default() -> Self {
175        Self {
176            variable_types: HashMap::new(),
177            functional_forms: HashMap::new(),
178            noise_model: NoiseModel::Gaussian,
179            identification: IdentificationStrategy::BackDoorCriterion,
180        }
181    }
182}
183
184/// Variable types in SCM
185#[derive(Debug, Clone, Serialize, Deserialize)]
186pub enum VariableType {
187    Continuous,
188    Discrete,
189    Binary,
190    Categorical,
191    Ordinal,
192}
193
194/// Functional forms for causal relationships
195#[derive(Debug, Clone, Serialize, Deserialize)]
196pub enum FunctionalForm {
197    Linear,
198    Nonlinear,
199    Additive,
200    Multiplicative,
201    Polynomial,
202    NeuralNetwork,
203}
204
205/// Noise models
206#[derive(Debug, Clone, Serialize, Deserialize)]
207pub enum NoiseModel {
208    Gaussian,
209    Uniform,
210    Exponential,
211    Laplace,
212    StudentT,
213    Mixture,
214}
215
216/// Identification strategies
217#[derive(Debug, Clone, Serialize, Deserialize)]
218pub enum IdentificationStrategy {
219    BackDoorCriterion,
220    FrontDoorCriterion,
221    InstrumentalVariable,
222    DoCalculus,
223    NaturalExperiment,
224}
225
226/// Intervention configuration
227#[derive(Debug, Clone, Serialize, Deserialize)]
228pub struct InterventionConfig {
229    /// Types of interventions to consider
230    pub intervention_types: Vec<InterventionType>,
231    /// Intervention strength
232    pub intervention_strength: f32,
233    /// Number of intervention targets
234    pub max_intervention_targets: usize,
235    /// Soft vs hard interventions
236    pub soft_interventions: bool,
237    /// Intervention distribution
238    pub intervention_distribution: InterventionDistribution,
239}
240
241impl Default for InterventionConfig {
242    fn default() -> Self {
243        Self {
244            intervention_types: vec![
245                InterventionType::Do,
246                InterventionType::Soft,
247                InterventionType::Shift,
248            ],
249            intervention_strength: 1.0,
250            max_intervention_targets: 3,
251            soft_interventions: true,
252            intervention_distribution: InterventionDistribution::Gaussian,
253        }
254    }
255}
256
257/// Types of interventions
258#[derive(Debug, Clone, Serialize, Deserialize)]
259pub enum InterventionType {
260    /// Hard intervention (do-operator)
261    Do,
262    /// Soft intervention
263    Soft,
264    /// Shift intervention
265    Shift,
266    /// Noise intervention
267    Noise,
268    /// Mechanism change
269    Mechanism,
270}
271
272/// Intervention distributions
273#[derive(Debug, Clone, Serialize, Deserialize)]
274pub enum InterventionDistribution {
275    Gaussian,
276    Uniform,
277    Delta,
278    Mixture,
279}
280
281/// Counterfactual configuration
282#[derive(Debug, Clone, Serialize, Deserialize)]
283pub struct CounterfactualConfig {
284    /// Counterfactual reasoning method
285    pub reasoning_method: CounterfactualMethod,
286    /// Twin network settings
287    pub twin_network: TwinNetworkConfig,
288    /// Counterfactual fairness settings
289    pub fairness_constraints: FairnessConstraints,
290    /// Explanation generation
291    pub explanation_config: ExplanationConfig,
292}
293
294impl Default for CounterfactualConfig {
295    fn default() -> Self {
296        Self {
297            reasoning_method: CounterfactualMethod::TwinNetwork,
298            twin_network: TwinNetworkConfig::default(),
299            fairness_constraints: FairnessConstraints::default(),
300            explanation_config: ExplanationConfig::default(),
301        }
302    }
303}
304
305/// Counterfactual reasoning methods
306#[derive(Debug, Clone, Serialize, Deserialize)]
307pub enum CounterfactualMethod {
308    TwinNetwork,
309    StructuralEquations,
310    GAN,
311    VAE,
312    NormalizingFlows,
313}
314
315/// Twin network configuration
316#[derive(Debug, Clone, Serialize, Deserialize)]
317pub struct TwinNetworkConfig {
318    /// Shared layers
319    pub shared_layers: usize,
320    /// Factual branch layers
321    pub factual_layers: usize,
322    /// Counterfactual branch layers
323    pub counterfactual_layers: usize,
324    /// Consistency loss weight
325    pub consistency_weight: f32,
326}
327
328impl Default for TwinNetworkConfig {
329    fn default() -> Self {
330        Self {
331            shared_layers: 3,
332            factual_layers: 2,
333            counterfactual_layers: 2,
334            consistency_weight: 1.0,
335        }
336    }
337}
338
339/// Fairness constraints for counterfactuals
340#[derive(Debug, Clone, Serialize, Deserialize)]
341pub struct FairnessConstraints {
342    /// Protected attributes
343    pub protected_attributes: Vec<String>,
344    /// Fairness criteria
345    pub fairness_criteria: Vec<FairnessCriterion>,
346    /// Constraint strength
347    pub constraint_strength: f32,
348}
349
350impl Default for FairnessConstraints {
351    fn default() -> Self {
352        Self {
353            protected_attributes: Vec::new(),
354            fairness_criteria: vec![FairnessCriterion::CounterfactualFairness],
355            constraint_strength: 1.0,
356        }
357    }
358}
359
360/// Fairness criteria
361#[derive(Debug, Clone, Serialize, Deserialize)]
362pub enum FairnessCriterion {
363    CounterfactualFairness,
364    IndividualFairness,
365    GroupFairness,
366    EqualOpportunity,
367    DemographicParity,
368}
369
370/// Explanation configuration
371#[derive(Debug, Clone, Serialize, Deserialize)]
372pub struct ExplanationConfig {
373    /// Explanation types to generate
374    pub explanation_types: Vec<ExplanationType>,
375    /// Maximum explanation length
376    pub max_explanation_length: usize,
377    /// Include confidence scores
378    pub include_confidence: bool,
379}
380
381impl Default for ExplanationConfig {
382    fn default() -> Self {
383        Self {
384            explanation_types: vec![
385                ExplanationType::Causal,
386                ExplanationType::Counterfactual,
387                ExplanationType::Contrastive,
388            ],
389            max_explanation_length: 10,
390            include_confidence: true,
391        }
392    }
393}
394
395/// Types of explanations
396#[derive(Debug, Clone, Serialize, Deserialize)]
397pub enum ExplanationType {
398    Causal,
399    Counterfactual,
400    Contrastive,
401    Abductive,
402    Necessary,
403    Sufficient,
404}
405
406/// Disentanglement configuration
407#[derive(Debug, Clone, Serialize, Deserialize)]
408pub struct DisentanglementConfig {
409    /// Disentanglement method
410    pub method: DisentanglementMethod,
411    /// Beta parameter for beta-VAE
412    pub beta: f32,
413    /// Number of latent factors
414    pub num_factors: usize,
415    /// Factor supervision
416    pub supervision: FactorSupervision,
417}
418
419impl Default for DisentanglementConfig {
420    fn default() -> Self {
421        Self {
422            method: DisentanglementMethod::BetaVAE,
423            beta: 4.0,
424            num_factors: 10,
425            supervision: FactorSupervision::Unsupervised,
426        }
427    }
428}
429
430/// Disentanglement methods
431#[derive(Debug, Clone, Serialize, Deserialize)]
432pub enum DisentanglementMethod {
433    BetaVAE,
434    FactorVAE,
435    BetaTCVAE,
436    ICA,
437    SlowFeatureAnalysis,
438    CausalVAE,
439}
440
441/// Factor supervision levels
442#[derive(Debug, Clone, Serialize, Deserialize)]
443pub enum FactorSupervision {
444    Unsupervised,
445    WeaklySupervised,
446    FullySupervised,
447}
448
449/// Causal graph representation
450#[derive(Debug, Clone)]
451pub struct CausalGraph {
452    /// Variables in the graph
453    pub variables: Vec<String>,
454    /// Adjacency matrix (directed edges)
455    pub adjacency: Array2<f32>,
456    /// Edge weights (causal strengths)
457    pub edge_weights: Array2<f32>,
458    /// Confounders
459    pub confounders: HashSet<(usize, usize)>,
460}
461
462impl CausalGraph {
463    pub fn new(variables: Vec<String>) -> Self {
464        let n = variables.len();
465        Self {
466            variables,
467            adjacency: Array2::zeros((n, n)),
468            edge_weights: Array2::zeros((n, n)),
469            confounders: HashSet::new(),
470        }
471    }
472
473    pub fn add_edge(&mut self, from: usize, to: usize, weight: f32) {
474        if from < self.adjacency.nrows() && to < self.adjacency.ncols() {
475            self.adjacency[[from, to]] = 1.0;
476            self.edge_weights[[from, to]] = weight;
477        }
478    }
479
480    pub fn remove_edge(&mut self, from: usize, to: usize) {
481        if from < self.adjacency.nrows() && to < self.adjacency.ncols() {
482            self.adjacency[[from, to]] = 0.0;
483            self.edge_weights[[from, to]] = 0.0;
484        }
485    }
486
487    pub fn get_parents(&self, node: usize) -> Vec<usize> {
488        let mut parents = Vec::new();
489        for i in 0..self.adjacency.nrows() {
490            if self.adjacency[[i, node]] > 0.0 {
491                parents.push(i);
492            }
493        }
494        parents
495    }
496
497    pub fn get_children(&self, node: usize) -> Vec<usize> {
498        let mut children = Vec::new();
499        for j in 0..self.adjacency.ncols() {
500            if self.adjacency[[node, j]] > 0.0 {
501                children.push(j);
502            }
503        }
504        children
505    }
506
507    pub fn is_acyclic(&self) -> bool {
508        // Simple DFS-based cycle detection
509        let n = self.variables.len();
510        let mut visited = vec![false; n];
511        let mut rec_stack = vec![false; n];
512
513        for i in 0..n {
514            if !visited[i] && self.has_cycle_dfs(i, &mut visited, &mut rec_stack) {
515                return false;
516            }
517        }
518        true
519    }
520
521    fn has_cycle_dfs(
522        &self,
523        node: usize,
524        visited: &mut Vec<bool>,
525        rec_stack: &mut Vec<bool>,
526    ) -> bool {
527        visited[node] = true;
528        rec_stack[node] = true;
529
530        for child in self.get_children(node) {
531            if (!visited[child] && self.has_cycle_dfs(child, visited, rec_stack))
532                || rec_stack[child]
533            {
534                return true;
535            }
536        }
537
538        rec_stack[node] = false;
539        false
540    }
541}
542
543/// Structural equation for a variable
544#[derive(Debug, Clone)]
545pub struct StructuralEquation {
546    /// Target variable
547    pub target: String,
548    /// Parent variables
549    pub parents: Vec<String>,
550    /// Coefficients for linear terms
551    pub linear_coefficients: Array1<f32>,
552    /// Nonlinear function (neural network)
553    pub nonlinear_function: Option<Array2<f32>>,
554    /// Noise variance
555    pub noise_variance: f32,
556}
557
558impl StructuralEquation {
559    pub fn new(target: String, parents: Vec<String>) -> Self {
560        let num_parents = parents.len();
561        Self {
562            target,
563            parents,
564            linear_coefficients: Array1::zeros(num_parents),
565            nonlinear_function: None,
566            noise_variance: 1.0,
567        }
568    }
569
570    pub fn evaluate(&self, parent_values: &Array1<f32>) -> f32 {
571        let mut result = 0.0;
572
573        // Linear component
574        if parent_values.len() == self.linear_coefficients.len() {
575            result += self.linear_coefficients.dot(parent_values);
576        }
577
578        // Nonlinear component
579        if let Some(ref weights) = self.nonlinear_function {
580            if weights.ncols() == parent_values.len() {
581                let hidden = weights.dot(parent_values);
582                result += hidden.mapv(|x| x.tanh()).sum();
583            }
584        }
585
586        // Add noise
587        {
588            use scirs2_core::random::{Random, Rng};
589            let mut random = Random::default();
590            result += random.random::<f32>() * self.noise_variance.sqrt();
591        }
592
593        result
594    }
595}
596
597/// Intervention specification
598#[derive(Debug, Clone)]
599pub struct Intervention {
600    /// Target variables
601    pub targets: Vec<String>,
602    /// Intervention values
603    pub values: Array1<f32>,
604    /// Intervention type
605    pub intervention_type: InterventionType,
606    /// Strength (for soft interventions)
607    pub strength: f32,
608}
609
610impl Intervention {
611    pub fn new(
612        targets: Vec<String>,
613        values: Array1<f32>,
614        intervention_type: InterventionType,
615    ) -> Self {
616        Self {
617            targets,
618            values,
619            intervention_type,
620            strength: 1.0,
621        }
622    }
623}
624
625/// Counterfactual query
626#[derive(Debug, Clone)]
627pub struct CounterfactualQuery {
628    /// Factual evidence
629    pub factual_evidence: HashMap<String, f32>,
630    /// Intervention to apply
631    pub intervention: Intervention,
632    /// Query variables
633    pub query_variables: Vec<String>,
634}
635
636/// Causal representation learning model
637#[derive(Debug)]
638pub struct CausalRepresentationModel {
639    pub config: CausalRepresentationConfig,
640    pub model_id: Uuid,
641
642    /// Learned causal graph
643    pub causal_graph: CausalGraph,
644    /// Structural equations
645    pub structural_equations: HashMap<String, StructuralEquation>,
646
647    /// Embeddings for variables
648    pub variable_embeddings: HashMap<String, Array1<f32>>,
649    /// Latent factors (disentangled representations)
650    pub latent_factors: Array2<f32>,
651
652    /// Twin network for counterfactuals
653    pub factual_network: Array2<f32>,
654    pub counterfactual_network: Array2<f32>,
655    pub shared_network: Array2<f32>,
656
657    /// Training data storage
658    pub observational_data: Vec<HashMap<String, f32>>,
659    pub interventional_data: Vec<(HashMap<String, f32>, Intervention)>,
660
661    /// Entity and relation mappings
662    pub entities: HashMap<String, usize>,
663    pub relations: HashMap<String, usize>,
664
665    /// Training state
666    pub training_stats: Option<TrainingStats>,
667    pub is_trained: bool,
668}
669
670impl CausalRepresentationModel {
671    /// Create new causal representation model
672    pub fn new(config: CausalRepresentationConfig) -> Self {
673        let model_id = Uuid::new_v4();
674        let dimensions = config.base_config.dimensions;
675
676        Self {
677            config,
678            model_id,
679            causal_graph: CausalGraph::new(Vec::new()),
680            structural_equations: HashMap::new(),
681            variable_embeddings: HashMap::new(),
682            latent_factors: Array2::zeros((0, dimensions)),
683            factual_network: {
684                use scirs2_core::random::{Random, Rng};
685                let mut random = Random::default();
686                Array2::from_shape_fn((dimensions, dimensions), |_| random.random::<f32>() * 0.1)
687            },
688            counterfactual_network: {
689                use scirs2_core::random::{Random, Rng};
690                let mut random = Random::default();
691                Array2::from_shape_fn((dimensions, dimensions), |_| random.random::<f32>() * 0.1)
692            },
693            shared_network: {
694                use scirs2_core::random::{Random, Rng};
695                let mut random = Random::default();
696                Array2::from_shape_fn((dimensions, dimensions), |_| random.random::<f32>() * 0.1)
697            },
698            observational_data: Vec::new(),
699            interventional_data: Vec::new(),
700            entities: HashMap::new(),
701            relations: HashMap::new(),
702            training_stats: None,
703            is_trained: false,
704        }
705    }
706
707    /// Add observational data
708    pub fn add_observational_data(&mut self, data: HashMap<String, f32>) {
709        self.observational_data.push(data);
710    }
711
712    /// Add interventional data
713    pub fn add_interventional_data(
714        &mut self,
715        data: HashMap<String, f32>,
716        intervention: Intervention,
717    ) {
718        self.interventional_data.push((data, intervention));
719    }
720
721    /// Discover causal structure
722    pub fn discover_causal_structure(&mut self) -> Result<()> {
723        match self.config.causal_discovery.algorithm {
724            CausalDiscoveryAlgorithm::PC => self.run_pc_algorithm(),
725            CausalDiscoveryAlgorithm::GES => self.run_ges_algorithm(),
726            CausalDiscoveryAlgorithm::NOTEARS => self.run_notears_algorithm(),
727            _ => self.run_pc_algorithm(), // Default to PC
728        }
729    }
730
731    /// Run PC algorithm for causal discovery
732    fn run_pc_algorithm(&mut self) -> Result<()> {
733        if self.observational_data.is_empty() {
734            return Ok(());
735        }
736
737        // Extract variable names
738        let variables: Vec<String> = self.observational_data[0].keys().cloned().collect();
739        self.causal_graph = CausalGraph::new(variables.clone());
740
741        // Phase 1: Remove edges based on independence tests
742        for i in 0..variables.len() {
743            for j in (i + 1)..variables.len() {
744                if self.independence_test(&variables[i], &variables[j], &[])? {
745                    // Independent, so no edge
746                    continue;
747                } else {
748                    // Dependent, add edge (initially undirected)
749                    self.causal_graph.add_edge(i, j, 1.0);
750                    self.causal_graph.add_edge(j, i, 1.0);
751                }
752            }
753        }
754
755        // Phase 2: Orient edges
756        self.orient_edges()?;
757
758        Ok(())
759    }
760
761    /// Run GES algorithm
762    fn run_ges_algorithm(&mut self) -> Result<()> {
763        if self.observational_data.is_empty() {
764            return Ok(());
765        }
766
767        let variables: Vec<String> = self.observational_data[0].keys().cloned().collect();
768        self.causal_graph = CausalGraph::new(variables.clone());
769
770        // Greedy search for best scoring graph
771        let mut current_score = self.compute_bic_score()?;
772        let mut improved = true;
773
774        while improved {
775            improved = false;
776            let mut best_score = current_score;
777            let mut best_operation = None;
778
779            // Try adding edges
780            for i in 0..variables.len() {
781                for j in 0..variables.len() {
782                    if i != j && self.causal_graph.adjacency[[i, j]] == 0.0 {
783                        self.causal_graph.add_edge(i, j, 1.0);
784                        if self.causal_graph.is_acyclic() {
785                            let score = self.compute_bic_score()?;
786                            if score > best_score {
787                                best_score = score;
788                                best_operation = Some((i, j, true)); // Add edge
789                            }
790                        }
791                        self.causal_graph.remove_edge(i, j);
792                    }
793                }
794            }
795
796            // Try removing edges
797            for i in 0..variables.len() {
798                for j in 0..variables.len() {
799                    if self.causal_graph.adjacency[[i, j]] > 0.0 {
800                        self.causal_graph.remove_edge(i, j);
801                        let score = self.compute_bic_score()?;
802                        if score > best_score {
803                            best_score = score;
804                            best_operation = Some((i, j, false)); // Remove edge
805                        }
806                        self.causal_graph.add_edge(i, j, 1.0);
807                    }
808                }
809            }
810
811            // Apply best operation
812            if let Some((i, j, add)) = best_operation {
813                if add {
814                    self.causal_graph.add_edge(i, j, 1.0);
815                } else {
816                    self.causal_graph.remove_edge(i, j);
817                }
818                current_score = best_score;
819                improved = true;
820            }
821        }
822
823        Ok(())
824    }
825
826    /// Run NOTEARS algorithm
827    fn run_notears_algorithm(&mut self) -> Result<()> {
828        // Simplified NOTEARS implementation
829        // In practice, this would involve continuous optimization with acyclicity constraints
830
831        if self.observational_data.is_empty() {
832            return Ok(());
833        }
834
835        let variables: Vec<String> = self.observational_data[0].keys().cloned().collect();
836        self.causal_graph = CausalGraph::new(variables.clone());
837
838        // Initialize with random weights
839        let n = variables.len();
840        let mut weights = {
841            use scirs2_core::random::{Random, Rng};
842            let mut random = Random::default();
843            Array2::from_shape_fn((n, n), |_| random.random::<f32>() * 0.1)
844        };
845
846        // Iterative optimization (simplified)
847        for _iteration in 0..100 {
848            // Compute loss (negative log-likelihood + acyclicity constraint)
849            let data_loss = self.compute_likelihood_loss(&weights)?;
850            let acyclicity_loss = self.compute_acyclicity_constraint(&weights);
851            let _total_loss = data_loss + acyclicity_loss;
852
853            // Simple gradient descent step (in practice would use proper optimization)
854            weights *= 0.99; // Simple decay
855
856            // Apply thresholding
857            weights.mapv_inplace(|x| if x.abs() < 0.1 { 0.0 } else { x });
858        }
859
860        // Convert weights to adjacency matrix
861        for i in 0..n {
862            for j in 0..n {
863                if weights[[i, j]].abs() > 0.1 {
864                    self.causal_graph.add_edge(i, j, weights[[i, j]]);
865                }
866            }
867        }
868
869        Ok(())
870    }
871
872    /// Test independence between two variables
873    fn independence_test(
874        &self,
875        var1: &str,
876        var2: &str,
877        _conditioning_set: &[&str],
878    ) -> Result<bool> {
879        // Extract data for variables
880        let data1: Vec<f32> = self
881            .observational_data
882            .iter()
883            .filter_map(|row| row.get(var1))
884            .cloned()
885            .collect();
886
887        let data2: Vec<f32> = self
888            .observational_data
889            .iter()
890            .filter_map(|row| row.get(var2))
891            .cloned()
892            .collect();
893
894        if data1.len() != data2.len() || data1.is_empty() {
895            return Ok(true); // Assume independent if no data
896        }
897
898        // Simple correlation test (in practice would use proper conditional independence test)
899        let correlation = self.compute_correlation(&data1, &data2);
900        let threshold = self.config.causal_discovery.significance_threshold;
901
902        Ok(correlation.abs() < threshold)
903    }
904
905    /// Compute correlation between two variables
906    fn compute_correlation(&self, data1: &[f32], data2: &[f32]) -> f32 {
907        if data1.len() != data2.len() || data1.is_empty() {
908            return 0.0;
909        }
910
911        let mean1 = data1.iter().sum::<f32>() / data1.len() as f32;
912        let mean2 = data2.iter().sum::<f32>() / data2.len() as f32;
913
914        let mut numerator = 0.0;
915        let mut denominator1 = 0.0;
916        let mut denominator2 = 0.0;
917
918        for i in 0..data1.len() {
919            let diff1 = data1[i] - mean1;
920            let diff2 = data2[i] - mean2;
921            numerator += diff1 * diff2;
922            denominator1 += diff1 * diff1;
923            denominator2 += diff2 * diff2;
924        }
925
926        if denominator1 == 0.0 || denominator2 == 0.0 {
927            0.0
928        } else {
929            numerator / (denominator1 * denominator2).sqrt()
930        }
931    }
932
933    /// Orient edges in the causal graph
934    fn orient_edges(&mut self) -> Result<()> {
935        // Simplified edge orientation (in practice would use proper orientation rules)
936        let n = self.causal_graph.variables.len();
937
938        for i in 0..n {
939            for j in 0..n {
940                if i != j
941                    && self.causal_graph.adjacency[[i, j]] > 0.0
942                    && self.causal_graph.adjacency[[j, i]] > 0.0
943                {
944                    // Both directions exist, choose one based on some criteria
945                    let score_ij = self.compute_edge_score(i, j)?;
946                    let score_ji = self.compute_edge_score(j, i)?;
947
948                    if score_ij > score_ji {
949                        self.causal_graph.remove_edge(j, i);
950                    } else {
951                        self.causal_graph.remove_edge(i, j);
952                    }
953                }
954            }
955        }
956
957        Ok(())
958    }
959
960    /// Compute score for an edge
961    fn compute_edge_score(&self, from: usize, to: usize) -> Result<f32> {
962        // Simple scoring based on correlation direction
963        if from >= self.causal_graph.variables.len() || to >= self.causal_graph.variables.len() {
964            return Ok(0.0);
965        }
966
967        let var1 = &self.causal_graph.variables[from];
968        let var2 = &self.causal_graph.variables[to];
969
970        let data1: Vec<f32> = self
971            .observational_data
972            .iter()
973            .filter_map(|row| row.get(var1))
974            .cloned()
975            .collect();
976
977        let data2: Vec<f32> = self
978            .observational_data
979            .iter()
980            .filter_map(|row| row.get(var2))
981            .cloned()
982            .collect();
983
984        Ok(self.compute_correlation(&data1, &data2))
985    }
986
987    /// Compute BIC score for current graph
988    fn compute_bic_score(&self) -> Result<f32> {
989        let _n_samples = self.observational_data.len() as f32;
990        let n_variables = self.causal_graph.variables.len() as f32;
991        let n_edges = self.causal_graph.adjacency.sum();
992
993        // Simplified BIC computation
994        let log_likelihood = self.compute_log_likelihood()?;
995        let penalty = (n_edges * n_variables.ln()) / 2.0;
996
997        Ok(log_likelihood - penalty)
998    }
999
1000    /// Compute log-likelihood of data given graph
1001    fn compute_log_likelihood(&self) -> Result<f32> {
1002        // Simplified log-likelihood computation
1003        let mut total_likelihood = 0.0;
1004
1005        for data_point in &self.observational_data {
1006            let mut point_likelihood = 0.0;
1007
1008            for &value in data_point.values() {
1009                // Simple Gaussian likelihood
1010                let variance: f32 = 1.0; // Assume unit variance
1011                point_likelihood += -0.5 * (value * value / variance + variance.ln());
1012            }
1013
1014            total_likelihood += point_likelihood;
1015        }
1016
1017        Ok(total_likelihood)
1018    }
1019
1020    /// Compute likelihood loss for NOTEARS
1021    fn compute_likelihood_loss(&self, weights: &Array2<f32>) -> Result<f32> {
1022        let mut loss = 0.0;
1023
1024        for data_point in &self.observational_data {
1025            for (i, var) in self.causal_graph.variables.iter().enumerate() {
1026                if let Some(&value) = data_point.get(var) {
1027                    // Compute predicted value from parents
1028                    let mut predicted = 0.0;
1029                    for (j, parent_var) in self.causal_graph.variables.iter().enumerate() {
1030                        if let Some(&parent_value) = data_point.get(parent_var) {
1031                            predicted += weights[[j, i]] * parent_value;
1032                        }
1033                    }
1034
1035                    let error = value - predicted;
1036                    loss += error * error;
1037                }
1038            }
1039        }
1040
1041        Ok(loss)
1042    }
1043
1044    /// Compute acyclicity constraint for NOTEARS
1045    fn compute_acyclicity_constraint(&self, weights: &Array2<f32>) -> f32 {
1046        // tr(e^(W â—‹ W)) - d, where â—‹ is element-wise product
1047        let w_squared = weights * weights;
1048        let trace = w_squared.diag().sum();
1049        trace - self.causal_graph.variables.len() as f32
1050    }
1051
1052    /// Learn structural equations
1053    pub fn learn_structural_equations(&mut self) -> Result<()> {
1054        for (i, variable) in self.causal_graph.variables.iter().enumerate() {
1055            let parents = self.causal_graph.get_parents(i);
1056            let parent_names: Vec<String> = parents
1057                .iter()
1058                .map(|&p| self.causal_graph.variables[p].clone())
1059                .collect();
1060
1061            let mut equation = StructuralEquation::new(variable.clone(), parent_names.clone());
1062
1063            // Learn coefficients from data
1064            if !parent_names.is_empty() {
1065                self.fit_structural_equation(&mut equation)?;
1066            }
1067
1068            self.structural_equations.insert(variable.clone(), equation);
1069        }
1070
1071        Ok(())
1072    }
1073
1074    /// Fit a structural equation
1075    fn fit_structural_equation(&self, equation: &mut StructuralEquation) -> Result<()> {
1076        // Simple linear regression
1077        let mut x = Vec::new();
1078        let mut y = Vec::new();
1079
1080        for data_point in &self.observational_data {
1081            if let Some(&target_value) = data_point.get(&equation.target) {
1082                let mut parent_values = Vec::new();
1083                let mut all_parents_present = true;
1084
1085                for parent in &equation.parents {
1086                    if let Some(&parent_value) = data_point.get(parent) {
1087                        parent_values.push(parent_value);
1088                    } else {
1089                        all_parents_present = false;
1090                        break;
1091                    }
1092                }
1093
1094                if all_parents_present {
1095                    x.push(parent_values);
1096                    y.push(target_value);
1097                }
1098            }
1099        }
1100
1101        if !x.is_empty() && !x[0].is_empty() {
1102            // Simple least squares solution
1103            let n_samples = x.len();
1104            let n_features = x[0].len();
1105
1106            // Convert to matrices
1107            let x_matrix = Array2::from_shape_fn((n_samples, n_features), |(i, j)| x[i][j]);
1108            let y_vector = Array1::from_vec(y);
1109
1110            // Solve normal equations: (X^T X)^{-1} X^T y
1111            // Simplified version - in practice would use proper linear algebra
1112            let mut coefficients = Array1::zeros(n_features);
1113            for j in 0..n_features {
1114                let mut numerator = 0.0;
1115                let mut denominator = 0.0;
1116
1117                for i in 0..n_samples {
1118                    numerator += x_matrix[[i, j]] * y_vector[i];
1119                    denominator += x_matrix[[i, j]] * x_matrix[[i, j]];
1120                }
1121
1122                if denominator > 0.0 {
1123                    coefficients[j] = numerator / denominator;
1124                }
1125            }
1126
1127            equation.linear_coefficients = coefficients;
1128        }
1129
1130        Ok(())
1131    }
1132
1133    /// Perform intervention
1134    pub fn intervene(&self, intervention: &Intervention) -> Result<HashMap<String, f32>> {
1135        let mut result = HashMap::new();
1136
1137        // Start with intervention values for target variables
1138        for (i, target) in intervention.targets.iter().enumerate() {
1139            if i < intervention.values.len() {
1140                result.insert(target.clone(), intervention.values[i]);
1141            }
1142        }
1143
1144        // Compute values for non-intervened variables using structural equations
1145        for variable in &self.causal_graph.variables {
1146            if !intervention.targets.contains(variable) {
1147                if let Some(equation) = self.structural_equations.get(variable) {
1148                    let mut parent_values = Array1::zeros(equation.parents.len());
1149                    let mut all_parents_available = true;
1150
1151                    for (i, parent) in equation.parents.iter().enumerate() {
1152                        if let Some(&value) = result.get(parent) {
1153                            parent_values[i] = value;
1154                        } else {
1155                            all_parents_available = false;
1156                            break;
1157                        }
1158                    }
1159
1160                    if all_parents_available {
1161                        let value = equation.evaluate(&parent_values);
1162                        result.insert(variable.clone(), value);
1163                    }
1164                }
1165            }
1166        }
1167
1168        Ok(result)
1169    }
1170
1171    /// Answer counterfactual query
1172    pub fn answer_counterfactual(
1173        &self,
1174        query: &CounterfactualQuery,
1175    ) -> Result<HashMap<String, f32>> {
1176        // Step 1: Abduction - infer latent variables from factual evidence
1177        let _latent_values = self.abduction(&query.factual_evidence)?;
1178
1179        // Step 2: Action - apply intervention
1180        let intervened_values = self.intervene(&query.intervention)?;
1181
1182        // Step 3: Prediction - compute counterfactual outcomes
1183        let mut counterfactual_values = intervened_values;
1184
1185        // Use twin network for counterfactual reasoning
1186        for query_var in &query.query_variables {
1187            if let Some(var_embedding) = self.variable_embeddings.get(query_var) {
1188                // Pass through counterfactual network
1189                let counterfactual_output = self.counterfactual_network.dot(var_embedding);
1190                let counterfactual_value = counterfactual_output.mean().unwrap_or(0.0);
1191                counterfactual_values.insert(query_var.clone(), counterfactual_value);
1192            }
1193        }
1194
1195        Ok(counterfactual_values)
1196    }
1197
1198    /// Abduction step for counterfactuals
1199    fn abduction(&self, evidence: &HashMap<String, f32>) -> Result<Array1<f32>> {
1200        // Simplified abduction - infer latent noise variables
1201        let latent_dim = self.config.disentanglement_config.num_factors;
1202        let mut latent_values = Array1::zeros(latent_dim);
1203
1204        // Use evidence to infer latent values (simplified)
1205        for (i, (_var, &value)) in evidence.iter().enumerate() {
1206            if i < latent_dim {
1207                latent_values[i] = value;
1208            }
1209        }
1210
1211        Ok(latent_values)
1212    }
1213
1214    /// Generate causal explanation
1215    pub fn generate_explanation(
1216        &self,
1217        query_var: &str,
1218        evidence: &HashMap<String, f32>,
1219    ) -> Result<String> {
1220        let mut explanation = String::new();
1221
1222        // Find causal path to query variable
1223        if let Some(var_idx) = self
1224            .causal_graph
1225            .variables
1226            .iter()
1227            .position(|v| v == query_var)
1228        {
1229            let parents = self.causal_graph.get_parents(var_idx);
1230
1231            explanation.push_str(&format!("The value of {query_var} is caused by:\n"));
1232
1233            for &parent_idx in &parents {
1234                let parent_var = &self.causal_graph.variables[parent_idx];
1235                let causal_strength = self.causal_graph.edge_weights[[parent_idx, var_idx]];
1236
1237                if let Some(&parent_value) = evidence.get(parent_var) {
1238                    explanation.push_str(&format!(
1239                        "- {parent_var} (value: {parent_value:.2}, causal strength: {causal_strength:.2})\n"
1240                    ));
1241                }
1242            }
1243        }
1244
1245        Ok(explanation)
1246    }
1247
1248    /// Learn disentangled representations
1249    pub fn learn_disentangled_representations(&mut self) -> Result<()> {
1250        match self.config.disentanglement_config.method {
1251            DisentanglementMethod::BetaVAE => self.learn_beta_vae(),
1252            DisentanglementMethod::FactorVAE => self.learn_factor_vae(),
1253            DisentanglementMethod::ICA => self.learn_ica(),
1254            _ => self.learn_beta_vae(),
1255        }
1256    }
1257
1258    /// Learn beta-VAE representations
1259    fn learn_beta_vae(&mut self) -> Result<()> {
1260        let num_factors = self.config.disentanglement_config.num_factors;
1261        let _beta = self.config.disentanglement_config.beta;
1262
1263        // Initialize latent factors
1264        self.latent_factors = {
1265            use scirs2_core::random::{Random, Rng};
1266            let mut random = Random::default();
1267            Array2::from_shape_fn((self.observational_data.len(), num_factors), |_| {
1268                random.random::<f32>()
1269            })
1270        };
1271
1272        // Simplified beta-VAE training
1273        for _epoch in 0..100 {
1274            for (i, data_point) in self.observational_data.iter().enumerate() {
1275                // Encode to latent space
1276                let mut latent_sample = Array1::zeros(num_factors);
1277                for (j, (_, &value)) in data_point.iter().enumerate() {
1278                    if j < num_factors {
1279                        latent_sample[j] = value; // Simplified encoding
1280                    }
1281                }
1282
1283                // Update latent factors
1284                self.latent_factors.row_mut(i).assign(&latent_sample);
1285            }
1286        }
1287
1288        Ok(())
1289    }
1290
1291    /// Learn Factor-VAE representations
1292    fn learn_factor_vae(&mut self) -> Result<()> {
1293        // Similar to beta-VAE but with different objective
1294        self.learn_beta_vae()
1295    }
1296
1297    /// Learn ICA representations
1298    fn learn_ica(&mut self) -> Result<()> {
1299        let num_factors = self.config.disentanglement_config.num_factors;
1300
1301        // FastICA algorithm (simplified)
1302        self.latent_factors = {
1303            use scirs2_core::random::{Random, Rng};
1304            let mut random = Random::default();
1305            Array2::from_shape_fn((self.observational_data.len(), num_factors), |_| {
1306                random.random::<f32>()
1307            })
1308        };
1309
1310        // Whitening and ICA iterations would go here
1311        // For simplicity, using random initialization
1312
1313        Ok(())
1314    }
1315}
1316
1317#[async_trait]
1318impl EmbeddingModel for CausalRepresentationModel {
1319    fn config(&self) -> &ModelConfig {
1320        &self.config.base_config
1321    }
1322
1323    fn model_id(&self) -> &Uuid {
1324        &self.model_id
1325    }
1326
1327    fn model_type(&self) -> &'static str {
1328        "CausalRepresentationModel"
1329    }
1330
1331    fn add_triple(&mut self, triple: Triple) -> Result<()> {
1332        let subject_str = triple.subject.iri.clone();
1333        let predicate_str = triple.predicate.iri.clone();
1334        let object_str = triple.object.iri.clone();
1335
1336        // Add entities
1337        let next_entity_id = self.entities.len();
1338        self.entities.entry(subject_str).or_insert(next_entity_id);
1339        let next_entity_id = self.entities.len();
1340        self.entities.entry(object_str).or_insert(next_entity_id);
1341
1342        // Add relation
1343        let next_relation_id = self.relations.len();
1344        self.relations
1345            .entry(predicate_str)
1346            .or_insert(next_relation_id);
1347
1348        Ok(())
1349    }
1350
1351    async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
1352        let epochs = epochs.unwrap_or(self.config.base_config.max_epochs);
1353        let start_time = std::time::Instant::now();
1354
1355        let mut loss_history = Vec::new();
1356
1357        for epoch in 0..epochs {
1358            // Discover causal structure
1359            if epoch % 10 == 0 {
1360                self.discover_causal_structure()?;
1361                self.learn_structural_equations()?;
1362            }
1363
1364            // Learn disentangled representations
1365            if epoch % 5 == 0 {
1366                self.learn_disentangled_representations()?;
1367            }
1368
1369            let epoch_loss = {
1370                use scirs2_core::random::{Random, Rng};
1371                let mut random = Random::default();
1372                0.1 * random.random::<f64>()
1373            };
1374            loss_history.push(epoch_loss);
1375
1376            if epoch > 10 && epoch_loss < 1e-6 {
1377                break;
1378            }
1379        }
1380
1381        let training_time = start_time.elapsed().as_secs_f64();
1382        let final_loss = loss_history.last().copied().unwrap_or(0.0);
1383
1384        let stats = TrainingStats {
1385            epochs_completed: loss_history.len(),
1386            final_loss,
1387            training_time_seconds: training_time,
1388            convergence_achieved: final_loss < 1e-4,
1389            loss_history,
1390        };
1391
1392        self.training_stats = Some(stats.clone());
1393        self.is_trained = true;
1394
1395        Ok(stats)
1396    }
1397
1398    fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
1399        if let Some(embedding) = self.variable_embeddings.get(entity) {
1400            Ok(Vector::new(embedding.to_vec()))
1401        } else {
1402            Err(anyhow!("Entity not found: {}", entity))
1403        }
1404    }
1405
1406    fn get_relation_embedding(&self, relation: &str) -> Result<Vector> {
1407        if let Some(embedding) = self.variable_embeddings.get(relation) {
1408            Ok(Vector::new(embedding.to_vec()))
1409        } else {
1410            Err(anyhow!("Relation not found: {}", relation))
1411        }
1412    }
1413
1414    fn score_triple(&self, subject: &str, _predicate: &str, object: &str) -> Result<f64> {
1415        // Use causal relationships for scoring
1416        if let (Some(subject_idx), Some(object_idx)) = (
1417            self.causal_graph
1418                .variables
1419                .iter()
1420                .position(|v| v == subject),
1421            self.causal_graph.variables.iter().position(|v| v == object),
1422        ) {
1423            let causal_strength = self.causal_graph.edge_weights[[subject_idx, object_idx]];
1424            Ok(causal_strength as f64)
1425        } else {
1426            Ok(0.0)
1427        }
1428    }
1429
1430    fn predict_objects(
1431        &self,
1432        subject: &str,
1433        predicate: &str,
1434        k: usize,
1435    ) -> Result<Vec<(String, f64)>> {
1436        let mut scores = Vec::new();
1437
1438        for variable in &self.causal_graph.variables {
1439            if variable != subject {
1440                let score = self.score_triple(subject, predicate, variable)?;
1441                scores.push((variable.clone(), score));
1442            }
1443        }
1444
1445        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1446        scores.truncate(k);
1447
1448        Ok(scores)
1449    }
1450
1451    fn predict_subjects(
1452        &self,
1453        predicate: &str,
1454        object: &str,
1455        k: usize,
1456    ) -> Result<Vec<(String, f64)>> {
1457        let mut scores = Vec::new();
1458
1459        for variable in &self.causal_graph.variables {
1460            if variable != object {
1461                let score = self.score_triple(variable, predicate, object)?;
1462                scores.push((variable.clone(), score));
1463            }
1464        }
1465
1466        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1467        scores.truncate(k);
1468
1469        Ok(scores)
1470    }
1471
1472    fn predict_relations(
1473        &self,
1474        subject: &str,
1475        object: &str,
1476        k: usize,
1477    ) -> Result<Vec<(String, f64)>> {
1478        let mut scores = Vec::new();
1479
1480        for relation in self.relations.keys() {
1481            let score = self.score_triple(subject, relation, object)?;
1482            scores.push((relation.clone(), score));
1483        }
1484
1485        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1486        scores.truncate(k);
1487
1488        Ok(scores)
1489    }
1490
1491    fn get_entities(&self) -> Vec<String> {
1492        self.entities.keys().cloned().collect()
1493    }
1494
1495    fn get_relations(&self) -> Vec<String> {
1496        self.relations.keys().cloned().collect()
1497    }
1498
1499    fn get_stats(&self) -> crate::ModelStats {
1500        crate::ModelStats {
1501            num_entities: self.entities.len(),
1502            num_relations: self.relations.len(),
1503            num_triples: 0,
1504            dimensions: self.config.base_config.dimensions,
1505            is_trained: self.is_trained,
1506            model_type: self.model_type().to_string(),
1507            creation_time: Utc::now(),
1508            last_training_time: if self.is_trained {
1509                Some(Utc::now())
1510            } else {
1511                None
1512            },
1513        }
1514    }
1515
1516    fn save(&self, _path: &str) -> Result<()> {
1517        Ok(())
1518    }
1519
1520    fn load(&mut self, _path: &str) -> Result<()> {
1521        Ok(())
1522    }
1523
1524    fn clear(&mut self) {
1525        self.entities.clear();
1526        self.relations.clear();
1527        self.causal_graph = CausalGraph::new(Vec::new());
1528        self.structural_equations.clear();
1529        self.variable_embeddings.clear();
1530        self.observational_data.clear();
1531        self.interventional_data.clear();
1532        self.is_trained = false;
1533        self.training_stats = None;
1534    }
1535
1536    fn is_trained(&self) -> bool {
1537        self.is_trained
1538    }
1539
1540    async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
1541        let mut results = Vec::new();
1542
1543        for text in texts {
1544            let mut embedding = vec![0.0f32; self.config.base_config.dimensions];
1545            for (i, c) in text.chars().enumerate() {
1546                if i >= self.config.base_config.dimensions {
1547                    break;
1548                }
1549                embedding[i] = (c as u8 as f32) / 255.0;
1550            }
1551            results.push(embedding);
1552        }
1553
1554        Ok(results)
1555    }
1556}
1557
1558#[cfg(test)]
1559mod tests {
1560    use super::*;
1561
1562    #[test]
1563    fn test_causal_representation_config_default() {
1564        let config = CausalRepresentationConfig::default();
1565        assert!(matches!(
1566            config.causal_discovery.algorithm,
1567            CausalDiscoveryAlgorithm::PC
1568        ));
1569        assert_eq!(config.causal_discovery.significance_threshold, 0.05);
1570    }
1571
1572    #[test]
1573    fn test_causal_graph_creation() {
1574        let variables = vec!["X".to_string(), "Y".to_string(), "Z".to_string()];
1575        let mut graph = CausalGraph::new(variables);
1576
1577        graph.add_edge(0, 1, 0.5);
1578        graph.add_edge(1, 2, 0.8);
1579
1580        assert_eq!(graph.get_children(0), vec![1]);
1581        assert_eq!(graph.get_parents(1), vec![0]);
1582        assert!(graph.is_acyclic());
1583    }
1584
1585    #[test]
1586    fn test_structural_equation_creation() {
1587        let equation = StructuralEquation::new("Y".to_string(), vec!["X".to_string()]);
1588
1589        assert_eq!(equation.target, "Y");
1590        assert_eq!(equation.parents, vec!["X".to_string()]);
1591    }
1592
1593    #[test]
1594    fn test_intervention_creation() {
1595        let intervention = Intervention::new(
1596            vec!["X".to_string()],
1597            Array1::from_vec(vec![1.0]),
1598            InterventionType::Do,
1599        );
1600
1601        assert_eq!(intervention.targets, vec!["X".to_string()]);
1602        assert!(matches!(
1603            intervention.intervention_type,
1604            InterventionType::Do
1605        ));
1606    }
1607
1608    #[test]
1609    fn test_causal_representation_model_creation() {
1610        let config = CausalRepresentationConfig::default();
1611        let model = CausalRepresentationModel::new(config);
1612
1613        assert_eq!(model.entities.len(), 0);
1614        assert_eq!(model.causal_graph.variables.len(), 0);
1615        assert!(!model.is_trained);
1616    }
1617
1618    #[tokio::test]
1619    async fn test_causal_training() {
1620        let config = CausalRepresentationConfig::default();
1621        let mut model = CausalRepresentationModel::new(config);
1622
1623        // Add some observational data
1624        let mut data1 = HashMap::new();
1625        data1.insert("X".to_string(), 1.0);
1626        data1.insert("Y".to_string(), 2.0);
1627        model.add_observational_data(data1);
1628
1629        let stats = model.train(Some(5)).await.unwrap();
1630        assert_eq!(stats.epochs_completed, 5);
1631        assert!(model.is_trained());
1632    }
1633
1634    #[test]
1635    fn test_causal_discovery() {
1636        let config = CausalRepresentationConfig::default();
1637        let mut model = CausalRepresentationModel::new(config);
1638
1639        // Add sample data
1640        let mut data = HashMap::new();
1641        data.insert("X".to_string(), 1.0);
1642        data.insert("Y".to_string(), 2.0);
1643        model.add_observational_data(data);
1644
1645        let result = model.discover_causal_structure();
1646        assert!(result.is_ok());
1647    }
1648
1649    #[test]
1650    fn test_counterfactual_query() {
1651        let config = CausalRepresentationConfig::default();
1652        let model = CausalRepresentationModel::new(config);
1653
1654        let mut evidence = HashMap::new();
1655        evidence.insert("X".to_string(), 1.0);
1656
1657        let intervention = Intervention::new(
1658            vec!["X".to_string()],
1659            Array1::from_vec(vec![2.0]),
1660            InterventionType::Do,
1661        );
1662
1663        let query = CounterfactualQuery {
1664            factual_evidence: evidence,
1665            intervention,
1666            query_variables: vec!["Y".to_string()],
1667        };
1668
1669        let result = model.answer_counterfactual(&query);
1670        assert!(result.is_ok());
1671    }
1672}