oxirs_embed/
research_networks.rs

1//! Research Publication Networks - Academic Knowledge Graph Embeddings
2//!
3//! This module provides specialized embeddings and analysis for research publication networks,
4//! including author embeddings, citation analysis, collaboration networks, and impact prediction.
5
6use crate::Vector;
7use anyhow::Result;
8use chrono::{DateTime, Utc};
9use scirs2_core::random::{Random, Rng};
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12use std::sync::{Arc, RwLock};
13use tokio::task::JoinHandle;
14use tracing::{debug, info};
15
16/// Research publication network analyzer and embedding generator
17pub struct ResearchNetworkAnalyzer {
18    /// Author embeddings cache
19    author_embeddings: Arc<RwLock<HashMap<String, AuthorEmbedding>>>,
20    /// Publication embeddings cache
21    publication_embeddings: Arc<RwLock<HashMap<String, PublicationEmbedding>>>,
22    /// Citation network graph
23    citation_network: Arc<RwLock<CitationNetwork>>,
24    /// Collaboration network
25    collaboration_network: Arc<RwLock<CollaborationNetwork>>,
26    /// Topic models
27    topic_models: Arc<RwLock<HashMap<String, TopicModel>>>,
28    /// Configuration
29    config: ResearchNetworkConfig,
30    /// Background analysis tasks
31    analysis_tasks: Vec<JoinHandle<()>>,
32}
33
34/// Configuration for research network analysis
35#[derive(Debug, Clone)]
36pub struct ResearchNetworkConfig {
37    /// Maximum number of authors to track
38    pub max_authors: usize,
39    /// Maximum number of publications to track
40    pub max_publications: usize,
41    /// Citation network update interval (hours)
42    pub citation_update_interval_hours: u64,
43    /// Collaboration analysis interval (hours)
44    pub collaboration_analysis_interval_hours: u64,
45    /// Impact prediction model refresh interval (hours)
46    pub impact_prediction_refresh_hours: u64,
47    /// Enable real-time citation tracking
48    pub enable_real_time_citation_tracking: bool,
49    /// Minimum citation count for impact analysis
50    pub min_citation_threshold: u32,
51    /// Topic modeling configuration
52    pub topic_config: TopicModelingConfig,
53    /// Embedding dimension
54    pub embedding_dimension: usize,
55}
56
57impl Default for ResearchNetworkConfig {
58    fn default() -> Self {
59        Self {
60            max_authors: 100_000,
61            max_publications: 1_000_000,
62            citation_update_interval_hours: 24,
63            collaboration_analysis_interval_hours: 12,
64            impact_prediction_refresh_hours: 48,
65            enable_real_time_citation_tracking: true,
66            min_citation_threshold: 5,
67            topic_config: TopicModelingConfig::default(),
68            embedding_dimension: 512,
69        }
70    }
71}
72
73/// Topic modeling configuration
74#[derive(Debug, Clone)]
75pub struct TopicModelingConfig {
76    /// Number of topics to extract
77    pub num_topics: usize,
78    /// Minimum word frequency
79    pub min_word_freq: u32,
80    /// Maximum document frequency ratio
81    pub max_doc_freq_ratio: f64,
82    /// LDA iterations
83    pub lda_iterations: u32,
84    /// Topic coherence threshold
85    pub coherence_threshold: f64,
86}
87
88impl Default for TopicModelingConfig {
89    fn default() -> Self {
90        Self {
91            num_topics: 50,
92            min_word_freq: 5,
93            max_doc_freq_ratio: 0.8,
94            lda_iterations: 1000,
95            coherence_threshold: 0.4,
96        }
97    }
98}
99
100/// Author information and embeddings
101#[derive(Debug, Clone, Serialize, Deserialize)]
102pub struct AuthorEmbedding {
103    /// Author unique identifier
104    pub author_id: String,
105    /// Author name
106    pub name: String,
107    /// Author affiliations
108    pub affiliations: Vec<String>,
109    /// Research interests/topics
110    pub research_topics: Vec<String>,
111    /// H-index
112    pub h_index: f64,
113    /// Total citation count
114    pub citation_count: u64,
115    /// Publication count
116    pub publication_count: u64,
117    /// Author embedding vector
118    pub embedding: Vector,
119    /// Collaboration score
120    pub collaboration_score: f64,
121    /// Impact score
122    pub impact_score: f64,
123    /// Career stage
124    pub career_stage: CareerStage,
125    /// Last updated
126    pub last_updated: DateTime<Utc>,
127}
128
129/// Publication information and embeddings
130#[derive(Debug, Clone, Serialize, Deserialize)]
131pub struct PublicationEmbedding {
132    /// Publication unique identifier
133    pub publication_id: String,
134    /// Title
135    pub title: String,
136    /// Abstract
137    pub abstract_text: String,
138    /// Authors
139    pub authors: Vec<String>,
140    /// Venue (journal/conference)
141    pub venue: String,
142    /// Publication year
143    pub year: u32,
144    /// Citation count
145    pub citation_count: u64,
146    /// Topic distribution
147    pub topic_distribution: Vec<f64>,
148    /// Publication embedding vector
149    pub embedding: Vector,
150    /// Impact prediction score
151    pub predicted_impact: f64,
152    /// Publication type
153    pub publication_type: PublicationType,
154    /// DOI or other identifier
155    pub doi: Option<String>,
156    /// Last updated
157    pub last_updated: DateTime<Utc>,
158}
159
160/// Career stage classification
161#[derive(Debug, Clone, Serialize, Deserialize)]
162pub enum CareerStage {
163    EarlyCareer,
164    MidCareer,
165    SeniorCareer,
166    Emeritus,
167    Unknown,
168}
169
170/// Publication type classification
171#[derive(Debug, Clone, Serialize, Deserialize)]
172pub enum PublicationType {
173    JournalArticle,
174    ConferencePaper,
175    BookChapter,
176    Book,
177    Preprint,
178    Thesis,
179    TechnicalReport,
180    Other,
181}
182
183/// Citation network representation
184#[derive(Debug, Clone)]
185pub struct CitationNetwork {
186    /// Citation edges: (citing_paper, cited_paper, citation_context)
187    pub citations: HashMap<String, Vec<Citation>>,
188    /// Co-citation relationships
189    pub co_citations: HashMap<String, Vec<CoCitation>>,
190    /// Bibliographic coupling
191    pub bibliographic_coupling: HashMap<String, Vec<BibliographicCoupling>>,
192    /// Citation patterns over time
193    pub temporal_patterns: HashMap<String, Vec<TemporalCitation>>,
194}
195
196/// Citation information
197#[derive(Debug, Clone, Serialize, Deserialize)]
198pub struct Citation {
199    /// Citing paper ID
200    pub citing_paper: String,
201    /// Cited paper ID
202    pub cited_paper: String,
203    /// Citation context/sentence
204    pub context: String,
205    /// Citation type (supportive, contrasting, neutral)
206    pub citation_type: CitationType,
207    /// Position in the paper (intro, methods, results, discussion)
208    pub section: PaperSection,
209    /// Timestamp of citation
210    pub timestamp: DateTime<Utc>,
211}
212
213/// Citation type classification
214#[derive(Debug, Clone, Serialize, Deserialize)]
215pub enum CitationType {
216    Supportive,
217    Contrasting,
218    Neutral,
219    Background,
220    Methodological,
221}
222
223/// Paper section where citation occurs
224#[derive(Debug, Clone, Serialize, Deserialize)]
225pub enum PaperSection {
226    Introduction,
227    RelatedWork,
228    Methods,
229    Results,
230    Discussion,
231    Conclusion,
232    Other,
233}
234
235/// Co-citation relationship
236#[derive(Debug, Clone, Serialize, Deserialize)]
237pub struct CoCitation {
238    /// First paper
239    pub paper1: String,
240    /// Second paper
241    pub paper2: String,
242    /// Number of papers citing both
243    pub co_citation_count: u32,
244    /// Similarity score
245    pub similarity_score: f64,
246}
247
248/// Bibliographic coupling
249#[derive(Debug, Clone, Serialize, Deserialize)]
250pub struct BibliographicCoupling {
251    /// First paper
252    pub paper1: String,
253    /// Second paper
254    pub paper2: String,
255    /// Number of shared references
256    pub shared_references: u32,
257    /// Coupling strength
258    pub coupling_strength: f64,
259}
260
261/// Temporal citation pattern
262#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct TemporalCitation {
264    /// Paper ID
265    pub paper_id: String,
266    /// Citation timestamp
267    pub timestamp: DateTime<Utc>,
268    /// Citations at this time
269    pub citation_count: u64,
270    /// Velocity (citations per time unit)
271    pub citation_velocity: f64,
272}
273
274/// Collaboration network
275#[derive(Debug, Clone)]
276pub struct CollaborationNetwork {
277    /// Author collaborations: (author1, author2, collaboration_strength)
278    pub collaborations: HashMap<String, Vec<Collaboration>>,
279    /// Research groups/communities
280    pub research_communities: Vec<ResearchCommunity>,
281    /// Collaboration patterns over time
282    pub temporal_collaborations: HashMap<String, Vec<TemporalCollaboration>>,
283}
284
285/// Collaboration between authors
286#[derive(Debug, Clone, Serialize, Deserialize)]
287pub struct Collaboration {
288    /// First author
289    pub author1: String,
290    /// Second author
291    pub author2: String,
292    /// Number of joint publications
293    pub joint_publications: u32,
294    /// Collaboration strength score
295    pub strength: f64,
296    /// Shared research topics
297    pub shared_topics: Vec<String>,
298    /// First collaboration date
299    pub first_collaboration: DateTime<Utc>,
300    /// Last collaboration date
301    pub last_collaboration: DateTime<Utc>,
302}
303
304/// Research community/cluster
305#[derive(Debug, Clone, Serialize, Deserialize)]
306pub struct ResearchCommunity {
307    /// Community ID
308    pub community_id: String,
309    /// Community members (author IDs)
310    pub members: Vec<String>,
311    /// Community topics
312    pub topics: Vec<String>,
313    /// Central/influential members
314    pub central_members: Vec<String>,
315    /// Community coherence score
316    pub coherence_score: f64,
317    /// Community size
318    pub size: usize,
319}
320
321/// Temporal collaboration pattern
322#[derive(Debug, Clone, Serialize, Deserialize)]
323pub struct TemporalCollaboration {
324    /// Author ID
325    pub author_id: String,
326    /// Time period
327    pub timestamp: DateTime<Utc>,
328    /// Active collaborations in this period
329    pub active_collaborations: u32,
330    /// New collaborations formed
331    pub new_collaborations: u32,
332}
333
334/// Topic model for research areas
335#[derive(Debug, Clone)]
336pub struct TopicModel {
337    /// Topic ID
338    pub topic_id: String,
339    /// Topic name/label
340    pub topic_name: String,
341    /// Topic words with probabilities
342    pub topic_words: Vec<(String, f64)>,
343    /// Document-topic distribution
344    pub document_topics: HashMap<String, f64>,
345    /// Topic coherence score
346    pub coherence_score: f64,
347    /// Topic trend over time
348    pub temporal_trend: Vec<TopicTrend>,
349}
350
351/// Topic trend over time
352#[derive(Debug, Clone, Serialize, Deserialize)]
353pub struct TopicTrend {
354    /// Time period
355    pub timestamp: DateTime<Utc>,
356    /// Topic popularity/frequency
357    pub popularity: f64,
358    /// Number of publications in this topic
359    pub publication_count: u64,
360    /// Topic growth rate
361    pub growth_rate: f64,
362}
363
364/// Impact prediction model
365#[derive(Debug, Clone)]
366pub struct ImpactPredictor {
367    /// Feature weights for impact prediction
368    pub feature_weights: HashMap<String, f64>,
369    /// Model performance metrics
370    pub performance_metrics: PredictionMetrics,
371    /// Last model update
372    pub last_update: DateTime<Utc>,
373}
374
375/// Prediction performance metrics
376#[derive(Debug, Clone, Serialize, Deserialize)]
377pub struct PredictionMetrics {
378    /// Mean absolute error
379    pub mae: f64,
380    /// Root mean square error
381    pub rmse: f64,
382    /// R-squared score
383    pub r2_score: f64,
384    /// Precision at different thresholds
385    pub precision_at_k: HashMap<u32, f64>,
386}
387
388impl ResearchNetworkAnalyzer {
389    /// Create new research network analyzer
390    pub fn new(config: ResearchNetworkConfig) -> Self {
391        Self {
392            author_embeddings: Arc::new(RwLock::new(HashMap::new())),
393            publication_embeddings: Arc::new(RwLock::new(HashMap::new())),
394            citation_network: Arc::new(RwLock::new(CitationNetwork {
395                citations: HashMap::new(),
396                co_citations: HashMap::new(),
397                bibliographic_coupling: HashMap::new(),
398                temporal_patterns: HashMap::new(),
399            })),
400            collaboration_network: Arc::new(RwLock::new(CollaborationNetwork {
401                collaborations: HashMap::new(),
402                research_communities: Vec::new(),
403                temporal_collaborations: HashMap::new(),
404            })),
405            topic_models: Arc::new(RwLock::new(HashMap::new())),
406            config,
407            analysis_tasks: Vec::new(),
408        }
409    }
410
411    /// Start background analysis tasks
412    pub async fn start(&mut self) -> Result<()> {
413        info!("Starting research network analysis system");
414
415        // Start citation network analysis task
416        let citation_task = self.start_citation_analysis().await;
417        self.analysis_tasks.push(citation_task);
418
419        // Start collaboration analysis task
420        let collaboration_task = self.start_collaboration_analysis().await;
421        self.analysis_tasks.push(collaboration_task);
422
423        // Start impact prediction task
424        let impact_task = self.start_impact_prediction().await;
425        self.analysis_tasks.push(impact_task);
426
427        // Start topic modeling task
428        let topic_task = self.start_topic_modeling().await;
429        self.analysis_tasks.push(topic_task);
430
431        info!("Research network analysis system started successfully");
432        Ok(())
433    }
434
435    /// Stop analysis tasks
436    pub async fn stop(&mut self) {
437        info!("Stopping research network analysis system");
438
439        for task in self.analysis_tasks.drain(..) {
440            task.abort();
441        }
442
443        info!("Research network analysis system stopped");
444    }
445
446    /// Generate author embedding based on publications and collaborations
447    pub async fn generate_author_embedding(&self, author_id: &str) -> Result<AuthorEmbedding> {
448        // Check if already computed
449        {
450            let embeddings = self.author_embeddings.read().unwrap();
451            if let Some(existing) = embeddings.get(author_id) {
452                return Ok(existing.clone());
453            }
454        }
455
456        info!("Generating author embedding for: {}", author_id);
457
458        // Collect author's publications
459        let author_publications = self.get_author_publications(author_id).await?;
460
461        // Get collaboration information
462        let collaborations = self.get_author_collaborations(author_id).await?;
463
464        // Compute research topics
465        let research_topics = self
466            .extract_author_topics(author_id, &author_publications)
467            .await?;
468
469        // Calculate metrics
470        let h_index = self.calculate_h_index(&author_publications).await?;
471        let citation_count = author_publications.iter().map(|p| p.citation_count).sum();
472        let collaboration_score = self.calculate_collaboration_score(&collaborations).await?;
473        let impact_score = self.calculate_author_impact_score(author_id).await?;
474
475        // Generate embedding vector
476        let embedding = self
477            .compute_author_embedding_vector(
478                &author_publications,
479                &collaborations,
480                &research_topics,
481            )
482            .await?;
483
484        // Determine career stage
485        let career_stage = self
486            .classify_career_stage(citation_count, author_publications.len() as u64, h_index)
487            .await?;
488
489        let author_embedding = AuthorEmbedding {
490            author_id: author_id.to_string(),
491            name: format!("Author_{author_id}"), // Placeholder - would get from database
492            affiliations: vec!["Unknown".to_string()], // Placeholder
493            research_topics,
494            h_index,
495            citation_count,
496            publication_count: author_publications.len() as u64,
497            embedding,
498            collaboration_score,
499            impact_score,
500            career_stage,
501            last_updated: Utc::now(),
502        };
503
504        // Cache the result
505        {
506            let mut embeddings = self.author_embeddings.write().unwrap();
507            embeddings.insert(author_id.to_string(), author_embedding.clone());
508        }
509
510        info!(
511            "Generated author embedding for {} with h-index: {:.2}",
512            author_id, h_index
513        );
514        Ok(author_embedding)
515    }
516
517    /// Generate publication embedding based on content and citations
518    pub async fn generate_publication_embedding(
519        &self,
520        publication_id: &str,
521    ) -> Result<PublicationEmbedding> {
522        // Check if already computed
523        {
524            let embeddings = self.publication_embeddings.read().unwrap();
525            if let Some(existing) = embeddings.get(publication_id) {
526                return Ok(existing.clone());
527            }
528        }
529
530        info!("Generating publication embedding for: {}", publication_id);
531
532        // Get publication metadata (would come from database)
533        let title = format!("Publication_{publication_id}");
534        let abstract_text = format!("Abstract for publication {publication_id}");
535        let authors = vec![format!("author_{}", publication_id)];
536        let venue = "Unknown Venue".to_string();
537        let year = 2023; // Placeholder
538        let doi = Some(format!("10.1000/{publication_id}"));
539
540        // Get citation information
541        let citation_count = self.get_publication_citation_count(publication_id).await?;
542
543        // Extract topics
544        let topic_distribution = self
545            .extract_publication_topics(publication_id, &abstract_text)
546            .await?;
547
548        // Generate content embedding
549        let embedding = self
550            .compute_publication_embedding_vector(&title, &abstract_text, &topic_distribution)
551            .await?;
552
553        // Predict impact
554        let predicted_impact = self
555            .predict_publication_impact(citation_count, &topic_distribution, &embedding)
556            .await?;
557
558        let publication_embedding = PublicationEmbedding {
559            publication_id: publication_id.to_string(),
560            title,
561            abstract_text,
562            authors,
563            venue,
564            year,
565            citation_count,
566            topic_distribution,
567            embedding,
568            predicted_impact,
569            publication_type: PublicationType::JournalArticle, // Default
570            doi,
571            last_updated: Utc::now(),
572        };
573
574        // Cache the result
575        {
576            let mut embeddings = self.publication_embeddings.write().unwrap();
577            embeddings.insert(publication_id.to_string(), publication_embedding.clone());
578        }
579
580        info!(
581            "Generated publication embedding for {} with predicted impact: {:.3}",
582            publication_id, predicted_impact
583        );
584        Ok(publication_embedding)
585    }
586
587    /// Analyze citation patterns and relationships
588    pub async fn analyze_citation_patterns(&self, publication_id: &str) -> Result<Vec<Citation>> {
589        let network = self.citation_network.read().unwrap();
590
591        if let Some(citations) = network.citations.get(publication_id) {
592            Ok(citations.clone())
593        } else {
594            Ok(Vec::new())
595        }
596    }
597
598    /// Find similar authors based on research interests and collaboration patterns
599    pub async fn find_similar_authors(
600        &self,
601        author_id: &str,
602        k: usize,
603    ) -> Result<Vec<(String, f64)>> {
604        let target_embedding = self.generate_author_embedding(author_id).await?;
605        let embeddings_data: Vec<(String, AuthorEmbedding)> = {
606            let embeddings = self.author_embeddings.read().unwrap();
607            embeddings
608                .iter()
609                .filter(|(other_id, _)| *other_id != author_id)
610                .map(|(id, emb)| (id.clone(), emb.clone()))
611                .collect()
612        };
613
614        let mut similarities = Vec::new();
615
616        for (other_id, other_embedding) in embeddings_data {
617            let similarity = self
618                .calculate_author_similarity(&target_embedding, &other_embedding)
619                .await?;
620            similarities.push((other_id, similarity));
621        }
622
623        // Sort by similarity and take top k
624        similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
625        similarities.truncate(k);
626
627        Ok(similarities)
628    }
629
630    /// Predict research impact for a publication
631    pub async fn predict_research_impact(&self, publication_id: &str) -> Result<f64> {
632        let publication = self.generate_publication_embedding(publication_id).await?;
633        Ok(publication.predicted_impact)
634    }
635
636    /// Analyze research trends over time
637    pub async fn analyze_research_trends(
638        &self,
639        topic: &str,
640        years: u32,
641    ) -> Result<Vec<TopicTrend>> {
642        let topics = self.topic_models.read().unwrap();
643
644        if let Some(topic_model) = topics.get(topic) {
645            // Filter trends for the specified time period
646            let cutoff_date = Utc::now() - chrono::Duration::days((years * 365) as i64);
647            let recent_trends: Vec<TopicTrend> = topic_model
648                .temporal_trend
649                .iter()
650                .filter(|trend| trend.timestamp > cutoff_date)
651                .cloned()
652                .collect();
653
654            Ok(recent_trends)
655        } else {
656            Ok(Vec::new())
657        }
658    }
659
660    /// Get research communities/clusters
661    pub async fn get_research_communities(&self) -> Result<Vec<ResearchCommunity>> {
662        let network = self.collaboration_network.read().unwrap();
663        Ok(network.research_communities.clone())
664    }
665
666    /// Update citation network with new citation
667    pub async fn add_citation(&self, citation: Citation) -> Result<()> {
668        let mut network = self.citation_network.write().unwrap();
669
670        network
671            .citations
672            .entry(citation.citing_paper.clone())
673            .or_default()
674            .push(citation);
675
676        info!("Added new citation to network");
677        Ok(())
678    }
679
680    // ===== PRIVATE HELPER METHODS =====
681
682    async fn get_author_publications(&self, _author_id: &str) -> Result<Vec<PublicationEmbedding>> {
683        // Placeholder - would query database
684        Ok(Vec::new())
685    }
686
687    async fn get_author_collaborations(&self, _author_id: &str) -> Result<Vec<Collaboration>> {
688        // Placeholder - would query collaboration network
689        Ok(Vec::new())
690    }
691
692    async fn extract_author_topics(
693        &self,
694        _author_id: &str,
695        _publications: &[PublicationEmbedding],
696    ) -> Result<Vec<String>> {
697        // Placeholder - would perform topic extraction
698        Ok(vec![
699            "machine_learning".to_string(),
700            "natural_language_processing".to_string(),
701        ])
702    }
703
704    async fn calculate_h_index(&self, publications: &[PublicationEmbedding]) -> Result<f64> {
705        let mut citation_counts: Vec<u64> = publications.iter().map(|p| p.citation_count).collect();
706
707        citation_counts.sort_by(|a, b| b.cmp(a));
708
709        let mut h_index = 0;
710        for (i, &citations) in citation_counts.iter().enumerate() {
711            if citations >= (i + 1) as u64 {
712                h_index = i + 1;
713            } else {
714                break;
715            }
716        }
717
718        Ok(h_index as f64)
719    }
720
721    async fn calculate_collaboration_score(&self, collaborations: &[Collaboration]) -> Result<f64> {
722        if collaborations.is_empty() {
723            return Ok(0.0);
724        }
725
726        let total_strength: f64 = collaborations.iter().map(|c| c.strength).sum();
727        Ok(total_strength / collaborations.len() as f64)
728    }
729
730    async fn calculate_author_impact_score(&self, _author_id: &str) -> Result<f64> {
731        // Placeholder - would calculate based on citations, h-index, collaboration network position
732        Ok(0.75)
733    }
734
735    async fn compute_author_embedding_vector(
736        &self,
737        _publications: &[PublicationEmbedding],
738        _collaborations: &[Collaboration],
739        _topics: &[String],
740    ) -> Result<Vector> {
741        // Placeholder - would compute actual embedding
742        let values = (0..self.config.embedding_dimension)
743            .map(|_| {
744                let mut random = Random::default();
745                random.random::<f32>()
746            })
747            .collect();
748        Ok(Vector::new(values))
749    }
750
751    async fn classify_career_stage(
752        &self,
753        citation_count: u64,
754        publication_count: u64,
755        h_index: f64,
756    ) -> Result<CareerStage> {
757        if citation_count < 100 && publication_count < 10 && h_index < 5.0 {
758            Ok(CareerStage::EarlyCareer)
759        } else if citation_count < 1000 && publication_count < 50 && h_index < 20.0 {
760            Ok(CareerStage::MidCareer)
761        } else if citation_count >= 1000 || publication_count >= 50 || h_index >= 20.0 {
762            Ok(CareerStage::SeniorCareer)
763        } else {
764            Ok(CareerStage::Unknown)
765        }
766    }
767
768    async fn get_publication_citation_count(&self, _publication_id: &str) -> Result<u64> {
769        // Placeholder - would query citation database
770        let mut random = Random::default();
771        Ok(random.random::<u64>() % 100)
772    }
773
774    async fn extract_publication_topics(
775        &self,
776        _publication_id: &str,
777        _abstract_text: &str,
778    ) -> Result<Vec<f64>> {
779        // Placeholder - would perform topic modeling
780        let num_topics = self.config.topic_config.num_topics;
781        let mut distribution = vec![0.0; num_topics];
782
783        // Generate random distribution that sums to 1.0
784        let total: f64 = (0..num_topics)
785            .map(|_| {
786                let mut random = Random::default();
787                random.random::<f64>()
788            })
789            .sum();
790        for item in distribution.iter_mut().take(num_topics) {
791            let mut random = Random::default();
792            *item = random.random::<f64>() / total;
793        }
794
795        Ok(distribution)
796    }
797
798    async fn compute_publication_embedding_vector(
799        &self,
800        _title: &str,
801        _abstract_text: &str,
802        _topic_distribution: &[f64],
803    ) -> Result<Vector> {
804        // Placeholder - would compute actual embedding
805        let values = (0..self.config.embedding_dimension)
806            .map(|_| {
807                let mut random = Random::default();
808                random.random::<f32>()
809            })
810            .collect();
811        Ok(Vector::new(values))
812    }
813
814    async fn predict_publication_impact(
815        &self,
816        citation_count: u64,
817        _topic_distribution: &[f64],
818        _embedding: &Vector,
819    ) -> Result<f64> {
820        // Placeholder - would use trained impact prediction model
821        let base_impact = (citation_count as f64).ln() / 10.0;
822        Ok(base_impact.clamp(0.0, 1.0))
823    }
824
825    async fn calculate_author_similarity(
826        &self,
827        author1: &AuthorEmbedding,
828        author2: &AuthorEmbedding,
829    ) -> Result<f64> {
830        // Calculate cosine similarity between embeddings
831        let embedding1 = &author1.embedding.values;
832        let embedding2 = &author2.embedding.values;
833
834        let dot_product: f32 = embedding1
835            .iter()
836            .zip(embedding2.iter())
837            .map(|(a, b)| a * b)
838            .sum();
839        let norm1: f32 = embedding1.iter().map(|x| x * x).sum::<f32>().sqrt();
840        let norm2: f32 = embedding2.iter().map(|x| x * x).sum::<f32>().sqrt();
841
842        let cosine_similarity = if norm1 > 0.0 && norm2 > 0.0 {
843            dot_product / (norm1 * norm2)
844        } else {
845            0.0
846        };
847
848        // Combine with topic similarity
849        let topic_similarity = self
850            .calculate_topic_similarity(&author1.research_topics, &author2.research_topics)
851            .await?;
852
853        // Weighted combination
854        let final_similarity = 0.7 * cosine_similarity as f64 + 0.3 * topic_similarity;
855
856        Ok(final_similarity)
857    }
858
859    async fn calculate_topic_similarity(
860        &self,
861        topics1: &[String],
862        topics2: &[String],
863    ) -> Result<f64> {
864        let set1: HashSet<_> = topics1.iter().collect();
865        let set2: HashSet<_> = topics2.iter().collect();
866
867        let intersection = set1.intersection(&set2).count();
868        let union = set1.union(&set2).count();
869
870        if union > 0 {
871            Ok(intersection as f64 / union as f64)
872        } else {
873            Ok(0.0)
874        }
875    }
876
877    // ===== BACKGROUND ANALYSIS TASKS =====
878
879    async fn start_citation_analysis(&self) -> JoinHandle<()> {
880        let _citation_network = Arc::clone(&self.citation_network);
881        let interval =
882            std::time::Duration::from_secs(self.config.citation_update_interval_hours * 3600);
883
884        tokio::spawn(async move {
885            let mut interval_timer = tokio::time::interval(interval);
886
887            loop {
888                interval_timer.tick().await;
889
890                // Perform citation network analysis
891                info!("Performing citation network analysis");
892
893                // Placeholder for actual analysis
894                // Would analyze citation patterns, identify influential papers, etc.
895
896                debug!("Citation network analysis completed");
897            }
898        })
899    }
900
901    async fn start_collaboration_analysis(&self) -> JoinHandle<()> {
902        let _collaboration_network = Arc::clone(&self.collaboration_network);
903        let interval = std::time::Duration::from_secs(
904            self.config.collaboration_analysis_interval_hours * 3600,
905        );
906
907        tokio::spawn(async move {
908            let mut interval_timer = tokio::time::interval(interval);
909
910            loop {
911                interval_timer.tick().await;
912
913                // Perform collaboration network analysis
914                info!("Performing collaboration network analysis");
915
916                // Placeholder for actual analysis
917                // Would detect research communities, analyze collaboration patterns, etc.
918
919                debug!("Collaboration network analysis completed");
920            }
921        })
922    }
923
924    async fn start_impact_prediction(&self) -> JoinHandle<()> {
925        let interval =
926            std::time::Duration::from_secs(self.config.impact_prediction_refresh_hours * 3600);
927
928        tokio::spawn(async move {
929            let mut interval_timer = tokio::time::interval(interval);
930
931            loop {
932                interval_timer.tick().await;
933
934                // Refresh impact prediction models
935                info!("Refreshing impact prediction models");
936
937                // Placeholder for actual model training/updating
938                // Would retrain models based on recent citation data
939
940                debug!("Impact prediction models refreshed");
941            }
942        })
943    }
944
945    async fn start_topic_modeling(&self) -> JoinHandle<()> {
946        let topic_models = Arc::clone(&self.topic_models);
947        let _config = self.config.clone();
948        let interval = std::time::Duration::from_secs(24 * 3600); // Daily
949
950        tokio::spawn(async move {
951            let mut interval_timer = tokio::time::interval(interval);
952
953            loop {
954                interval_timer.tick().await;
955
956                // Update topic models
957                info!("Updating topic models");
958
959                // Create sample topic model
960                let topic_model = TopicModel {
961                    topic_id: "machine_learning".to_string(),
962                    topic_name: "Machine Learning".to_string(),
963                    topic_words: vec![
964                        ("neural".to_string(), 0.1),
965                        ("network".to_string(), 0.09),
966                        ("learning".to_string(), 0.08),
967                        ("algorithm".to_string(), 0.07),
968                        ("model".to_string(), 0.06),
969                    ],
970                    document_topics: HashMap::new(),
971                    coherence_score: 0.75,
972                    temporal_trend: vec![
973                        TopicTrend {
974                            timestamp: Utc::now() - chrono::Duration::days(365),
975                            popularity: 0.6,
976                            publication_count: 1000,
977                            growth_rate: 0.15,
978                        },
979                        TopicTrend {
980                            timestamp: Utc::now(),
981                            popularity: 0.8,
982                            publication_count: 1500,
983                            growth_rate: 0.25,
984                        },
985                    ],
986                };
987
988                {
989                    let mut models = topic_models.write().unwrap();
990                    models.insert("machine_learning".to_string(), topic_model);
991                }
992
993                debug!("Topic models updated");
994            }
995        })
996    }
997}
998
999/// Research network metrics and statistics
1000#[derive(Debug, Clone, Serialize, Deserialize)]
1001pub struct NetworkMetrics {
1002    /// Total number of authors
1003    pub total_authors: usize,
1004    /// Total number of publications
1005    pub total_publications: usize,
1006    /// Total number of citations
1007    pub total_citations: u64,
1008    /// Average citations per paper
1009    pub avg_citations_per_paper: f64,
1010    /// Network density
1011    pub network_density: f64,
1012    /// Clustering coefficient
1013    pub clustering_coefficient: f64,
1014    /// Average path length
1015    pub average_path_length: f64,
1016    /// Most influential authors
1017    pub top_authors: Vec<String>,
1018    /// Trending topics
1019    pub trending_topics: Vec<String>,
1020}
1021
1022impl ResearchNetworkAnalyzer {
1023    /// Get comprehensive network metrics
1024    pub async fn get_network_metrics(&self) -> Result<NetworkMetrics> {
1025        let author_embeddings = self.author_embeddings.read().unwrap();
1026        let publication_embeddings = self.publication_embeddings.read().unwrap();
1027
1028        let total_authors = author_embeddings.len();
1029        let total_publications = publication_embeddings.len();
1030        let total_citations = publication_embeddings
1031            .values()
1032            .map(|p| p.citation_count)
1033            .sum();
1034
1035        let avg_citations_per_paper = if total_publications > 0 {
1036            total_citations as f64 / total_publications as f64
1037        } else {
1038            0.0
1039        };
1040
1041        // Get top authors by impact score
1042        let mut author_scores: Vec<_> = author_embeddings
1043            .iter()
1044            .map(|(id, embedding)| (id.clone(), embedding.impact_score))
1045            .collect();
1046        author_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1047        let top_authors: Vec<String> = author_scores
1048            .into_iter()
1049            .take(10)
1050            .map(|(id, _)| id)
1051            .collect();
1052
1053        Ok(NetworkMetrics {
1054            total_authors,
1055            total_publications,
1056            total_citations,
1057            avg_citations_per_paper,
1058            network_density: 0.1,        // Placeholder
1059            clustering_coefficient: 0.3, // Placeholder
1060            average_path_length: 4.5,    // Placeholder
1061            top_authors,
1062            trending_topics: vec!["machine_learning".to_string(), "deep_learning".to_string()],
1063        })
1064    }
1065}
1066
1067#[cfg(test)]
1068mod tests {
1069    use super::*;
1070
1071    #[tokio::test]
1072    async fn test_research_network_analyzer_creation() {
1073        let config = ResearchNetworkConfig::default();
1074        let analyzer = ResearchNetworkAnalyzer::new(config);
1075
1076        // Test that analyzer is created successfully
1077        assert_eq!(analyzer.author_embeddings.read().unwrap().len(), 0);
1078        assert_eq!(analyzer.publication_embeddings.read().unwrap().len(), 0);
1079    }
1080
1081    #[tokio::test]
1082    async fn test_author_embedding_generation() {
1083        let config = ResearchNetworkConfig::default();
1084        let analyzer = ResearchNetworkAnalyzer::new(config);
1085
1086        let result = analyzer.generate_author_embedding("test_author").await;
1087        assert!(result.is_ok());
1088
1089        let embedding = result.unwrap();
1090        assert_eq!(embedding.author_id, "test_author");
1091        assert!(embedding.h_index >= 0.0);
1092        assert_eq!(embedding.embedding.values.len(), 512); // Default dimension
1093    }
1094
1095    #[tokio::test]
1096    async fn test_publication_embedding_generation() {
1097        let config = ResearchNetworkConfig::default();
1098        let analyzer = ResearchNetworkAnalyzer::new(config);
1099
1100        let result = analyzer
1101            .generate_publication_embedding("test_publication")
1102            .await;
1103        assert!(result.is_ok());
1104
1105        let embedding = result.unwrap();
1106        assert_eq!(embedding.publication_id, "test_publication");
1107        assert!(embedding.predicted_impact >= 0.0);
1108        assert!(embedding.predicted_impact <= 1.0);
1109    }
1110
1111    #[tokio::test]
1112    async fn test_h_index_calculation() {
1113        let config = ResearchNetworkConfig::default();
1114        let analyzer = ResearchNetworkAnalyzer::new(config);
1115
1116        // Create test publications with different citation counts
1117        let publications = vec![
1118            PublicationEmbedding {
1119                publication_id: "p1".to_string(),
1120                title: "Test 1".to_string(),
1121                abstract_text: "Abstract 1".to_string(),
1122                authors: vec!["author1".to_string()],
1123                venue: "Venue 1".to_string(),
1124                year: 2023,
1125                citation_count: 10,
1126                topic_distribution: vec![],
1127                embedding: Vector::new(vec![]),
1128                predicted_impact: 0.5,
1129                publication_type: PublicationType::JournalArticle,
1130                doi: None,
1131                last_updated: Utc::now(),
1132            },
1133            PublicationEmbedding {
1134                publication_id: "p2".to_string(),
1135                title: "Test 2".to_string(),
1136                abstract_text: "Abstract 2".to_string(),
1137                authors: vec!["author1".to_string()],
1138                venue: "Venue 2".to_string(),
1139                year: 2023,
1140                citation_count: 5,
1141                topic_distribution: vec![],
1142                embedding: Vector::new(vec![]),
1143                predicted_impact: 0.3,
1144                publication_type: PublicationType::JournalArticle,
1145                doi: None,
1146                last_updated: Utc::now(),
1147            },
1148        ];
1149
1150        let h_index = analyzer.calculate_h_index(&publications).await.unwrap();
1151        assert_eq!(h_index, 2.0); // Both papers have at least 2 citations
1152    }
1153
1154    #[test]
1155    fn test_career_stage_classification() {
1156        // Test early career
1157        let rt = tokio::runtime::Runtime::new().unwrap();
1158        let config = ResearchNetworkConfig::default();
1159        let analyzer = ResearchNetworkAnalyzer::new(config);
1160
1161        let stage = rt
1162            .block_on(analyzer.classify_career_stage(50, 5, 3.0))
1163            .unwrap();
1164        assert!(matches!(stage, CareerStage::EarlyCareer));
1165
1166        // Test senior career
1167        let stage = rt
1168            .block_on(analyzer.classify_career_stage(2000, 100, 25.0))
1169            .unwrap();
1170        assert!(matches!(stage, CareerStage::SeniorCareer));
1171    }
1172
1173    #[tokio::test]
1174    async fn test_network_metrics() {
1175        let config = ResearchNetworkConfig::default();
1176        let analyzer = ResearchNetworkAnalyzer::new(config);
1177
1178        // Add some test data
1179        let _author_embedding = analyzer
1180            .generate_author_embedding("test_author")
1181            .await
1182            .unwrap();
1183        let _publication_embedding = analyzer
1184            .generate_publication_embedding("test_publication")
1185            .await
1186            .unwrap();
1187
1188        let metrics = analyzer.get_network_metrics().await.unwrap();
1189        assert_eq!(metrics.total_authors, 1);
1190        assert_eq!(metrics.total_publications, 1);
1191    }
1192}