oxirs_embed/
enterprise_knowledge.rs

1//! Enterprise Knowledge Graphs - Business Domain Embeddings
2//!
3//! This module provides specialized embeddings and analysis for enterprise knowledge graphs,
4//! including product catalogs, organizational knowledge, employee skill embeddings, and
5//! recommendation systems for business applications.
6
7use crate::Vector;
8use anyhow::Result;
9use chrono::{DateTime, Utc};
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12use std::sync::{Arc, RwLock};
13use tokio::task::JoinHandle;
14use tracing::{debug, info};
15
16/// Enterprise knowledge graph analyzer and embedding generator
17pub struct EnterpriseKnowledgeAnalyzer {
18    /// Product catalog embeddings
19    product_embeddings: Arc<RwLock<HashMap<String, ProductEmbedding>>>,
20    /// Employee embeddings
21    employee_embeddings: Arc<RwLock<HashMap<String, EmployeeEmbedding>>>,
22    /// Customer embeddings
23    customer_embeddings: Arc<RwLock<HashMap<String, CustomerEmbedding>>>,
24    /// Product categories and hierarchies
25    category_hierarchy: Arc<RwLock<CategoryHierarchy>>,
26    /// Organizational structure
27    organizational_structure: Arc<RwLock<OrganizationalStructure>>,
28    /// Recommendation engines
29    recommendation_engines: Arc<RwLock<HashMap<String, RecommendationEngine>>>,
30    /// Configuration
31    config: EnterpriseConfig,
32    /// Background analysis tasks
33    analysis_tasks: Vec<JoinHandle<()>>,
34}
35
36/// Configuration for enterprise knowledge analysis
37#[derive(Debug, Clone)]
38pub struct EnterpriseConfig {
39    /// Maximum number of products to track
40    pub max_products: usize,
41    /// Maximum number of employees to track
42    pub max_employees: usize,
43    /// Maximum number of customers to track
44    pub max_customers: usize,
45    /// Product recommendation refresh interval (hours)
46    pub product_recommendation_refresh_hours: u64,
47    /// Employee skill analysis interval (hours)
48    pub skill_analysis_interval_hours: u64,
49    /// Market analysis interval (hours)
50    pub market_analysis_interval_hours: u64,
51    /// Enable real-time customer behavior tracking
52    pub enable_real_time_customer_tracking: bool,
53    /// Minimum interaction threshold for recommendations
54    pub min_interaction_threshold: u32,
55    /// Embedding dimension
56    pub embedding_dimension: usize,
57    /// Recommendation system config
58    pub recommendation_config: RecommendationConfig,
59}
60
61impl Default for EnterpriseConfig {
62    fn default() -> Self {
63        Self {
64            max_products: 500_000,
65            max_employees: 50_000,
66            max_customers: 1_000_000,
67            product_recommendation_refresh_hours: 6,
68            skill_analysis_interval_hours: 24,
69            market_analysis_interval_hours: 12,
70            enable_real_time_customer_tracking: true,
71            min_interaction_threshold: 3,
72            embedding_dimension: 256,
73            recommendation_config: RecommendationConfig::default(),
74        }
75    }
76}
77
78/// Configuration for recommendation systems
79#[derive(Debug, Clone)]
80pub struct RecommendationConfig {
81    /// Number of recommendations to generate
82    pub num_recommendations: usize,
83    /// Similarity threshold for recommendations
84    pub similarity_threshold: f64,
85    /// Diversity factor (0.0 = pure similarity, 1.0 = pure diversity)
86    pub diversity_factor: f64,
87    /// Enable collaborative filtering
88    pub enable_collaborative_filtering: bool,
89    /// Enable content-based filtering
90    pub enable_content_based_filtering: bool,
91    /// Enable hybrid recommendations
92    pub enable_hybrid: bool,
93    /// Cold start strategy
94    pub cold_start_strategy: ColdStartStrategy,
95}
96
97impl Default for RecommendationConfig {
98    fn default() -> Self {
99        Self {
100            num_recommendations: 10,
101            similarity_threshold: 0.3,
102            diversity_factor: 0.2,
103            enable_collaborative_filtering: true,
104            enable_content_based_filtering: true,
105            enable_hybrid: true,
106            cold_start_strategy: ColdStartStrategy::PopularityBased,
107        }
108    }
109}
110
111/// Cold start strategy for new users/items
112#[derive(Debug, Clone)]
113pub enum ColdStartStrategy {
114    PopularityBased,
115    ContentBased,
116    DemographicBased,
117    RandomSampling,
118}
119
120/// Product embedding with business context
121#[derive(Debug, Clone, Serialize, Deserialize)]
122pub struct ProductEmbedding {
123    /// Product unique identifier
124    pub product_id: String,
125    /// Product name
126    pub name: String,
127    /// Product description
128    pub description: String,
129    /// Product category
130    pub category: String,
131    /// Subcategories
132    pub subcategories: Vec<String>,
133    /// Product features
134    pub features: Vec<ProductFeature>,
135    /// Price information
136    pub price: f64,
137    /// Availability status
138    pub availability: ProductAvailability,
139    /// Sales metrics
140    pub sales_metrics: SalesMetrics,
141    /// Customer ratings
142    pub ratings: CustomerRatings,
143    /// Product embedding vector
144    pub embedding: Vector,
145    /// Similar products
146    pub similar_products: Vec<String>,
147    /// Market position score
148    pub market_position: f64,
149    /// Last updated
150    pub last_updated: DateTime<Utc>,
151}
152
153/// Product feature information
154#[derive(Debug, Clone, Serialize, Deserialize)]
155pub struct ProductFeature {
156    /// Feature name
157    pub feature_name: String,
158    /// Feature value
159    pub feature_value: String,
160    /// Feature type
161    pub feature_type: FeatureType,
162    /// Feature importance score
163    pub importance_score: f64,
164}
165
166/// Types of product features
167#[derive(Debug, Clone, Serialize, Deserialize)]
168pub enum FeatureType {
169    Categorical,
170    Numerical,
171    Boolean,
172    Text,
173    List,
174}
175
176/// Product availability status
177#[derive(Debug, Clone, Serialize, Deserialize)]
178pub enum ProductAvailability {
179    InStock(u32), // quantity
180    OutOfStock,
181    Discontinued,
182    PreOrder(DateTime<Utc>), // available date
183    Limited(u32),            // limited quantity
184}
185
186/// Sales metrics for products
187#[derive(Debug, Clone, Serialize, Deserialize)]
188pub struct SalesMetrics {
189    /// Total units sold
190    pub units_sold: u64,
191    /// Revenue generated
192    pub revenue: f64,
193    /// Sales velocity (units per day)
194    pub sales_velocity: f64,
195    /// Conversion rate
196    pub conversion_rate: f64,
197    /// Return rate
198    pub return_rate: f64,
199    /// Profit margin
200    pub profit_margin: f64,
201}
202
203/// Customer ratings and reviews
204#[derive(Debug, Clone, Serialize, Deserialize)]
205pub struct CustomerRatings {
206    /// Average rating (1-5)
207    pub average_rating: f64,
208    /// Total number of reviews
209    pub review_count: u32,
210    /// Rating distribution
211    pub rating_distribution: HashMap<u8, u32>,
212    /// Sentiment score (-1 to 1)
213    pub sentiment_score: f64,
214}
215
216/// Employee embedding with professional context
217#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct EmployeeEmbedding {
219    /// Employee unique identifier
220    pub employee_id: String,
221    /// Employee name
222    pub name: String,
223    /// Job title
224    pub job_title: String,
225    /// Department
226    pub department: String,
227    /// Team
228    pub team: String,
229    /// Skills
230    pub skills: Vec<Skill>,
231    /// Experience level
232    pub experience_level: ExperienceLevel,
233    /// Performance metrics
234    pub performance_metrics: PerformanceMetrics,
235    /// Project history
236    pub project_history: Vec<ProjectParticipation>,
237    /// Collaboration network
238    pub collaborators: Vec<String>,
239    /// Employee embedding vector
240    pub embedding: Vector,
241    /// Career progression predictions
242    pub career_predictions: CareerPredictions,
243    /// Last updated
244    pub last_updated: DateTime<Utc>,
245}
246
247/// Skill information
248#[derive(Debug, Clone, Serialize, Deserialize)]
249pub struct Skill {
250    /// Skill name
251    pub skill_name: String,
252    /// Skill category
253    pub category: SkillCategory,
254    /// Proficiency level (1-10)
255    pub proficiency_level: u8,
256    /// Years of experience
257    pub years_experience: f64,
258    /// Skill importance in role
259    pub role_importance: f64,
260    /// Market demand score
261    pub market_demand: f64,
262}
263
264/// Skill categories
265#[derive(Debug, Clone, Serialize, Deserialize)]
266pub enum SkillCategory {
267    Technical,
268    Leadership,
269    Communication,
270    Analytical,
271    Creative,
272    Domain,
273    Language,
274    Tools,
275}
276
277/// Experience levels
278#[derive(Debug, Clone, Serialize, Deserialize)]
279pub enum ExperienceLevel {
280    Junior,
281    Mid,
282    Senior,
283    Lead,
284    Principal,
285    Executive,
286}
287
288/// Performance metrics for employees
289#[derive(Debug, Clone, Serialize, Deserialize)]
290pub struct PerformanceMetrics {
291    /// Overall performance score (1-10)
292    pub overall_score: f64,
293    /// Goal achievement rate
294    pub goal_achievement_rate: f64,
295    /// Project completion rate
296    pub project_completion_rate: f64,
297    /// Collaboration score
298    pub collaboration_score: f64,
299    /// Innovation score
300    pub innovation_score: f64,
301    /// Leadership score
302    pub leadership_score: f64,
303}
304
305/// Project participation information
306#[derive(Debug, Clone, Serialize, Deserialize)]
307pub struct ProjectParticipation {
308    /// Project ID
309    pub project_id: String,
310    /// Project name
311    pub project_name: String,
312    /// Role in project
313    pub role: String,
314    /// Start date
315    pub start_date: DateTime<Utc>,
316    /// End date
317    pub end_date: Option<DateTime<Utc>>,
318    /// Project outcome
319    pub outcome: ProjectOutcome,
320    /// Contribution score
321    pub contribution_score: f64,
322}
323
324/// Project outcomes
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub enum ProjectOutcome {
327    Successful,
328    PartiallySuccessful,
329    Failed,
330    Cancelled,
331    Ongoing,
332}
333
334/// Career progression predictions
335#[derive(Debug, Clone, Serialize, Deserialize)]
336pub struct CareerPredictions {
337    /// Promotion likelihood (0-1)
338    pub promotion_likelihood: f64,
339    /// Predicted next role
340    pub next_role: String,
341    /// Skills to develop
342    pub skills_to_develop: Vec<String>,
343    /// Career path recommendations
344    pub career_paths: Vec<String>,
345    /// Retention risk (0-1)
346    pub retention_risk: f64,
347}
348
349/// Customer embedding with behavior context
350#[derive(Debug, Clone, Serialize, Deserialize)]
351pub struct CustomerEmbedding {
352    /// Customer unique identifier
353    pub customer_id: String,
354    /// Customer name (anonymized if needed)
355    pub name: String,
356    /// Customer segment
357    pub segment: CustomerSegment,
358    /// Purchase history
359    pub purchase_history: Vec<Purchase>,
360    /// Preferences
361    pub preferences: CustomerPreferences,
362    /// Behavior metrics
363    pub behavior_metrics: BehaviorMetrics,
364    /// Customer embedding vector
365    pub embedding: Vector,
366    /// Predicted lifetime value
367    pub predicted_ltv: f64,
368    /// Churn risk
369    pub churn_risk: f64,
370    /// Recommended products
371    pub recommendations: Vec<ProductRecommendation>,
372    /// Last updated
373    pub last_updated: DateTime<Utc>,
374}
375
376/// Customer segments
377#[derive(Debug, Clone, Serialize, Deserialize)]
378pub enum CustomerSegment {
379    HighValue,
380    Regular,
381    Occasional,
382    NewCustomer,
383    AtRisk,
384    Churned,
385}
386
387/// Purchase information
388#[derive(Debug, Clone, Serialize, Deserialize)]
389pub struct Purchase {
390    /// Product ID
391    pub product_id: String,
392    /// Purchase date
393    pub purchase_date: DateTime<Utc>,
394    /// Quantity
395    pub quantity: u32,
396    /// Price paid
397    pub price: f64,
398    /// Channel used
399    pub channel: PurchaseChannel,
400    /// Satisfaction rating
401    pub satisfaction: Option<u8>,
402}
403
404/// Purchase channels
405#[derive(Debug, Clone, Serialize, Deserialize)]
406pub enum PurchaseChannel {
407    Online,
408    InStore,
409    Mobile,
410    Phone,
411    ThirdParty,
412}
413
414/// Customer preferences
415#[derive(Debug, Clone, Serialize, Deserialize)]
416pub struct CustomerPreferences {
417    /// Preferred categories
418    pub preferred_categories: Vec<String>,
419    /// Price sensitivity
420    pub price_sensitivity: f64,
421    /// Brand loyalty
422    pub brand_loyalty: HashMap<String, f64>,
423    /// Preferred channels
424    pub preferred_channels: Vec<PurchaseChannel>,
425    /// Communication preferences
426    pub communication_preferences: CommunicationPreferences,
427}
428
429/// Communication preferences
430#[derive(Debug, Clone, Serialize, Deserialize)]
431pub struct CommunicationPreferences {
432    /// Email opt-in
433    pub email_opt_in: bool,
434    /// SMS opt-in
435    pub sms_opt_in: bool,
436    /// Frequency preference
437    pub frequency: CommunicationFrequency,
438    /// Content preferences
439    pub content_types: Vec<String>,
440}
441
442/// Communication frequency
443#[derive(Debug, Clone, Serialize, Deserialize)]
444pub enum CommunicationFrequency {
445    Daily,
446    Weekly,
447    Monthly,
448    Quarterly,
449    Never,
450}
451
452/// Customer behavior metrics
453#[derive(Debug, Clone, Serialize, Deserialize)]
454pub struct BehaviorMetrics {
455    /// Visit frequency
456    pub visit_frequency: f64,
457    /// Average session duration (minutes)
458    pub avg_session_duration: f64,
459    /// Pages/products viewed per session
460    pub avg_products_viewed: f64,
461    /// Cart abandonment rate
462    pub cart_abandonment_rate: f64,
463    /// Return visit rate
464    pub return_visit_rate: f64,
465    /// Referral rate
466    pub referral_rate: f64,
467}
468
469/// Product recommendation
470#[derive(Debug, Clone, Serialize, Deserialize)]
471pub struct ProductRecommendation {
472    /// Product ID
473    pub product_id: String,
474    /// Recommendation score
475    pub score: f64,
476    /// Reason for recommendation
477    pub reason: RecommendationReason,
478    /// Confidence level
479    pub confidence: f64,
480    /// Expected revenue impact
481    pub expected_revenue: f64,
482}
483
484/// Reasons for recommendations
485#[derive(Debug, Clone, Serialize, Deserialize)]
486pub enum RecommendationReason {
487    SimilarProducts,
488    CustomersBought,
489    PopularInCategory,
490    PersonalizedPreference,
491    TrendingNow,
492    SeasonalRecommendation,
493}
494
495/// Category hierarchy structure
496#[derive(Debug, Clone)]
497pub struct CategoryHierarchy {
498    /// Category tree
499    pub categories: HashMap<String, Category>,
500    /// Category relationships
501    pub parent_child: HashMap<String, Vec<String>>,
502    /// Category embeddings
503    pub category_embeddings: HashMap<String, Vector>,
504}
505
506/// Category information
507#[derive(Debug, Clone, Serialize, Deserialize)]
508pub struct Category {
509    /// Category ID
510    pub category_id: String,
511    /// Category name
512    pub name: String,
513    /// Parent category
514    pub parent: Option<String>,
515    /// Child categories
516    pub children: Vec<String>,
517    /// Products in this category
518    pub products: Vec<String>,
519    /// Category attributes
520    pub attributes: HashMap<String, String>,
521    /// Category performance metrics
522    pub performance: CategoryPerformance,
523}
524
525/// Category performance metrics
526#[derive(Debug, Clone, Serialize, Deserialize)]
527pub struct CategoryPerformance {
528    /// Total sales
529    pub total_sales: f64,
530    /// Product count
531    pub product_count: u32,
532    /// Average rating
533    pub average_rating: f64,
534    /// Growth rate
535    pub growth_rate: f64,
536    /// Market share
537    pub market_share: f64,
538}
539
540/// Organizational structure
541#[derive(Debug, Clone)]
542pub struct OrganizationalStructure {
543    /// Departments
544    pub departments: HashMap<String, Department>,
545    /// Teams within departments
546    pub teams: HashMap<String, Team>,
547    /// Reporting relationships
548    pub reporting_structure: HashMap<String, Vec<String>>,
549    /// Cross-functional projects
550    pub projects: HashMap<String, Project>,
551}
552
553/// Department information
554#[derive(Debug, Clone, Serialize, Deserialize)]
555pub struct Department {
556    /// Department ID
557    pub department_id: String,
558    /// Department name
559    pub name: String,
560    /// Department head
561    pub head: String,
562    /// Employees
563    pub employees: Vec<String>,
564    /// Teams
565    pub teams: Vec<String>,
566    /// Budget
567    pub budget: f64,
568    /// Performance metrics
569    pub performance: DepartmentPerformance,
570}
571
572/// Department performance metrics
573#[derive(Debug, Clone, Serialize, Deserialize)]
574pub struct DepartmentPerformance {
575    /// Budget utilization
576    pub budget_utilization: f64,
577    /// Goal achievement
578    pub goal_achievement: f64,
579    /// Employee satisfaction
580    pub employee_satisfaction: f64,
581    /// Productivity score
582    pub productivity_score: f64,
583    /// Innovation index
584    pub innovation_index: f64,
585}
586
587/// Team information
588#[derive(Debug, Clone, Serialize, Deserialize)]
589pub struct Team {
590    /// Team ID
591    pub team_id: String,
592    /// Team name
593    pub name: String,
594    /// Team lead
595    pub lead: String,
596    /// Team members
597    pub members: Vec<String>,
598    /// Department
599    pub department: String,
600    /// Team skills
601    pub team_skills: Vec<Skill>,
602    /// Team performance
603    pub performance: TeamPerformance,
604}
605
606/// Team performance metrics
607#[derive(Debug, Clone, Serialize, Deserialize)]
608pub struct TeamPerformance {
609    /// Collaboration score
610    pub collaboration_score: f64,
611    /// Delivery performance
612    pub delivery_performance: f64,
613    /// Quality metrics
614    pub quality_score: f64,
615    /// Innovation score
616    pub innovation_score: f64,
617    /// Team satisfaction
618    pub team_satisfaction: f64,
619}
620
621/// Project information
622#[derive(Debug, Clone, Serialize, Deserialize)]
623pub struct Project {
624    /// Project ID
625    pub project_id: String,
626    /// Project name
627    pub name: String,
628    /// Project description
629    pub description: String,
630    /// Project manager
631    pub manager: String,
632    /// Team members
633    pub team_members: Vec<String>,
634    /// Start date
635    pub start_date: DateTime<Utc>,
636    /// End date
637    pub end_date: Option<DateTime<Utc>>,
638    /// Budget
639    pub budget: f64,
640    /// Status
641    pub status: ProjectStatus,
642    /// Required skills
643    pub required_skills: Vec<String>,
644    /// Performance metrics
645    pub performance: ProjectPerformance,
646}
647
648/// Project status
649#[derive(Debug, Clone, Serialize, Deserialize)]
650pub enum ProjectStatus {
651    Planning,
652    InProgress,
653    OnHold,
654    Completed,
655    Cancelled,
656}
657
658/// Project performance metrics
659#[derive(Debug, Clone, Serialize, Deserialize)]
660pub struct ProjectPerformance {
661    /// Progress percentage
662    pub progress_percentage: f64,
663    /// Budget utilization
664    pub budget_utilization: f64,
665    /// Timeline adherence
666    pub timeline_adherence: f64,
667    /// Quality score
668    pub quality_score: f64,
669    /// Stakeholder satisfaction
670    pub stakeholder_satisfaction: f64,
671}
672
673/// Recommendation engine
674#[derive(Debug, Clone)]
675pub struct RecommendationEngine {
676    /// Engine type
677    pub engine_type: RecommendationEngineType,
678    /// Model parameters
679    pub parameters: HashMap<String, f64>,
680    /// Performance metrics
681    pub performance: RecommendationPerformance,
682    /// Last update
683    pub last_update: DateTime<Utc>,
684}
685
686/// Types of recommendation engines
687#[derive(Debug, Clone)]
688pub enum RecommendationEngineType {
689    CollaborativeFiltering,
690    ContentBased,
691    MatrixFactorization,
692    DeepLearning,
693    Hybrid,
694}
695
696/// Recommendation engine performance
697#[derive(Debug, Clone, Serialize, Deserialize)]
698pub struct RecommendationPerformance {
699    /// Precision at K
700    pub precision_at_k: HashMap<u32, f64>,
701    /// Recall at K
702    pub recall_at_k: HashMap<u32, f64>,
703    /// NDCG scores
704    pub ndcg_scores: HashMap<u32, f64>,
705    /// Click-through rate
706    pub click_through_rate: f64,
707    /// Conversion rate
708    pub conversion_rate: f64,
709    /// Revenue impact
710    pub revenue_impact: f64,
711}
712
713impl EnterpriseKnowledgeAnalyzer {
714    /// Create new enterprise knowledge analyzer
715    pub fn new(config: EnterpriseConfig) -> Self {
716        Self {
717            product_embeddings: Arc::new(RwLock::new(HashMap::new())),
718            employee_embeddings: Arc::new(RwLock::new(HashMap::new())),
719            customer_embeddings: Arc::new(RwLock::new(HashMap::new())),
720            category_hierarchy: Arc::new(RwLock::new(CategoryHierarchy {
721                categories: HashMap::new(),
722                parent_child: HashMap::new(),
723                category_embeddings: HashMap::new(),
724            })),
725            organizational_structure: Arc::new(RwLock::new(OrganizationalStructure {
726                departments: HashMap::new(),
727                teams: HashMap::new(),
728                reporting_structure: HashMap::new(),
729                projects: HashMap::new(),
730            })),
731            recommendation_engines: Arc::new(RwLock::new(HashMap::new())),
732            config,
733            analysis_tasks: Vec::new(),
734        }
735    }
736
737    /// Start background analysis tasks
738    pub async fn start(&mut self) -> Result<()> {
739        info!("Starting enterprise knowledge analysis system");
740
741        // Start product recommendation engine
742        let recommendation_task = self.start_recommendation_engine().await;
743        self.analysis_tasks.push(recommendation_task);
744
745        // Start employee skill analysis
746        let skill_analysis_task = self.start_skill_analysis().await;
747        self.analysis_tasks.push(skill_analysis_task);
748
749        // Start market analysis
750        let market_analysis_task = self.start_market_analysis().await;
751        self.analysis_tasks.push(market_analysis_task);
752
753        // Start organizational optimization
754        let org_optimization_task = self.start_organizational_optimization().await;
755        self.analysis_tasks.push(org_optimization_task);
756
757        info!("Enterprise knowledge analysis system started successfully");
758        Ok(())
759    }
760
761    /// Stop analysis tasks
762    pub async fn stop(&mut self) {
763        info!("Stopping enterprise knowledge analysis system");
764
765        for task in self.analysis_tasks.drain(..) {
766            task.abort();
767        }
768
769        info!("Enterprise knowledge analysis system stopped");
770    }
771
772    /// Generate product embedding with business features
773    pub async fn generate_product_embedding(&self, product_id: &str) -> Result<ProductEmbedding> {
774        // Check if already computed
775        {
776            let embeddings = self.product_embeddings.read().unwrap();
777            if let Some(existing) = embeddings.get(product_id) {
778                return Ok(existing.clone());
779            }
780        }
781
782        info!("Generating product embedding for: {}", product_id);
783
784        // Get product information (would come from product database)
785        let name = format!("Product_{product_id}");
786        let description = format!("Description for product {product_id}");
787        let category = "Electronics".to_string();
788        let subcategories = vec!["Smartphones".to_string(), "Mobile".to_string()];
789
790        // Generate product features
791        let features = vec![
792            ProductFeature {
793                feature_name: "Brand".to_string(),
794                feature_value: "TechCorp".to_string(),
795                feature_type: FeatureType::Categorical,
796                importance_score: 0.9,
797            },
798            ProductFeature {
799                feature_name: "Price".to_string(),
800                feature_value: "299.99".to_string(),
801                feature_type: FeatureType::Numerical,
802                importance_score: 0.8,
803            },
804        ];
805
806        let price = 299.99;
807        let availability = ProductAvailability::InStock(100);
808
809        // Generate sales metrics
810        let sales_metrics = SalesMetrics {
811            units_sold: 1500,
812            revenue: 449_985.0,
813            sales_velocity: 25.5,
814            conversion_rate: 0.12,
815            return_rate: 0.03,
816            profit_margin: 0.35,
817        };
818
819        // Generate customer ratings
820        let mut rating_distribution = HashMap::new();
821        rating_distribution.insert(5, 120);
822        rating_distribution.insert(4, 80);
823        rating_distribution.insert(3, 30);
824        rating_distribution.insert(2, 10);
825        rating_distribution.insert(1, 5);
826
827        let ratings = CustomerRatings {
828            average_rating: 4.2,
829            review_count: 245,
830            rating_distribution,
831            sentiment_score: 0.7,
832        };
833
834        // Generate product embedding vector
835        let embedding = self
836            .compute_product_embedding_vector(&name, &description, &features, &sales_metrics)
837            .await?;
838
839        // Find similar products
840        let similar_products = self.find_similar_products(product_id, &embedding).await?;
841
842        // Calculate market position
843        let market_position = self
844            .calculate_market_position(&sales_metrics, &ratings)
845            .await?;
846
847        let product_embedding = ProductEmbedding {
848            product_id: product_id.to_string(),
849            name,
850            description,
851            category,
852            subcategories,
853            features,
854            price,
855            availability,
856            sales_metrics,
857            ratings,
858            embedding,
859            similar_products,
860            market_position,
861            last_updated: Utc::now(),
862        };
863
864        // Cache the result
865        {
866            let mut embeddings = self.product_embeddings.write().unwrap();
867            embeddings.insert(product_id.to_string(), product_embedding.clone());
868        }
869
870        info!(
871            "Generated product embedding for {} with market position: {:.3}",
872            product_id, market_position
873        );
874        Ok(product_embedding)
875    }
876
877    /// Generate employee embedding with skills and performance
878    pub async fn generate_employee_embedding(
879        &self,
880        employee_id: &str,
881    ) -> Result<EmployeeEmbedding> {
882        // Check if already computed
883        {
884            let embeddings = self.employee_embeddings.read().unwrap();
885            if let Some(existing) = embeddings.get(employee_id) {
886                return Ok(existing.clone());
887            }
888        }
889
890        info!("Generating employee embedding for: {}", employee_id);
891
892        // Get employee information (would come from HR database)
893        let name = format!("Employee_{employee_id}");
894        let job_title = "Software Engineer".to_string();
895        let department = "Engineering".to_string();
896        let team = "Backend Team".to_string();
897
898        // Generate skills
899        let skills = vec![
900            Skill {
901                skill_name: "Python".to_string(),
902                category: SkillCategory::Technical,
903                proficiency_level: 8,
904                years_experience: 5.0,
905                role_importance: 0.9,
906                market_demand: 0.85,
907            },
908            Skill {
909                skill_name: "Leadership".to_string(),
910                category: SkillCategory::Leadership,
911                proficiency_level: 6,
912                years_experience: 2.0,
913                role_importance: 0.6,
914                market_demand: 0.9,
915            },
916        ];
917
918        let experience_level = ExperienceLevel::Mid;
919
920        // Generate performance metrics
921        let performance_metrics = PerformanceMetrics {
922            overall_score: 8.2,
923            goal_achievement_rate: 0.92,
924            project_completion_rate: 0.95,
925            collaboration_score: 8.5,
926            innovation_score: 7.8,
927            leadership_score: 6.5,
928        };
929
930        // Generate project history
931        let project_history = vec![ProjectParticipation {
932            project_id: "proj_001".to_string(),
933            project_name: "Customer Portal".to_string(),
934            role: "Backend Developer".to_string(),
935            start_date: Utc::now() - chrono::Duration::days(365),
936            end_date: Some(Utc::now() - chrono::Duration::days(300)),
937            outcome: ProjectOutcome::Successful,
938            contribution_score: 8.5,
939        }];
940
941        let collaborators = vec!["emp_002".to_string(), "emp_003".to_string()];
942
943        // Generate employee embedding vector
944        let embedding = self
945            .compute_employee_embedding_vector(&skills, &performance_metrics, &project_history)
946            .await?;
947
948        // Generate career predictions
949        let career_predictions = self
950            .predict_career_progression(&skills, &performance_metrics, &experience_level)
951            .await?;
952
953        let employee_embedding = EmployeeEmbedding {
954            employee_id: employee_id.to_string(),
955            name,
956            job_title,
957            department,
958            team,
959            skills,
960            experience_level,
961            performance_metrics,
962            project_history,
963            collaborators,
964            embedding,
965            career_predictions,
966            last_updated: Utc::now(),
967        };
968
969        // Cache the result
970        {
971            let mut embeddings = self.employee_embeddings.write().unwrap();
972            embeddings.insert(employee_id.to_string(), employee_embedding.clone());
973        }
974
975        info!(
976            "Generated employee embedding for {} with promotion likelihood: {:.3}",
977            employee_id, employee_embedding.career_predictions.promotion_likelihood
978        );
979        Ok(employee_embedding)
980    }
981
982    /// Generate customer embedding with behavior and preferences
983    pub async fn generate_customer_embedding(
984        &self,
985        customer_id: &str,
986    ) -> Result<CustomerEmbedding> {
987        // Check if already computed
988        {
989            let embeddings = self.customer_embeddings.read().unwrap();
990            if let Some(existing) = embeddings.get(customer_id) {
991                return Ok(existing.clone());
992            }
993        }
994
995        info!("Generating customer embedding for: {}", customer_id);
996
997        // Get customer information (would come from CRM database)
998        let name = format!("Customer_{customer_id}");
999        let segment = CustomerSegment::Regular;
1000
1001        // Generate purchase history
1002        let purchase_history = vec![
1003            Purchase {
1004                product_id: "prod_001".to_string(),
1005                purchase_date: Utc::now() - chrono::Duration::days(30),
1006                quantity: 1,
1007                price: 299.99,
1008                channel: PurchaseChannel::Online,
1009                satisfaction: Some(4),
1010            },
1011            Purchase {
1012                product_id: "prod_002".to_string(),
1013                purchase_date: Utc::now() - chrono::Duration::days(60),
1014                quantity: 2,
1015                price: 149.99,
1016                channel: PurchaseChannel::InStore,
1017                satisfaction: Some(5),
1018            },
1019        ];
1020
1021        // Generate preferences
1022        let mut brand_loyalty = HashMap::new();
1023        brand_loyalty.insert("TechCorp".to_string(), 0.8);
1024        brand_loyalty.insert("InnovateCo".to_string(), 0.6);
1025
1026        let preferences = CustomerPreferences {
1027            preferred_categories: vec!["Electronics".to_string(), "Books".to_string()],
1028            price_sensitivity: 0.6,
1029            brand_loyalty,
1030            preferred_channels: vec![PurchaseChannel::Online, PurchaseChannel::Mobile],
1031            communication_preferences: CommunicationPreferences {
1032                email_opt_in: true,
1033                sms_opt_in: false,
1034                frequency: CommunicationFrequency::Weekly,
1035                content_types: vec!["Promotions".to_string(), "NewProducts".to_string()],
1036            },
1037        };
1038
1039        // Generate behavior metrics
1040        let behavior_metrics = BehaviorMetrics {
1041            visit_frequency: 2.5,
1042            avg_session_duration: 12.5,
1043            avg_products_viewed: 8.2,
1044            cart_abandonment_rate: 0.25,
1045            return_visit_rate: 0.7,
1046            referral_rate: 0.1,
1047        };
1048
1049        // Generate customer embedding vector
1050        let embedding = self
1051            .compute_customer_embedding_vector(&purchase_history, &preferences, &behavior_metrics)
1052            .await?;
1053
1054        // Predict customer lifetime value
1055        let predicted_ltv = self
1056            .predict_customer_ltv(&purchase_history, &behavior_metrics)
1057            .await?;
1058
1059        // Calculate churn risk
1060        let churn_risk = self
1061            .calculate_churn_risk(&behavior_metrics, &purchase_history)
1062            .await?;
1063
1064        // Generate recommendations
1065        let recommendations = self
1066            .generate_customer_recommendations(customer_id, &embedding)
1067            .await?;
1068
1069        let customer_embedding = CustomerEmbedding {
1070            customer_id: customer_id.to_string(),
1071            name,
1072            segment,
1073            purchase_history,
1074            preferences,
1075            behavior_metrics,
1076            embedding,
1077            predicted_ltv,
1078            churn_risk,
1079            recommendations,
1080            last_updated: Utc::now(),
1081        };
1082
1083        // Cache the result
1084        {
1085            let mut embeddings = self.customer_embeddings.write().unwrap();
1086            embeddings.insert(customer_id.to_string(), customer_embedding.clone());
1087        }
1088
1089        info!(
1090            "Generated customer embedding for {} with LTV: ${:.2} and churn risk: {:.3}",
1091            customer_id, predicted_ltv, churn_risk
1092        );
1093        Ok(customer_embedding)
1094    }
1095
1096    /// Get product recommendations for a customer
1097    pub async fn recommend_products(
1098        &self,
1099        customer_id: &str,
1100        num_recommendations: usize,
1101    ) -> Result<Vec<ProductRecommendation>> {
1102        let customer_embedding = self.generate_customer_embedding(customer_id).await?;
1103
1104        // Use existing recommendations if available and fresh
1105        if !customer_embedding.recommendations.is_empty()
1106            && customer_embedding.last_updated > Utc::now() - chrono::Duration::hours(6)
1107        {
1108            return Ok(customer_embedding
1109                .recommendations
1110                .into_iter()
1111                .take(num_recommendations)
1112                .collect());
1113        }
1114
1115        // Generate new recommendations
1116        self.generate_customer_recommendations(customer_id, &customer_embedding.embedding)
1117            .await
1118    }
1119
1120    /// Find similar employees based on skills and experience
1121    pub async fn find_similar_employees(
1122        &self,
1123        employee_id: &str,
1124        k: usize,
1125    ) -> Result<Vec<(String, f64)>> {
1126        let target_embedding = self.generate_employee_embedding(employee_id).await?;
1127        let embeddings = {
1128            let guard = self.employee_embeddings.read().unwrap();
1129            guard.clone()
1130        };
1131
1132        let mut similarities = Vec::new();
1133
1134        for (other_id, other_embedding) in embeddings.iter() {
1135            if other_id != employee_id {
1136                let similarity = self
1137                    .calculate_employee_similarity(&target_embedding, other_embedding)
1138                    .await?;
1139                similarities.push((other_id.clone(), similarity));
1140            }
1141        }
1142
1143        // Sort by similarity and take top k
1144        similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1145        similarities.truncate(k);
1146
1147        Ok(similarities)
1148    }
1149
1150    /// Optimize team composition for a project
1151    pub async fn optimize_team_composition(
1152        &self,
1153        _project_id: &str,
1154        required_skills: &[String],
1155    ) -> Result<Vec<String>> {
1156        let employees = {
1157            let guard = self.employee_embeddings.read().unwrap();
1158            guard.clone()
1159        };
1160        let mut candidates = Vec::new();
1161
1162        // Score employees based on skill match
1163        for (employee_id, employee) in employees.iter() {
1164            let skill_match_score = self
1165                .calculate_skill_match_score(&employee.skills, required_skills)
1166                .await?;
1167            candidates.push((employee_id.clone(), skill_match_score));
1168        }
1169
1170        // Sort by skill match and take top candidates
1171        candidates.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1172
1173        // Select optimal team (considering diversity, collaboration history, etc.)
1174        let optimal_team = self.select_optimal_team(candidates, 5).await?;
1175
1176        Ok(optimal_team)
1177    }
1178
1179    /// Analyze market trends and opportunities
1180    pub async fn analyze_market_trends(&self) -> Result<MarketAnalysis> {
1181        let products = {
1182            let guard = self.product_embeddings.read().unwrap();
1183            guard.clone()
1184        };
1185        let customers = {
1186            let guard = self.customer_embeddings.read().unwrap();
1187            guard.clone()
1188        };
1189
1190        // Analyze product performance trends
1191        let mut category_performance = HashMap::new();
1192        let mut trending_products = Vec::new();
1193
1194        for (product_id, product) in products.iter() {
1195            // Track category performance
1196            let performance = category_performance
1197                .entry(product.category.clone())
1198                .or_insert(CategoryPerformance {
1199                    total_sales: 0.0,
1200                    product_count: 0,
1201                    average_rating: 0.0,
1202                    growth_rate: 0.0,
1203                    market_share: 0.0,
1204                });
1205
1206            performance.total_sales += product.sales_metrics.revenue;
1207            performance.product_count += 1;
1208            performance.average_rating += product.ratings.average_rating;
1209
1210            // Identify trending products
1211            if product.sales_metrics.sales_velocity > 20.0 {
1212                trending_products.push(product_id.clone());
1213            }
1214        }
1215
1216        // Normalize category averages
1217        for performance in category_performance.values_mut() {
1218            if performance.product_count > 0 {
1219                performance.average_rating /= performance.product_count as f64;
1220            }
1221        }
1222
1223        // Analyze customer segments
1224        let mut segment_analysis = HashMap::new();
1225        for customer in customers.values() {
1226            let segment_name = format!("{:?}", customer.segment);
1227            let count = segment_analysis.entry(segment_name).or_insert(0);
1228            *count += 1;
1229        }
1230
1231        Ok(MarketAnalysis {
1232            category_performance,
1233            trending_products,
1234            segment_distribution: segment_analysis,
1235            market_opportunities: self.identify_market_opportunities().await?,
1236            competitive_landscape: self.analyze_competitive_landscape().await?,
1237            forecast: self.generate_market_forecast().await?,
1238        })
1239    }
1240
1241    // ===== PRIVATE HELPER METHODS =====
1242
1243    async fn compute_product_embedding_vector(
1244        &self,
1245        _name: &str,
1246        _description: &str,
1247        _features: &[ProductFeature],
1248        _sales_metrics: &SalesMetrics,
1249    ) -> Result<Vector> {
1250        // Placeholder - would compute actual embedding
1251        let values = {
1252            use scirs2_core::random::{Random, Rng};
1253            let mut random = Random::default();
1254            (0..self.config.embedding_dimension)
1255                .map(|_| random.random::<f32>())
1256                .collect()
1257        };
1258        Ok(Vector::new(values))
1259    }
1260
1261    async fn find_similar_products(
1262        &self,
1263        _product_id: &str,
1264        _embedding: &Vector,
1265    ) -> Result<Vec<String>> {
1266        // Placeholder - would find similar products using embedding similarity
1267        Ok(vec!["prod_002".to_string(), "prod_003".to_string()])
1268    }
1269
1270    async fn calculate_market_position(
1271        &self,
1272        sales_metrics: &SalesMetrics,
1273        ratings: &CustomerRatings,
1274    ) -> Result<f64> {
1275        // Combine sales performance and customer satisfaction
1276        let sales_score = (sales_metrics.sales_velocity / 100.0).min(1.0);
1277        let rating_score = ratings.average_rating / 5.0;
1278        let position = (sales_score * 0.6 + rating_score * 0.4).min(1.0);
1279        Ok(position)
1280    }
1281
1282    async fn compute_employee_embedding_vector(
1283        &self,
1284        _skills: &[Skill],
1285        _performance: &PerformanceMetrics,
1286        _projects: &[ProjectParticipation],
1287    ) -> Result<Vector> {
1288        // Placeholder - would compute actual embedding
1289        let values = {
1290            use scirs2_core::random::{Random, Rng};
1291            let mut random = Random::default();
1292            (0..self.config.embedding_dimension)
1293                .map(|_| random.random::<f32>())
1294                .collect()
1295        };
1296        Ok(Vector::new(values))
1297    }
1298
1299    async fn predict_career_progression(
1300        &self,
1301        skills: &[Skill],
1302        performance: &PerformanceMetrics,
1303        _experience_level: &ExperienceLevel,
1304    ) -> Result<CareerPredictions> {
1305        // Calculate promotion likelihood based on performance and skills
1306        let performance_factor = performance.overall_score / 10.0;
1307        let skill_factor = skills
1308            .iter()
1309            .map(|s| s.proficiency_level as f64 / 10.0)
1310            .sum::<f64>()
1311            / skills.len() as f64;
1312        let promotion_likelihood = (performance_factor * 0.7 + skill_factor * 0.3).min(1.0);
1313
1314        Ok(CareerPredictions {
1315            promotion_likelihood,
1316            next_role: "Senior Software Engineer".to_string(),
1317            skills_to_develop: vec!["Team Leadership".to_string(), "System Design".to_string()],
1318            career_paths: vec![
1319                "Technical Lead".to_string(),
1320                "Engineering Manager".to_string(),
1321            ],
1322            retention_risk: 1.0 - promotion_likelihood * 0.8,
1323        })
1324    }
1325
1326    async fn compute_customer_embedding_vector(
1327        &self,
1328        _purchases: &[Purchase],
1329        _preferences: &CustomerPreferences,
1330        _behavior: &BehaviorMetrics,
1331    ) -> Result<Vector> {
1332        // Placeholder - would compute actual embedding
1333        let values = {
1334            use scirs2_core::random::{Random, Rng};
1335            let mut random = Random::default();
1336            (0..self.config.embedding_dimension)
1337                .map(|_| random.random::<f32>())
1338                .collect()
1339        };
1340        Ok(Vector::new(values))
1341    }
1342
1343    async fn predict_customer_ltv(
1344        &self,
1345        purchases: &[Purchase],
1346        behavior: &BehaviorMetrics,
1347    ) -> Result<f64> {
1348        if purchases.is_empty() {
1349            return Ok(0.0);
1350        }
1351
1352        // Simple LTV calculation based on purchase history and behavior
1353        let total_spent: f64 = purchases.iter().map(|p| p.price * p.quantity as f64).sum();
1354        let avg_purchase = total_spent / purchases.len() as f64;
1355        let frequency_factor = behavior.visit_frequency;
1356        let ltv = avg_purchase * frequency_factor * 12.0; // Annualized
1357
1358        Ok(ltv)
1359    }
1360
1361    async fn calculate_churn_risk(
1362        &self,
1363        behavior: &BehaviorMetrics,
1364        purchases: &[Purchase],
1365    ) -> Result<f64> {
1366        // Calculate churn risk based on recent activity
1367        let recency_factor = if let Some(last_purchase) = purchases.last() {
1368            let days_since_last = (Utc::now() - last_purchase.purchase_date).num_days() as f64;
1369            (days_since_last / 90.0).min(1.0) // Higher risk if no purchase in 90 days
1370        } else {
1371            1.0
1372        };
1373
1374        let engagement_factor = 1.0 - (behavior.visit_frequency / 10.0).min(1.0);
1375        let abandonment_factor = behavior.cart_abandonment_rate;
1376
1377        let churn_risk =
1378            (recency_factor * 0.4 + engagement_factor * 0.3 + abandonment_factor * 0.3).min(1.0);
1379        Ok(churn_risk)
1380    }
1381
1382    async fn generate_customer_recommendations(
1383        &self,
1384        _customer_id: &str,
1385        _embedding: &Vector,
1386    ) -> Result<Vec<ProductRecommendation>> {
1387        // Placeholder - would generate recommendations using collaborative filtering, content-based, etc.
1388        Ok(vec![
1389            ProductRecommendation {
1390                product_id: "prod_101".to_string(),
1391                score: 0.95,
1392                reason: RecommendationReason::SimilarProducts,
1393                confidence: 0.85,
1394                expected_revenue: 199.99,
1395            },
1396            ProductRecommendation {
1397                product_id: "prod_102".to_string(),
1398                score: 0.88,
1399                reason: RecommendationReason::CustomersBought,
1400                confidence: 0.78,
1401                expected_revenue: 149.99,
1402            },
1403        ])
1404    }
1405
1406    async fn calculate_employee_similarity(
1407        &self,
1408        emp1: &EmployeeEmbedding,
1409        emp2: &EmployeeEmbedding,
1410    ) -> Result<f64> {
1411        // Calculate cosine similarity between embeddings
1412        let embedding1 = &emp1.embedding.values;
1413        let embedding2 = &emp2.embedding.values;
1414
1415        let dot_product: f32 = embedding1
1416            .iter()
1417            .zip(embedding2.iter())
1418            .map(|(a, b)| a * b)
1419            .sum();
1420        let norm1: f32 = embedding1.iter().map(|x| x * x).sum::<f32>().sqrt();
1421        let norm2: f32 = embedding2.iter().map(|x| x * x).sum::<f32>().sqrt();
1422
1423        let cosine_similarity = if norm1 > 0.0 && norm2 > 0.0 {
1424            dot_product / (norm1 * norm2)
1425        } else {
1426            0.0
1427        };
1428
1429        // Combine with skill similarity
1430        let skill_similarity = self
1431            .calculate_skill_similarity(&emp1.skills, &emp2.skills)
1432            .await?;
1433
1434        // Weighted combination
1435        let final_similarity = 0.6 * cosine_similarity as f64 + 0.4 * skill_similarity;
1436
1437        Ok(final_similarity)
1438    }
1439
1440    async fn calculate_skill_similarity(
1441        &self,
1442        skills1: &[Skill],
1443        skills2: &[Skill],
1444    ) -> Result<f64> {
1445        let skill_set1: HashSet<_> = skills1.iter().map(|s| &s.skill_name).collect();
1446        let skill_set2: HashSet<_> = skills2.iter().map(|s| &s.skill_name).collect();
1447
1448        let intersection = skill_set1.intersection(&skill_set2).count();
1449        let union = skill_set1.union(&skill_set2).count();
1450
1451        if union > 0 {
1452            Ok(intersection as f64 / union as f64)
1453        } else {
1454            Ok(0.0)
1455        }
1456    }
1457
1458    async fn calculate_skill_match_score(
1459        &self,
1460        employee_skills: &[Skill],
1461        required_skills: &[String],
1462    ) -> Result<f64> {
1463        let employee_skill_names: HashSet<_> =
1464            employee_skills.iter().map(|s| &s.skill_name).collect();
1465        let required_skill_set: HashSet<_> = required_skills.iter().collect();
1466
1467        let matches = required_skill_set
1468            .intersection(&employee_skill_names)
1469            .count();
1470        let score = matches as f64 / required_skills.len() as f64;
1471
1472        Ok(score)
1473    }
1474
1475    async fn select_optimal_team(
1476        &self,
1477        _candidates: Vec<(String, f64)>,
1478        team_size: usize,
1479    ) -> Result<Vec<String>> {
1480        // Placeholder - would use optimization algorithm to select diverse, high-performing team
1481        let team: Vec<String> = _candidates
1482            .into_iter()
1483            .take(team_size)
1484            .map(|(id, _score)| id)
1485            .collect();
1486
1487        Ok(team)
1488    }
1489
1490    async fn identify_market_opportunities(&self) -> Result<Vec<String>> {
1491        // Placeholder - would analyze market gaps and opportunities
1492        Ok(vec![
1493            "AI-powered fitness devices".to_string(),
1494            "Sustainable electronics".to_string(),
1495            "Remote work solutions".to_string(),
1496        ])
1497    }
1498
1499    async fn analyze_competitive_landscape(&self) -> Result<HashMap<String, f64>> {
1500        // Placeholder - would analyze competitor market shares
1501        let mut landscape = HashMap::new();
1502        landscape.insert("TechCorp".to_string(), 0.35);
1503        landscape.insert("InnovateCo".to_string(), 0.28);
1504        landscape.insert("FutureTech".to_string(), 0.22);
1505        landscape.insert("Others".to_string(), 0.15);
1506
1507        Ok(landscape)
1508    }
1509
1510    async fn generate_market_forecast(&self) -> Result<HashMap<String, f64>> {
1511        // Placeholder - would generate growth forecasts
1512        let mut forecast = HashMap::new();
1513        forecast.insert("Q1_growth".to_string(), 0.12);
1514        forecast.insert("Q2_growth".to_string(), 0.15);
1515        forecast.insert("Q3_growth".to_string(), 0.18);
1516        forecast.insert("Q4_growth".to_string(), 0.10);
1517
1518        Ok(forecast)
1519    }
1520
1521    // ===== BACKGROUND ANALYSIS TASKS =====
1522
1523    async fn start_recommendation_engine(&self) -> JoinHandle<()> {
1524        let interval =
1525            std::time::Duration::from_secs(self.config.product_recommendation_refresh_hours * 3600);
1526
1527        tokio::spawn(async move {
1528            let mut interval_timer = tokio::time::interval(interval);
1529
1530            loop {
1531                interval_timer.tick().await;
1532
1533                // Refresh recommendation models
1534                info!("Refreshing product recommendation engines");
1535
1536                // Placeholder for actual recommendation model training/updating
1537                // Would retrain collaborative filtering, content-based, and hybrid models
1538
1539                debug!("Product recommendation engines refreshed");
1540            }
1541        })
1542    }
1543
1544    async fn start_skill_analysis(&self) -> JoinHandle<()> {
1545        let interval =
1546            std::time::Duration::from_secs(self.config.skill_analysis_interval_hours * 3600);
1547
1548        tokio::spawn(async move {
1549            let mut interval_timer = tokio::time::interval(interval);
1550
1551            loop {
1552                interval_timer.tick().await;
1553
1554                // Analyze employee skills and career progression
1555                info!("Performing employee skill analysis");
1556
1557                // Placeholder for actual skill gap analysis, career path optimization, etc.
1558
1559                debug!("Employee skill analysis completed");
1560            }
1561        })
1562    }
1563
1564    async fn start_market_analysis(&self) -> JoinHandle<()> {
1565        let interval =
1566            std::time::Duration::from_secs(self.config.market_analysis_interval_hours * 3600);
1567
1568        tokio::spawn(async move {
1569            let mut interval_timer = tokio::time::interval(interval);
1570
1571            loop {
1572                interval_timer.tick().await;
1573
1574                // Perform market trend analysis
1575                info!("Performing market trend analysis");
1576
1577                // Placeholder for actual market analysis, competitive intelligence, etc.
1578
1579                debug!("Market trend analysis completed");
1580            }
1581        })
1582    }
1583
1584    async fn start_organizational_optimization(&self) -> JoinHandle<()> {
1585        let interval = std::time::Duration::from_secs(24 * 3600); // Daily
1586
1587        tokio::spawn(async move {
1588            let mut interval_timer = tokio::time::interval(interval);
1589
1590            loop {
1591                interval_timer.tick().await;
1592
1593                // Optimize organizational structure and resource allocation
1594                info!("Performing organizational optimization");
1595
1596                // Placeholder for actual org optimization, team formation, resource allocation
1597
1598                debug!("Organizational optimization completed");
1599            }
1600        })
1601    }
1602}
1603
1604/// Market analysis results
1605#[derive(Debug, Clone, Serialize, Deserialize)]
1606pub struct MarketAnalysis {
1607    /// Performance by category
1608    pub category_performance: HashMap<String, CategoryPerformance>,
1609    /// Trending products
1610    pub trending_products: Vec<String>,
1611    /// Customer segment distribution
1612    pub segment_distribution: HashMap<String, u32>,
1613    /// Market opportunities
1614    pub market_opportunities: Vec<String>,
1615    /// Competitive landscape
1616    pub competitive_landscape: HashMap<String, f64>,
1617    /// Market forecast
1618    pub forecast: HashMap<String, f64>,
1619}
1620
1621/// Enterprise analytics and metrics
1622#[derive(Debug, Clone, Serialize, Deserialize)]
1623pub struct EnterpriseMetrics {
1624    /// Total products
1625    pub total_products: usize,
1626    /// Total employees
1627    pub total_employees: usize,
1628    /// Total customers
1629    pub total_customers: usize,
1630    /// Total revenue
1631    pub total_revenue: f64,
1632    /// Average customer satisfaction
1633    pub avg_customer_satisfaction: f64,
1634    /// Employee engagement score
1635    pub employee_engagement: f64,
1636    /// Organizational efficiency
1637    pub organizational_efficiency: f64,
1638    /// Innovation index
1639    pub innovation_index: f64,
1640    /// Top performing products
1641    pub top_products: Vec<String>,
1642    /// Top performing employees
1643    pub top_employees: Vec<String>,
1644    /// High-value customers
1645    pub high_value_customers: Vec<String>,
1646}
1647
1648impl EnterpriseKnowledgeAnalyzer {
1649    /// Get comprehensive enterprise metrics
1650    pub async fn get_enterprise_metrics(&self) -> Result<EnterpriseMetrics> {
1651        let product_embeddings = self.product_embeddings.read().unwrap();
1652        let employee_embeddings = self.employee_embeddings.read().unwrap();
1653        let customer_embeddings = self.customer_embeddings.read().unwrap();
1654
1655        let total_products = product_embeddings.len();
1656        let total_employees = employee_embeddings.len();
1657        let total_customers = customer_embeddings.len();
1658
1659        // Calculate total revenue
1660        let total_revenue = product_embeddings
1661            .values()
1662            .map(|p| p.sales_metrics.revenue)
1663            .sum();
1664
1665        // Calculate average customer satisfaction
1666        let avg_customer_satisfaction = product_embeddings
1667            .values()
1668            .map(|p| p.ratings.average_rating)
1669            .sum::<f64>()
1670            / total_products.max(1) as f64;
1671
1672        // Calculate employee engagement
1673        let employee_engagement = employee_embeddings
1674            .values()
1675            .map(|e| e.performance_metrics.overall_score)
1676            .sum::<f64>()
1677            / total_employees.max(1) as f64;
1678
1679        // Get top performers
1680        let mut product_scores: Vec<_> = product_embeddings
1681            .iter()
1682            .map(|(id, p)| (id.clone(), p.market_position))
1683            .collect();
1684        product_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1685        let top_products: Vec<String> = product_scores
1686            .into_iter()
1687            .take(10)
1688            .map(|(id, _)| id)
1689            .collect();
1690
1691        let mut employee_scores: Vec<_> = employee_embeddings
1692            .iter()
1693            .map(|(id, e)| (id.clone(), e.performance_metrics.overall_score))
1694            .collect();
1695        employee_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1696        let top_employees: Vec<String> = employee_scores
1697            .into_iter()
1698            .take(10)
1699            .map(|(id, _)| id)
1700            .collect();
1701
1702        let mut customer_values: Vec<_> = customer_embeddings
1703            .iter()
1704            .map(|(id, c)| (id.clone(), c.predicted_ltv))
1705            .collect();
1706        customer_values.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
1707        let high_value_customers: Vec<String> = customer_values
1708            .into_iter()
1709            .take(10)
1710            .map(|(id, _)| id)
1711            .collect();
1712
1713        Ok(EnterpriseMetrics {
1714            total_products,
1715            total_employees,
1716            total_customers,
1717            total_revenue,
1718            avg_customer_satisfaction,
1719            employee_engagement,
1720            organizational_efficiency: 0.75, // Placeholder
1721            innovation_index: 0.68,          // Placeholder
1722            top_products,
1723            top_employees,
1724            high_value_customers,
1725        })
1726    }
1727}
1728
1729#[cfg(test)]
1730mod tests {
1731    use super::*;
1732
1733    #[tokio::test]
1734    async fn test_enterprise_analyzer_creation() {
1735        let config = EnterpriseConfig::default();
1736        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1737
1738        // Test that analyzer is created successfully
1739        assert_eq!(analyzer.product_embeddings.read().unwrap().len(), 0);
1740        assert_eq!(analyzer.employee_embeddings.read().unwrap().len(), 0);
1741        assert_eq!(analyzer.customer_embeddings.read().unwrap().len(), 0);
1742    }
1743
1744    #[tokio::test]
1745    async fn test_product_embedding_generation() {
1746        let config = EnterpriseConfig::default();
1747        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1748
1749        let result = analyzer.generate_product_embedding("test_product").await;
1750        assert!(result.is_ok());
1751
1752        let embedding = result.unwrap();
1753        assert_eq!(embedding.product_id, "test_product");
1754        assert!(embedding.market_position >= 0.0);
1755        assert!(embedding.market_position <= 1.0);
1756        assert_eq!(embedding.embedding.values.len(), 256); // Default dimension
1757    }
1758
1759    #[tokio::test]
1760    async fn test_employee_embedding_generation() {
1761        let config = EnterpriseConfig::default();
1762        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1763
1764        let result = analyzer.generate_employee_embedding("test_employee").await;
1765        assert!(result.is_ok());
1766
1767        let embedding = result.unwrap();
1768        assert_eq!(embedding.employee_id, "test_employee");
1769        assert!(embedding.career_predictions.promotion_likelihood >= 0.0);
1770        assert!(embedding.career_predictions.promotion_likelihood <= 1.0);
1771    }
1772
1773    #[tokio::test]
1774    async fn test_customer_embedding_generation() {
1775        let config = EnterpriseConfig::default();
1776        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1777
1778        let result = analyzer.generate_customer_embedding("test_customer").await;
1779        assert!(result.is_ok());
1780
1781        let embedding = result.unwrap();
1782        assert_eq!(embedding.customer_id, "test_customer");
1783        assert!(embedding.predicted_ltv >= 0.0);
1784        assert!(embedding.churn_risk >= 0.0);
1785        assert!(embedding.churn_risk <= 1.0);
1786    }
1787
1788    #[tokio::test]
1789    async fn test_product_recommendations() {
1790        let config = EnterpriseConfig::default();
1791        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1792
1793        // First generate customer embedding
1794        let _customer = analyzer
1795            .generate_customer_embedding("test_customer")
1796            .await
1797            .unwrap();
1798
1799        let recommendations = analyzer.recommend_products("test_customer", 5).await;
1800        assert!(recommendations.is_ok());
1801
1802        let recs = recommendations.unwrap();
1803        assert!(!recs.is_empty());
1804        assert!(recs.len() <= 5);
1805
1806        for rec in &recs {
1807            assert!(rec.score >= 0.0);
1808            assert!(rec.score <= 1.0);
1809            assert!(rec.confidence >= 0.0);
1810            assert!(rec.confidence <= 1.0);
1811        }
1812    }
1813
1814    #[tokio::test]
1815    async fn test_market_analysis() {
1816        let config = EnterpriseConfig::default();
1817        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1818
1819        // Add some test data
1820        let _product = analyzer
1821            .generate_product_embedding("test_product")
1822            .await
1823            .unwrap();
1824        let _customer = analyzer
1825            .generate_customer_embedding("test_customer")
1826            .await
1827            .unwrap();
1828
1829        let analysis = analyzer.analyze_market_trends().await;
1830        assert!(analysis.is_ok());
1831
1832        let market_analysis = analysis.unwrap();
1833        assert!(!market_analysis.competitive_landscape.is_empty());
1834        assert!(!market_analysis.forecast.is_empty());
1835    }
1836
1837    #[tokio::test]
1838    async fn test_enterprise_metrics() {
1839        let config = EnterpriseConfig::default();
1840        let analyzer = EnterpriseKnowledgeAnalyzer::new(config);
1841
1842        // Add some test data
1843        let _product = analyzer
1844            .generate_product_embedding("test_product")
1845            .await
1846            .unwrap();
1847        let _employee = analyzer
1848            .generate_employee_embedding("test_employee")
1849            .await
1850            .unwrap();
1851        let _customer = analyzer
1852            .generate_customer_embedding("test_customer")
1853            .await
1854            .unwrap();
1855
1856        let metrics = analyzer.get_enterprise_metrics().await;
1857        assert!(metrics.is_ok());
1858
1859        let enterprise_metrics = metrics.unwrap();
1860        assert_eq!(enterprise_metrics.total_products, 1);
1861        assert_eq!(enterprise_metrics.total_employees, 1);
1862        assert_eq!(enterprise_metrics.total_customers, 1);
1863        assert!(enterprise_metrics.total_revenue >= 0.0);
1864    }
1865}