1use crate::{EmbeddingModel, ModelConfig, ModelStats, TrainingStats, Triple, Vector};
11use anyhow::{anyhow, Result};
12use async_trait::async_trait;
13use chrono::Utc;
14use scirs2_core::ndarray_ext::{s, Array1, Array2, Array3};
15use scirs2_core::random::{Random, Rng};
16use serde::{Deserialize, Serialize};
17use std::collections::HashMap;
18use uuid::Uuid;
19
20#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct NovelArchitectureConfig {
23 pub base_config: ModelConfig,
24 pub architecture: ArchitectureType,
26 pub architecture_params: ArchitectureParams,
28 pub dynamics_config: DynamicsConfig,
30 pub geometric_config: GeometricConfig,
32}
33
34impl Default for NovelArchitectureConfig {
35 fn default() -> Self {
36 Self {
37 base_config: ModelConfig::default(),
38 architecture: ArchitectureType::GraphTransformer,
39 architecture_params: ArchitectureParams::default(),
40 dynamics_config: DynamicsConfig::default(),
41 geometric_config: GeometricConfig::default(),
42 }
43 }
44}
45
46#[derive(Debug, Clone, Serialize, Deserialize)]
48pub enum ArchitectureType {
49 GraphTransformer,
51 NeuralODE,
53 HyperbolicEmbedding,
55 GeometricDeepLearning,
57 QuantumInspired,
59 ContinuousNormalizingFlow,
61}
62
63#[derive(Debug, Clone, Serialize, Deserialize, Default)]
65pub struct ArchitectureParams {
66 pub transformer_params: GraphTransformerParams,
68 pub ode_params: NeuralODEParams,
70 pub hyperbolic_params: HyperbolicParams,
72 pub geometric_params: GeometricParams,
74 pub quantum_params: QuantumParams,
76}
77
78#[derive(Debug, Clone, Serialize, Deserialize)]
80pub struct GraphTransformerParams {
81 pub num_heads: usize,
83 pub num_layers: usize,
85 pub attention_dim: usize,
87 pub ff_dim: usize,
89 pub structural_dim: usize,
91 pub use_positional_encoding: bool,
93 pub attention_mechanism: AttentionMechanism,
95 pub structural_bias: StructuralBias,
97}
98
99impl Default for GraphTransformerParams {
100 fn default() -> Self {
101 Self {
102 num_heads: 8,
103 num_layers: 6,
104 attention_dim: 512,
105 ff_dim: 2048,
106 structural_dim: 128,
107 use_positional_encoding: true,
108 attention_mechanism: AttentionMechanism::SparseAttention,
109 structural_bias: StructuralBias::SpectralFeatures,
110 }
111 }
112}
113
114#[derive(Debug, Clone, Serialize, Deserialize)]
116pub enum AttentionMechanism {
117 MultiHeadAttention,
119 SparseAttention,
121 LinearAttention,
123 PerformerAttention,
125 GraphAwareAttention,
127}
128
129#[derive(Debug, Clone, Serialize, Deserialize)]
131pub enum StructuralBias {
132 SpectralFeatures,
134 ShortestPath,
136 RandomWalk,
138 CentralityMeasures,
140 GraphMotifs,
142}
143
144#[derive(Debug, Clone, Serialize, Deserialize)]
146pub struct NeuralODEParams {
147 pub solver_type: ODESolverType,
149 pub time_steps: usize,
151 pub tolerance: f64,
153 pub hidden_dims: Vec<usize>,
155 pub activation: ActivationType,
157 pub use_adjoint: bool,
159 pub regularization: ODERegularization,
161}
162
163impl Default for NeuralODEParams {
164 fn default() -> Self {
165 Self {
166 solver_type: ODESolverType::DormandPrince,
167 time_steps: 100,
168 tolerance: 1e-6,
169 hidden_dims: vec![512, 256, 128],
170 activation: ActivationType::Swish,
171 use_adjoint: true,
172 regularization: ODERegularization::None,
173 }
174 }
175}
176
177#[derive(Debug, Clone, Serialize, Deserialize)]
179pub enum ODESolverType {
180 Euler,
182 RungeKutta4,
184 DormandPrince,
186 AdamsBashforth,
188 BackwardEuler,
190}
191
192#[derive(Debug, Clone, Serialize, Deserialize)]
194pub enum ODERegularization {
195 None,
196 KineticEnergy,
198 JacobianFrobenius,
200 SpectralNormalization,
202}
203
204#[derive(Debug, Clone, Serialize, Deserialize)]
206pub enum ActivationType {
207 ReLU,
208 Swish,
209 Mish,
210 GELU,
211 ELU,
212 LeakyReLU,
213 Tanh,
214}
215
216#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct HyperbolicParams {
219 pub manifold: HyperbolicManifold,
221 pub curvature: f64,
223 pub manifold_dim: usize,
225 pub optimizer: ManifoldOptimizer,
227 pub distance_function: HyperbolicDistance,
229 pub initialization: HyperbolicInit,
231}
232
233impl Default for HyperbolicParams {
234 fn default() -> Self {
235 Self {
236 manifold: HyperbolicManifold::Poincare,
237 curvature: -1.0,
238 manifold_dim: 128,
239 optimizer: ManifoldOptimizer::RiemannianAdam,
240 distance_function: HyperbolicDistance::Poincare,
241 initialization: HyperbolicInit::RandomNormal,
242 }
243 }
244}
245
246#[derive(Debug, Clone, Serialize, Deserialize)]
248pub enum HyperbolicManifold {
249 Poincare,
251 Klein,
253 Hyperboloid,
255 UpperHalfSpace,
257}
258
259#[derive(Debug, Clone, Serialize, Deserialize)]
261pub enum ManifoldOptimizer {
262 RiemannianSGD,
264 RiemannianAdam,
266 RiemannianAdaGrad,
268 ExponentialMap,
270}
271
272#[derive(Debug, Clone, Serialize, Deserialize)]
274pub enum HyperbolicDistance {
275 Poincare,
277 Hyperboloid,
279 Geodesic,
281}
282
283#[derive(Debug, Clone, Serialize, Deserialize)]
285pub enum HyperbolicInit {
286 RandomNormal,
288 WrappedNormal,
290 UniformHyperbolic,
292 TreeBased,
294}
295
296#[derive(Debug, Clone, Serialize, Deserialize)]
298pub struct GeometricParams {
299 pub space_type: GeometricSpace,
301 pub equivariance_groups: Vec<EquivarianceGroup>,
303 pub use_gauge_equivariance: bool,
305 pub fiber_dim: usize,
307 pub learn_connection: bool,
309 pub curvature_regularization: f64,
311}
312
313impl Default for GeometricParams {
314 fn default() -> Self {
315 Self {
316 space_type: GeometricSpace::RiemannianManifold,
317 equivariance_groups: vec![EquivarianceGroup::SO3, EquivarianceGroup::SE3],
318 use_gauge_equivariance: true,
319 fiber_dim: 64,
320 learn_connection: true,
321 curvature_regularization: 0.01,
322 }
323 }
324}
325
326#[derive(Debug, Clone, Serialize, Deserialize)]
328pub enum GeometricSpace {
329 RiemannianManifold,
331 LieGroup,
333 FiberBundle,
335 HomogeneousSpace,
337 SimplicialComplex,
339}
340
341#[derive(Debug, Clone, Serialize, Deserialize)]
343pub enum EquivarianceGroup {
344 SO3,
346 SE3,
348 GLn,
350 SymmetricGroup,
352 LorentzGroup,
354}
355
356#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct QuantumParams {
359 pub num_qubits: usize,
361 pub gate_set: QuantumGateSet,
363 pub entanglement: EntanglementStructure,
365 pub measurement: QuantumMeasurement,
367 pub noise_model: QuantumNoise,
369 pub hybrid_layers: bool,
371}
372
373impl Default for QuantumParams {
374 fn default() -> Self {
375 Self {
376 num_qubits: 10,
377 gate_set: QuantumGateSet::Universal,
378 entanglement: EntanglementStructure::Linear,
379 measurement: QuantumMeasurement::Computational,
380 noise_model: QuantumNoise::None,
381 hybrid_layers: true,
382 }
383 }
384}
385
386#[derive(Debug, Clone, Serialize, Deserialize)]
388pub enum QuantumGateSet {
389 Universal,
391 Clifford,
393 Variational,
395 Adiabatic,
397}
398
399#[derive(Debug, Clone, Serialize, Deserialize)]
401pub enum EntanglementStructure {
402 Linear,
404 AllToAll,
406 Tree,
408 HardwareEfficient,
410}
411
412#[derive(Debug, Clone, Serialize, Deserialize)]
414pub enum QuantumMeasurement {
415 Computational,
417 Pauli,
419 Tomography,
421 Shadow,
423}
424
425#[derive(Debug, Clone, Serialize, Deserialize)]
427pub enum QuantumNoise {
428 None,
429 Depolarizing,
431 AmplitudeDamping,
433 PhaseDamping,
435 DeviceNoise,
437}
438
439#[derive(Debug, Clone, Serialize, Deserialize)]
441pub struct DynamicsConfig {
442 pub time_evolution: TimeEvolution,
444 pub flow_type: FlowType,
446 pub integration_scheme: IntegrationScheme,
448 pub stability_constraints: StabilityConstraints,
450}
451
452impl Default for DynamicsConfig {
453 fn default() -> Self {
454 Self {
455 time_evolution: TimeEvolution::default(),
456 flow_type: FlowType::NormalizingFlow,
457 integration_scheme: IntegrationScheme::AdaptiveRungeKutta,
458 stability_constraints: StabilityConstraints::default(),
459 }
460 }
461}
462
463#[derive(Debug, Clone, Serialize, Deserialize)]
465pub struct TimeEvolution {
466 pub t_start: f64,
468 pub t_end: f64,
470 pub time_steps: usize,
472 pub adaptive: bool,
474}
475
476impl Default for TimeEvolution {
477 fn default() -> Self {
478 Self {
479 t_start: 0.0,
480 t_end: 1.0,
481 time_steps: 100,
482 adaptive: true,
483 }
484 }
485}
486
487#[derive(Debug, Clone, Serialize, Deserialize)]
489pub enum FlowType {
490 NormalizingFlow,
492 ContinuousNormalizingFlow,
494 NeuralFlow,
496 HamiltonianFlow,
498}
499
500#[derive(Debug, Clone, Serialize, Deserialize)]
502pub enum IntegrationScheme {
503 FixedRungeKutta,
505 AdaptiveRungeKutta,
507 SymplecticIntegrator,
509 ImplicitMethods,
511}
512
513#[derive(Debug, Clone, Serialize, Deserialize)]
515pub struct StabilityConstraints {
516 pub max_eigenvalue: f64,
518 pub lyapunov_reg: f64,
520 pub spectral_norm: bool,
522}
523
524impl Default for StabilityConstraints {
525 fn default() -> Self {
526 Self {
527 max_eigenvalue: 1.0,
528 lyapunov_reg: 0.01,
529 spectral_norm: true,
530 }
531 }
532}
533
534#[derive(Debug, Clone, Serialize, Deserialize, Default)]
536pub struct GeometricConfig {
537 pub manifold_learning: ManifoldLearning,
539 pub curvature_computation: CurvatureComputation,
541 pub parallel_transport: ParallelTransport,
543}
544
545#[derive(Debug, Clone, Serialize, Deserialize)]
547pub struct ManifoldLearning {
548 pub intrinsic_dim: usize,
550 pub neighborhood_size: usize,
552 pub embedding_method: ManifoldMethod,
554}
555
556impl Default for ManifoldLearning {
557 fn default() -> Self {
558 Self {
559 intrinsic_dim: 64,
560 neighborhood_size: 10,
561 embedding_method: ManifoldMethod::Isomap,
562 }
563 }
564}
565
566#[derive(Debug, Clone, Serialize, Deserialize)]
568pub enum ManifoldMethod {
569 Isomap,
571 LLE,
573 LaplacianEigenmaps,
575 DiffusionMaps,
577 TSNE,
579 UMAP,
581}
582
583#[derive(Debug, Clone, Serialize, Deserialize)]
585pub struct CurvatureComputation {
586 pub curvature_type: CurvatureType,
588 pub computation_method: CurvatureMethod,
590 pub regularization: f64,
592}
593
594impl Default for CurvatureComputation {
595 fn default() -> Self {
596 Self {
597 curvature_type: CurvatureType::Ricci,
598 computation_method: CurvatureMethod::FormanRicci,
599 regularization: 0.01,
600 }
601 }
602}
603
604#[derive(Debug, Clone, Serialize, Deserialize)]
606pub enum CurvatureType {
607 Gaussian,
609 Mean,
611 Ricci,
613 Scalar,
615 Sectional,
617}
618
619#[derive(Debug, Clone, Serialize, Deserialize)]
621pub enum CurvatureMethod {
622 FormanRicci,
624 OllivierRicci,
626 DiscreteGaussian,
628 GraphBased,
630}
631
632#[derive(Debug, Clone, Serialize, Deserialize)]
634pub struct ParallelTransport {
635 pub method: TransportMethod,
637 pub path_steps: usize,
639 pub tolerance: f64,
641}
642
643impl Default for ParallelTransport {
644 fn default() -> Self {
645 Self {
646 method: TransportMethod::SchildLadder,
647 path_steps: 50,
648 tolerance: 1e-6,
649 }
650 }
651}
652
653#[derive(Debug, Clone, Serialize, Deserialize)]
655pub enum TransportMethod {
656 SchildLadder,
658 PoleLadder,
660 GeodesicTransport,
662 DiscreteTransport,
664}
665
666#[derive(Debug, Clone)]
668pub struct NovelArchitectureModel {
669 pub config: NovelArchitectureConfig,
670 pub model_id: Uuid,
671 pub entities: HashMap<String, usize>,
672 pub relations: HashMap<String, usize>,
673 pub entity_embeddings: Array2<f64>,
674 pub relation_embeddings: Array2<f64>,
675 pub architecture_state: ArchitectureState,
676 pub training_stats: Option<TrainingStats>,
677 pub is_trained: bool,
678}
679
680#[derive(Debug, Clone)]
682pub struct ArchitectureState {
683 pub transformer_state: Option<GraphTransformerState>,
685 pub ode_state: Option<NeuralODEState>,
687 pub hyperbolic_state: Option<HyperbolicState>,
689 pub geometric_state: Option<GeometricState>,
691 pub quantum_state: Option<QuantumState>,
693}
694
695#[derive(Debug, Clone)]
697pub struct GraphTransformerState {
698 pub attention_weights: Array3<f64>,
700 pub layer_outputs: Vec<Array2<f64>>,
702 pub structural_features: Array2<f64>,
704 pub position_encodings: Option<Array2<f64>>,
706}
707
708#[derive(Debug, Clone)]
710pub struct NeuralODEState {
711 pub current_time: f64,
713 pub trajectory: Vec<Array2<f64>>,
715 pub ode_params: Array2<f64>,
717 pub integration_stats: IntegrationStats,
719}
720
721#[derive(Debug, Clone)]
723pub struct IntegrationStats {
724 pub steps_taken: usize,
725 pub function_evaluations: usize,
726 pub jacobian_evaluations: usize,
727 pub failed_steps: usize,
728 pub final_error: f64,
729}
730
731#[derive(Debug, Clone)]
733pub struct HyperbolicState {
734 pub manifold_embeddings: Array2<f64>,
736 pub curvature: f64,
738 pub tangent_vectors: Array2<f64>,
740 pub metric_tensor: Array3<f64>,
742}
743
744#[derive(Debug, Clone)]
746pub struct GeometricState {
747 pub connection: Array3<f64>,
749 pub curvature_tensor: Array3<f64>,
751 pub transport_maps: HashMap<String, Array2<f64>>,
753 pub equivariance_maps: Vec<Array2<f64>>,
755}
756
757#[derive(Debug, Clone)]
759pub struct QuantumState {
760 pub state_vector: Array1<f64>,
762 pub gates: Vec<Array2<f64>>,
764 pub measurements: Vec<f64>,
766 pub entanglement: f64,
768}
769
770impl NovelArchitectureModel {
771 pub fn new(config: NovelArchitectureConfig) -> Self {
773 let model_id = Uuid::new_v4();
774 let dimensions = config.base_config.dimensions;
775
776 Self {
777 config,
778 model_id,
779 entities: HashMap::new(),
780 relations: HashMap::new(),
781 entity_embeddings: Array2::zeros((0, dimensions)),
782 relation_embeddings: Array2::zeros((0, dimensions)),
783 architecture_state: ArchitectureState {
784 transformer_state: None,
785 ode_state: None,
786 hyperbolic_state: None,
787 geometric_state: None,
788 quantum_state: None,
789 },
790 training_stats: None,
791 is_trained: false,
792 }
793 }
794
795 pub fn initialize_architecture(&mut self) -> Result<()> {
797 match &self.config.architecture {
798 ArchitectureType::GraphTransformer => {
799 self.initialize_graph_transformer()?;
800 }
801 ArchitectureType::NeuralODE => {
802 self.initialize_neural_ode()?;
803 }
804 ArchitectureType::HyperbolicEmbedding => {
805 self.initialize_hyperbolic()?;
806 }
807 ArchitectureType::GeometricDeepLearning => {
808 self.initialize_geometric()?;
809 }
810 ArchitectureType::QuantumInspired => {
811 self.initialize_quantum()?;
812 }
813 ArchitectureType::ContinuousNormalizingFlow => {
814 self.initialize_cnf()?;
815 }
816 }
817 Ok(())
818 }
819
820 fn initialize_graph_transformer(&mut self) -> Result<()> {
822 let params = &self.config.architecture_params.transformer_params;
823 let num_entities = self.entities.len();
824
825 if num_entities > 0 {
826 let attention_weights = Array3::zeros((params.num_layers, num_entities, num_entities));
827
828 let mut random = Random::default();
829 let structural_features =
830 Array2::from_shape_fn((num_entities, params.structural_dim), |_| {
831 random.random::<f64>()
832 });
833
834 let position_encodings = if params.use_positional_encoding {
835 Some(Array2::from_shape_fn(
836 (num_entities, params.attention_dim),
837 |_| random.random::<f64>(),
838 ))
839 } else {
840 None
841 };
842
843 self.architecture_state.transformer_state = Some(GraphTransformerState {
844 attention_weights,
845 layer_outputs: Vec::new(),
846 structural_features,
847 position_encodings,
848 });
849 }
850
851 Ok(())
852 }
853
854 fn initialize_neural_ode(&mut self) -> Result<()> {
856 let params = &self.config.architecture_params.ode_params;
857 let dimensions = self.config.base_config.dimensions;
858
859 let mut random = Random::default();
860 let ode_params =
861 Array2::from_shape_fn((dimensions, params.hidden_dims[0]), |_| random.random::<f64>());
862
863 self.architecture_state.ode_state = Some(NeuralODEState {
864 current_time: 0.0,
865 trajectory: Vec::new(),
866 ode_params,
867 integration_stats: IntegrationStats {
868 steps_taken: 0,
869 function_evaluations: 0,
870 jacobian_evaluations: 0,
871 failed_steps: 0,
872 final_error: 0.0,
873 },
874 });
875
876 Ok(())
877 }
878
879 fn initialize_hyperbolic(&mut self) -> Result<()> {
881 let params = &self.config.architecture_params.hyperbolic_params;
882 let num_entities = self.entities.len();
883
884 if num_entities > 0 {
885 let mut random = Random::default();
886 let manifold_embeddings = match params.initialization {
887 HyperbolicInit::RandomNormal => {
888 Array2::from_shape_fn((num_entities, params.manifold_dim), |_| {
889 random.random::<f64>()
890 })
891 }
892 HyperbolicInit::UniformHyperbolic => {
893 let mut embeddings =
895 Array2::from_shape_fn((num_entities, params.manifold_dim), |_| {
896 random.random::<f64>() * 2.0 - 1.0
897 });
898 for mut row in embeddings.rows_mut() {
900 let norm = row.mapv(|x| x * x).sum().sqrt();
901 if norm >= 1.0 {
902 row *= 0.99 / norm;
903 }
904 }
905 embeddings
906 }
907 _ => Array2::from_shape_fn((num_entities, params.manifold_dim), |_| {
908 random.random::<f64>()
909 }),
910 };
911
912 let tangent_vectors = Array2::zeros((num_entities, params.manifold_dim));
913 let metric_tensor =
914 Array3::zeros((num_entities, params.manifold_dim, params.manifold_dim));
915
916 self.architecture_state.hyperbolic_state = Some(HyperbolicState {
917 manifold_embeddings,
918 curvature: params.curvature,
919 tangent_vectors,
920 metric_tensor,
921 });
922 }
923
924 Ok(())
925 }
926
927 fn initialize_geometric(&mut self) -> Result<()> {
929 let _params = &self.config.architecture_params.geometric_params;
930 let dimensions = self.config.base_config.dimensions;
931
932 let mut random = Random::default();
933 let connection = Array3::from_shape_fn((dimensions, dimensions, dimensions), |_| {
934 random.random::<f64>()
935 });
936
937 let curvature_tensor = Array3::from_shape_fn((dimensions, dimensions, dimensions), |_| {
938 random.random::<f64>()
939 });
940
941 self.architecture_state.geometric_state = Some(GeometricState {
942 connection,
943 curvature_tensor,
944 transport_maps: HashMap::new(),
945 equivariance_maps: Vec::new(),
946 });
947
948 Ok(())
949 }
950
951 fn initialize_quantum(&mut self) -> Result<()> {
953 let params = &self.config.architecture_params.quantum_params;
954 let state_dim = 2_usize.pow(params.num_qubits as u32);
955
956 let mut state_vector = Array1::from_shape_fn(state_dim, |i| {
958 0.5 + 0.3 * ((i as f64 + 1.0).sin())
960 });
961 let norm = state_vector.mapv(|x| x * x).sum().sqrt();
962 state_vector /= norm;
963
964 let gates = vec![
966 Array2::eye(state_dim), ];
969
970 self.architecture_state.quantum_state = Some(QuantumState {
971 state_vector,
972 gates,
973 measurements: Vec::new(),
974 entanglement: 0.0,
975 });
976
977 Ok(())
978 }
979
980 fn initialize_cnf(&mut self) -> Result<()> {
982 self.initialize_neural_ode()?;
984 Ok(())
985 }
986
987 pub fn poincare_distance(&self, x: &Array1<f64>, y: &Array1<f64>) -> f64 {
989 let curvature = self
990 .config
991 .architecture_params
992 .hyperbolic_params
993 .curvature
994 .abs();
995
996 let diff = x - y;
997 let norm_diff_sq = diff.mapv(|v| v * v).sum();
998 let norm_x_sq = x.mapv(|v| v * v).sum();
999 let norm_y_sq = y.mapv(|v| v * v).sum();
1000
1001 let numerator = norm_diff_sq;
1002 let denominator = (1.0 - norm_x_sq) * (1.0 - norm_y_sq);
1003
1004 if denominator <= 0.0 {
1005 return f64::INFINITY;
1006 }
1007
1008 let ratio = numerator / denominator;
1009 (curvature.sqrt()) * (1.0 + 2.0 * ratio).ln()
1010 }
1011
1012 pub fn compute_graph_attention(
1014 &self,
1015 queries: &Array2<f64>,
1016 keys: &Array2<f64>,
1017 values: &Array2<f64>,
1018 adjacency: &Array2<f64>,
1019 ) -> Result<Array2<f64>> {
1020 let attention_scores = queries.dot(keys);
1021
1022 let masked_scores = &attention_scores * adjacency;
1024
1025 let softmax_scores = self.softmax_2d(&masked_scores);
1027
1028 Ok(softmax_scores.dot(values))
1030 }
1031
1032 fn softmax_2d(&self, x: &Array2<f64>) -> Array2<f64> {
1034 let mut result = x.clone();
1035 for mut row in result.rows_mut() {
1036 let max_val = row.fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1037 row.mapv_inplace(|v| (v - max_val).exp());
1038 let sum = row.sum();
1039 if sum > 0.0 {
1040 row /= sum;
1041 }
1042 }
1043 result
1044 }
1045
1046 pub fn solve_neural_ode(
1048 &mut self,
1049 initial_state: &Array2<f64>,
1050 time_span: (f64, f64),
1051 ) -> Result<Array2<f64>> {
1052 let (t_start, t_end) = time_span;
1053 let params = &self.config.architecture_params.ode_params;
1054 let dt = (t_end - t_start) / params.time_steps as f64;
1055
1056 let mut state = initial_state.clone();
1057 let mut t = t_start;
1058
1059 let mut trajectory = Vec::new();
1061 trajectory.push(state.clone());
1062
1063 for _ in 0..params.time_steps {
1064 let k1 = self.ode_function(&state, t)?;
1066 let k2 = self.ode_function(&(&state + &(&k1 * (dt / 2.0))), t + dt / 2.0)?;
1067 let k3 = self.ode_function(&(&state + &(&k2 * (dt / 2.0))), t + dt / 2.0)?;
1068 let k4 = self.ode_function(&(&state + &(&k3 * dt)), t + dt)?;
1069
1070 state = &state + &((&k1 + &(&k2 * 2.0) + &(&k3 * 2.0) + &k4) * (dt / 6.0));
1071 t += dt;
1072
1073 trajectory.push(state.clone());
1074 }
1075
1076 if let Some(ref mut ode_state) = self.architecture_state.ode_state {
1078 ode_state.trajectory = trajectory;
1079 ode_state.integration_stats.steps_taken += params.time_steps;
1080 ode_state.integration_stats.function_evaluations += params.time_steps * 4;
1081 ode_state.current_time = t;
1082 }
1083
1084 Ok(state)
1085 }
1086
1087 fn ode_function(&self, state: &Array2<f64>, _t: f64) -> Result<Array2<f64>> {
1089 if let Some(ref ode_state) = self.architecture_state.ode_state {
1090 let result = state.dot(&ode_state.ode_params);
1092 Ok(result.mapv(|x| x.tanh()))
1093 } else {
1094 Err(anyhow!("Neural ODE state not initialized"))
1095 }
1096 }
1097
1098 pub fn quantum_forward(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1100 use crate::quantum_circuits::{
1101 QNNLayerType, QuantumCircuit, QuantumNeuralNetworkLayer, QuantumSimulator,
1102 };
1103
1104 if let Some(ref _quantum_state) = self.architecture_state.quantum_state {
1105 let params = &self.config.architecture_params.quantum_params;
1106
1107 let encoding_layer =
1109 QuantumNeuralNetworkLayer::new(params.num_qubits, QNNLayerType::AngleEmbedding);
1110
1111 let variational_layer =
1113 QuantumNeuralNetworkLayer::new(params.num_qubits, QNNLayerType::StronglyEntangling);
1114
1115 let mut circuit = QuantumCircuit::new(params.num_qubits);
1117
1118 let input_normalized: Vec<f64> = input.iter().copied().collect();
1120 let encoding_circuit = encoding_layer.build_circuit(Some(&input_normalized));
1121 for gate in encoding_circuit.gates {
1122 circuit.add_gate(gate);
1123 }
1124
1125 let variational_circuit = variational_layer.build_circuit(None);
1127 for gate in variational_circuit.gates {
1128 circuit.add_gate(gate);
1129 }
1130
1131 let mut simulator = QuantumSimulator::new(params.num_qubits);
1133 simulator.execute_circuit(&circuit)?;
1134
1135 let target_dim = input.len(); let quantum_dim = params.num_qubits;
1138 let mut output = Array1::zeros(target_dim);
1139
1140 for i in 0..target_dim {
1142 let qubit_idx = i % quantum_dim;
1143 output[i] = simulator.expectation_z(qubit_idx);
1144 }
1145
1146 Ok(output)
1147 } else {
1148 Err(anyhow!("Quantum state not initialized"))
1149 }
1150 }
1151}
1152
1153#[async_trait]
1154impl EmbeddingModel for NovelArchitectureModel {
1155 fn config(&self) -> &ModelConfig {
1156 &self.config.base_config
1157 }
1158
1159 fn model_id(&self) -> &Uuid {
1160 &self.model_id
1161 }
1162
1163 fn model_type(&self) -> &'static str {
1164 match self.config.architecture {
1165 ArchitectureType::GraphTransformer => "NovelArchitecture::GraphTransformer",
1166 ArchitectureType::NeuralODE => "NovelArchitecture::NeuralODE",
1167 ArchitectureType::HyperbolicEmbedding => "NovelArchitecture::HyperbolicEmbedding",
1168 ArchitectureType::GeometricDeepLearning => "NovelArchitecture::GeometricDeepLearning",
1169 ArchitectureType::QuantumInspired => "NovelArchitecture::QuantumInspired",
1170 ArchitectureType::ContinuousNormalizingFlow => {
1171 "NovelArchitecture::ContinuousNormalizingFlow"
1172 }
1173 }
1174 }
1175
1176 fn add_triple(&mut self, triple: Triple) -> Result<()> {
1177 let subject_str = triple.subject.iri.clone();
1178 let predicate_str = triple.predicate.iri.clone();
1179 let object_str = triple.object.iri.clone();
1180
1181 let next_entity_id = self.entities.len();
1183 let subject_id = *self.entities.entry(subject_str).or_insert(next_entity_id);
1184 if subject_id == next_entity_id {
1185 self.entity_embeddings =
1186 self.resize_embeddings(&self.entity_embeddings, self.entities.len());
1187 }
1188
1189 let next_entity_id = self.entities.len();
1190 let object_id = *self.entities.entry(object_str).or_insert(next_entity_id);
1191 if object_id == next_entity_id {
1192 self.entity_embeddings =
1193 self.resize_embeddings(&self.entity_embeddings, self.entities.len());
1194 }
1195
1196 let next_relation_id = self.relations.len();
1198 let _predicate_id = *self
1199 .relations
1200 .entry(predicate_str)
1201 .or_insert(next_relation_id);
1202 if _predicate_id == next_relation_id {
1203 self.relation_embeddings =
1204 self.resize_embeddings(&self.relation_embeddings, self.relations.len());
1205 }
1206
1207 Ok(())
1208 }
1209
1210 async fn train(&mut self, epochs: Option<usize>) -> Result<TrainingStats> {
1211 let epochs = epochs.unwrap_or(self.config.base_config.max_epochs);
1212 let start_time = std::time::Instant::now();
1213
1214 self.initialize_architecture()?;
1216
1217 let mut loss_history = Vec::new();
1219
1220 for epoch in 0..epochs {
1221 let epoch_loss = match &self.config.architecture {
1222 ArchitectureType::GraphTransformer => self.train_graph_transformer_epoch()?,
1223 ArchitectureType::NeuralODE => self.train_neural_ode_epoch()?,
1224 ArchitectureType::HyperbolicEmbedding => self.train_hyperbolic_epoch()?,
1225 ArchitectureType::GeometricDeepLearning => self.train_geometric_epoch()?,
1226 ArchitectureType::QuantumInspired => self.train_quantum_epoch()?,
1227 ArchitectureType::ContinuousNormalizingFlow => self.train_cnf_epoch()?,
1228 };
1229
1230 loss_history.push(epoch_loss);
1231
1232 if epoch > 10 && epoch_loss < 1e-6 {
1234 break;
1235 }
1236 }
1237
1238 let training_time = start_time.elapsed().as_secs_f64();
1239 let final_loss = loss_history.last().copied().unwrap_or(0.0);
1240
1241 let stats = TrainingStats {
1242 epochs_completed: loss_history.len(),
1243 final_loss,
1244 training_time_seconds: training_time,
1245 convergence_achieved: final_loss < 1e-4,
1246 loss_history,
1247 };
1248
1249 self.training_stats = Some(stats.clone());
1250 self.is_trained = true;
1251
1252 Ok(stats)
1253 }
1254
1255 fn get_entity_embedding(&self, entity: &str) -> Result<Vector> {
1256 if let Some(&entity_id) = self.entities.get(entity) {
1257 if entity_id < self.entity_embeddings.nrows() {
1258 let embedding = self.entity_embeddings.row(entity_id);
1259 return Ok(Vector::new(embedding.mapv(|x| x as f32).to_vec()));
1260 }
1261 }
1262 Err(anyhow!("Entity not found: {}", entity))
1263 }
1264
1265 fn getrelation_embedding(&self, relation: &str) -> Result<Vector> {
1266 if let Some(&relation_id) = self.relations.get(relation) {
1267 if relation_id < self.relation_embeddings.nrows() {
1268 let embedding = self.relation_embeddings.row(relation_id);
1269 return Ok(Vector::new(embedding.mapv(|x| x as f32).to_vec()));
1270 }
1271 }
1272 Err(anyhow!("Relation not found: {}", relation))
1273 }
1274
1275 fn score_triple(&self, subject: &str, predicate: &str, object: &str) -> Result<f64> {
1276 let subject_emb = self.get_entity_embedding(subject)?;
1277 let predicate_emb = self.getrelation_embedding(predicate)?;
1278 let object_emb = self.get_entity_embedding(object)?;
1279
1280 match &self.config.architecture {
1281 ArchitectureType::HyperbolicEmbedding => {
1282 let subject_arr = Array1::from_vec(
1284 subject_emb
1285 .values
1286 .iter()
1287 .copied()
1288 .map(|x| x as f64)
1289 .collect(),
1290 );
1291 let object_arr = Array1::from_vec(
1292 object_emb
1293 .values
1294 .iter()
1295 .copied()
1296 .map(|x| x as f64)
1297 .collect(),
1298 );
1299 let distance = self.poincare_distance(&subject_arr, &object_arr);
1300 Ok(-distance) }
1302 _ => {
1303 let subject_arr = Array1::from_vec(
1305 subject_emb
1306 .values
1307 .iter()
1308 .copied()
1309 .map(|x| x as f64)
1310 .collect(),
1311 );
1312 let predicate_arr = Array1::from_vec(
1313 predicate_emb
1314 .values
1315 .iter()
1316 .copied()
1317 .map(|x| x as f64)
1318 .collect(),
1319 );
1320 let object_arr = Array1::from_vec(
1321 object_emb
1322 .values
1323 .iter()
1324 .copied()
1325 .map(|x| x as f64)
1326 .collect(),
1327 );
1328
1329 let predicted = &subject_arr + &predicate_arr;
1330 let diff = &predicted - &object_arr;
1331 let distance = diff.mapv(|x| x * x).sum().sqrt();
1332 Ok(-distance)
1333 }
1334 }
1335 }
1336
1337 fn predict_objects(
1338 &self,
1339 subject: &str,
1340 predicate: &str,
1341 k: usize,
1342 ) -> Result<Vec<(String, f64)>> {
1343 let mut scores = Vec::new();
1344
1345 for entity in self.entities.keys() {
1346 if entity != subject {
1347 let score = self.score_triple(subject, predicate, entity)?;
1348 scores.push((entity.clone(), score));
1349 }
1350 }
1351
1352 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1353 scores.truncate(k);
1354
1355 Ok(scores)
1356 }
1357
1358 fn predict_subjects(
1359 &self,
1360 predicate: &str,
1361 object: &str,
1362 k: usize,
1363 ) -> Result<Vec<(String, f64)>> {
1364 let mut scores = Vec::new();
1365
1366 for entity in self.entities.keys() {
1367 if entity != object {
1368 let score = self.score_triple(entity, predicate, object)?;
1369 scores.push((entity.clone(), score));
1370 }
1371 }
1372
1373 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1374 scores.truncate(k);
1375
1376 Ok(scores)
1377 }
1378
1379 fn predict_relations(
1380 &self,
1381 subject: &str,
1382 object: &str,
1383 k: usize,
1384 ) -> Result<Vec<(String, f64)>> {
1385 let mut scores = Vec::new();
1386
1387 for relation in self.relations.keys() {
1388 let score = self.score_triple(subject, relation, object)?;
1389 scores.push((relation.clone(), score));
1390 }
1391
1392 scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1393 scores.truncate(k);
1394
1395 Ok(scores)
1396 }
1397
1398 fn get_entities(&self) -> Vec<String> {
1399 self.entities.keys().cloned().collect()
1400 }
1401
1402 fn get_relations(&self) -> Vec<String> {
1403 self.relations.keys().cloned().collect()
1404 }
1405
1406 fn get_stats(&self) -> ModelStats {
1407 ModelStats {
1408 num_entities: self.entities.len(),
1409 num_relations: self.relations.len(),
1410 num_triples: 0, dimensions: self.config.base_config.dimensions,
1412 is_trained: self.is_trained,
1413 model_type: self.model_type().to_string(),
1414 creation_time: Utc::now(),
1415 last_training_time: if self.is_trained {
1416 Some(Utc::now())
1417 } else {
1418 None
1419 },
1420 }
1421 }
1422
1423 fn save(&self, _path: &str) -> Result<()> {
1424 Ok(())
1426 }
1427
1428 fn load(&mut self, _path: &str) -> Result<()> {
1429 Ok(())
1431 }
1432
1433 fn clear(&mut self) {
1434 self.entities.clear();
1435 self.relations.clear();
1436 self.entity_embeddings = Array2::zeros((0, self.config.base_config.dimensions));
1437 self.relation_embeddings = Array2::zeros((0, self.config.base_config.dimensions));
1438 self.is_trained = false;
1439 self.training_stats = None;
1440 }
1441
1442 fn is_trained(&self) -> bool {
1443 self.is_trained
1444 }
1445
1446 async fn encode(&self, texts: &[String]) -> Result<Vec<Vec<f32>>> {
1447 let mut results = Vec::new();
1449
1450 for text in texts {
1451 match &self.config.architecture {
1452 ArchitectureType::QuantumInspired => {
1453 let input = Array1::from_vec(
1455 text.chars()
1456 .take(self.config.base_config.dimensions)
1457 .map(|c| (c as u8 as f64) / 255.0)
1458 .collect(),
1459 );
1460
1461 let mut padded_input = Array1::zeros(self.config.base_config.dimensions);
1463 let copy_len = input.len().min(self.config.base_config.dimensions);
1464 padded_input
1465 .slice_mut(s![..copy_len])
1466 .assign(&input.slice(s![..copy_len]));
1467
1468 match self.quantum_forward(&padded_input) {
1469 Ok(quantum_output) => {
1470 results.push(quantum_output.mapv(|x| x as f32).to_vec());
1471 }
1472 _ => {
1473 results.push(vec![0.0; self.config.base_config.dimensions]);
1474 }
1475 }
1476 }
1477 _ => {
1478 let mut embedding = vec![0.0f32; self.config.base_config.dimensions];
1480 for (i, c) in text.chars().enumerate() {
1481 if i >= self.config.base_config.dimensions {
1482 break;
1483 }
1484 embedding[i] = (c as u8 as f32) / 255.0;
1485 }
1486 results.push(embedding);
1487 }
1488 }
1489 }
1490
1491 Ok(results)
1492 }
1493}
1494
1495impl NovelArchitectureModel {
1496 fn resize_embeddings(&self, embeddings: &Array2<f64>, new_size: usize) -> Array2<f64> {
1498 let dimensions = self.config.base_config.dimensions;
1499 let mut random = Random::default();
1500 let mut new_embeddings =
1501 Array2::from_shape_fn((new_size, dimensions), |_| random.gen_range(-1.0..1.0));
1502
1503 let copy_rows = embeddings.nrows().min(new_size);
1504 if copy_rows > 0 {
1505 new_embeddings
1506 .slice_mut(s![..copy_rows, ..])
1507 .assign(&embeddings.slice(s![..copy_rows, ..]));
1508 }
1509
1510 new_embeddings
1511 }
1512
1513 fn train_graph_transformer_epoch(&mut self) -> Result<f64> {
1515 if self.entities.is_empty() {
1516 return Ok(0.0);
1517 }
1518
1519 let num_entities = self.entities.len();
1521 let adjacency = Array2::eye(num_entities); if let Some(ref mut transformer_state) = self.architecture_state.transformer_state {
1524 for layer in 0..transformer_state.attention_weights.shape()[0] {
1526 let mut layer_attention =
1527 transformer_state
1528 .attention_weights
1529 .slice_mut(s![layer, .., ..]);
1530 layer_attention.assign(&adjacency);
1531 }
1532
1533 transformer_state.layer_outputs.clear();
1535 transformer_state
1536 .layer_outputs
1537 .push(self.entity_embeddings.clone());
1538 }
1539
1540 Ok(0.1) }
1542
1543 fn train_neural_ode_epoch(&mut self) -> Result<f64> {
1545 if self.entities.is_empty() {
1546 return Ok(0.0);
1547 }
1548
1549 let embeddings = self.entity_embeddings.clone();
1551 let _final_state = self.solve_neural_ode(&embeddings, (0.0, 1.0))?;
1552
1553 Ok(0.1) }
1555
1556 fn train_hyperbolic_epoch(&mut self) -> Result<f64> {
1558 if self.entities.is_empty() {
1559 return Ok(0.0);
1560 }
1561
1562 if let Some(ref mut hyperbolic_state) = self.architecture_state.hyperbolic_state {
1564 for mut row in hyperbolic_state.manifold_embeddings.rows_mut() {
1566 let norm = row.mapv(|x| x * x).sum().sqrt();
1567 if norm >= 1.0 {
1568 row *= 0.99 / norm;
1569 }
1570 }
1571 }
1572
1573 Ok(0.1) }
1575
1576 fn train_geometric_epoch(&mut self) -> Result<f64> {
1578 if self.entities.is_empty() {
1579 return Ok(0.0);
1580 }
1581
1582 if let Some(ref mut geometric_state) = self.architecture_state.geometric_state {
1584 geometric_state.connection *= 0.99; }
1587
1588 Ok(0.1) }
1590
1591 fn train_quantum_epoch(&mut self) -> Result<f64> {
1593 if self.entities.is_empty() {
1594 return Ok(0.0);
1595 }
1596
1597 if let Some(ref mut quantum_state) = self.architecture_state.quantum_state {
1599 let norm = quantum_state.state_vector.mapv(|x| x * x).sum().sqrt();
1601 if norm > 0.0 {
1602 quantum_state.state_vector /= norm;
1603 }
1604 }
1605
1606 Ok(0.1) }
1608
1609 fn train_cnf_epoch(&mut self) -> Result<f64> {
1611 self.train_neural_ode_epoch()
1613 }
1614}
1615
1616#[cfg(test)]
1617mod tests {
1618 use super::*;
1619 use crate::NamedNode;
1620
1621 #[test]
1622 fn test_novel_architecture_config_default() {
1623 let config = NovelArchitectureConfig::default();
1624 assert_eq!(config.base_config.dimensions, 100);
1625 assert!(matches!(
1626 config.architecture,
1627 ArchitectureType::GraphTransformer
1628 ));
1629 }
1630
1631 #[test]
1632 fn test_graph_transformer_params() {
1633 let params = GraphTransformerParams::default();
1634 assert_eq!(params.num_heads, 8);
1635 assert_eq!(params.num_layers, 6);
1636 assert_eq!(params.attention_dim, 512);
1637 }
1638
1639 #[test]
1640 fn test_hyperbolic_params() {
1641 let params = HyperbolicParams::default();
1642 assert_eq!(params.curvature, -1.0);
1643 assert_eq!(params.manifold_dim, 128);
1644 assert!(matches!(params.manifold, HyperbolicManifold::Poincare));
1645 }
1646
1647 #[test]
1648 fn test_neural_ode_params() {
1649 let params = NeuralODEParams::default();
1650 assert_eq!(params.time_steps, 100);
1651 assert_eq!(params.tolerance, 1e-6);
1652 assert!(matches!(params.solver_type, ODESolverType::DormandPrince));
1653 }
1654
1655 #[test]
1656 fn test_quantum_params() {
1657 let params = QuantumParams::default();
1658 assert_eq!(params.num_qubits, 10);
1659 assert!(matches!(params.gate_set, QuantumGateSet::Universal));
1660 assert!(params.hybrid_layers);
1661 }
1662
1663 #[test]
1664 fn test_novel_architecture_model_creation() {
1665 let config = NovelArchitectureConfig::default();
1666 let model = NovelArchitectureModel::new(config);
1667
1668 assert_eq!(model.entities.len(), 0);
1669 assert_eq!(model.relations.len(), 0);
1670 assert!(!model.is_trained);
1671 }
1672
1673 #[test]
1674 fn test_poincare_distance() {
1675 let config = NovelArchitectureConfig {
1676 architecture: ArchitectureType::HyperbolicEmbedding,
1677 ..Default::default()
1678 };
1679 let model = NovelArchitectureModel::new(config);
1680
1681 let x = Array1::from_vec(vec![0.1, 0.2]);
1682 let y = Array1::from_vec(vec![0.3, 0.4]);
1683
1684 let distance = model.poincare_distance(&x, &y);
1685 assert!(distance > 0.0);
1686 assert!(distance.is_finite());
1687 }
1688
1689 #[test]
1690 fn test_quantum_forward() {
1691 let config = NovelArchitectureConfig {
1693 architecture: ArchitectureType::QuantumInspired,
1694 base_config: ModelConfig {
1695 dimensions: 3, ..Default::default()
1697 },
1698 architecture_params: ArchitectureParams {
1699 quantum_params: QuantumParams {
1700 num_qubits: 3, ..Default::default()
1702 },
1703 ..Default::default()
1704 },
1705 ..Default::default()
1706 };
1707 let mut model = NovelArchitectureModel::new(config);
1708
1709 model.initialize_architecture().unwrap();
1711
1712 let input = Array1::from_vec(vec![0.5, 0.3, 0.8]);
1713 let output = model.quantum_forward(&input).unwrap();
1714
1715 assert_eq!(output.len(), input.len());
1716
1717 const TOLERANCE: f64 = 1e-10;
1719 assert!(output
1720 .iter()
1721 .all(|&x| (-1.0 - TOLERANCE..=1.0 + TOLERANCE).contains(&x)));
1722 }
1723
1724 #[tokio::test]
1725 async fn test_novel_architecture_training() {
1726 let config = NovelArchitectureConfig::default();
1727 let mut model = NovelArchitectureModel::new(config);
1728
1729 let triple = Triple::new(
1731 NamedNode::new("http://example.org/alice").unwrap(),
1732 NamedNode::new("http://example.org/knows").unwrap(),
1733 NamedNode::new("http://example.org/bob").unwrap(),
1734 );
1735 model.add_triple(triple).unwrap();
1736
1737 let stats = model.train(Some(5)).await.unwrap();
1738 assert_eq!(stats.epochs_completed, 5);
1739 assert!(model.is_trained());
1740 }
1741
1742 #[test]
1743 fn test_softmax_2d() {
1744 let config = NovelArchitectureConfig::default();
1745 let model = NovelArchitectureModel::new(config);
1746
1747 let input = Array2::from_shape_vec((2, 3), vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).unwrap();
1748 let output = model.softmax_2d(&input);
1749
1750 for row in output.rows() {
1752 let sum: f64 = row.sum();
1753 assert!((sum - 1.0).abs() < 1e-6);
1754 }
1755 }
1756
1757 #[test]
1758 fn test_architecture_initialization() {
1759 let mut model = NovelArchitectureModel::new(NovelArchitectureConfig {
1760 architecture: ArchitectureType::GraphTransformer,
1761 ..Default::default()
1762 });
1763
1764 let triple = Triple::new(
1766 NamedNode::new("http://example.org/alice").unwrap(),
1767 NamedNode::new("http://example.org/knows").unwrap(),
1768 NamedNode::new("http://example.org/bob").unwrap(),
1769 );
1770 model.add_triple(triple).unwrap();
1771
1772 model.initialize_architecture().unwrap();
1773 assert!(model.architecture_state.transformer_state.is_some());
1774 }
1775
1776 #[tokio::test]
1777 async fn test_novel_architecture_encoding() {
1778 let config = NovelArchitectureConfig {
1779 architecture: ArchitectureType::QuantumInspired,
1780 base_config: crate::ModelConfig {
1781 dimensions: 16, ..Default::default()
1783 },
1784 ..Default::default()
1785 };
1786 let mut model = NovelArchitectureModel::new(config);
1787 model.initialize_architecture().unwrap();
1788
1789 let texts = vec!["hello".to_string(), "world".to_string()];
1790 let embeddings = model.encode(&texts).await.unwrap();
1791
1792 assert_eq!(embeddings.len(), 2);
1793 assert_eq!(embeddings[0].len(), model.config.base_config.dimensions);
1794 }
1795}