Crate oxirs_embed

Crate oxirs_embed 

Source
Expand description

§OxiRS Embed: Advanced Knowledge Graph Embeddings

Version docs.rs

Status: Alpha Release (v0.1.0-alpha.2) ⚠️ APIs may change. Not recommended for production use.

State-of-the-art knowledge graph embedding methods including TransE, DistMult, ComplEx, and RotatE models, enhanced with biomedical AI, GPU acceleration, and specialized text processing.

§Key Features

§🧬 Biomedical AI

  • Specialized biomedical knowledge graph embeddings
  • Gene-disease association prediction
  • Drug-target interaction modeling
  • Pathway analysis and protein interactions
  • Domain-specific text embeddings (SciBERT, BioBERT, etc.)

§🚀 GPU Acceleration

  • Advanced GPU memory pooling and management
  • Intelligent tensor caching
  • Mixed precision training and inference
  • Multi-stream parallel processing
  • Pipeline parallelism for large-scale training

§🤖 Advanced Models

  • Traditional KG embeddings (TransE, DistMult, ComplEx, RotatE, etc.)
  • Graph Neural Networks (GCN, GraphSAGE, GAT)
  • Transformer-based embeddings with fine-tuning
  • Ontology-aware embeddings with reasoning

§📊 Production-Ready

  • Comprehensive evaluation and benchmarking
  • Model registry and version management
  • Intelligent caching and optimization
  • API server for deployment

§Quick Start

use oxirs_embed::{TransE, ModelConfig, Triple, NamedNode, EmbeddingModel};

// Create a knowledge graph embedding model
let config = ModelConfig::default().with_dimensions(128);
let mut model = TransE::new(config);

// Add knowledge triples
let triple = Triple::new(
    NamedNode::new("http://example.org/alice")?,
    NamedNode::new("http://example.org/knows")?,
    NamedNode::new("http://example.org/bob")?,
);
model.add_triple(triple)?;

// Train the model
let stats = model.train(Some(100)).await?;
println!("Training completed: {stats:?}");

§Biomedical Example

use oxirs_embed::{BiomedicalEmbedding, BiomedicalEmbeddingConfig, EmbeddingModel};

// Create biomedical embedding model
let config = BiomedicalEmbeddingConfig::default();
let mut model = BiomedicalEmbedding::new(config);

// Add biomedical knowledge
model.add_gene_disease_association("BRCA1", "breast_cancer", 0.95);
model.add_drug_target_interaction("aspirin", "COX1", 0.92);

// Train and predict
model.train(Some(100)).await?;
let predictions = model.predict_gene_disease_associations("BRCA1", 5)?;

§GPU Acceleration Example

use oxirs_embed::{GpuAccelerationConfig, GpuAccelerationManager};

// Configure GPU acceleration
let config = GpuAccelerationConfig {
    enabled: true,
    mixed_precision: true,
    tensor_caching: true,
    multi_stream: true,
    num_streams: 4,
    ..Default::default()
};

let mut gpu_manager = GpuAccelerationManager::new(config);

// Use accelerated embedding generation
let entities = vec!["entity1".to_string(), "entity2".to_string()];
let embeddings = gpu_manager.accelerated_embedding_generation(
    entities,
    |entity| { /* compute embedding */ vec![0.0; 128].into() }
).await?;

§Examples

See the examples/ directory for comprehensive demonstrations:

  • biomedical_embedding_demo.rs - Biomedical AI capabilities
  • gpu_acceleration_demo.rs - GPU acceleration features
  • integrated_ai_platform_demo.rs - Complete AI platform showcase

Re-exports§

pub use adaptive_learning::AdaptationMetrics;
pub use adaptive_learning::AdaptationStrategy;
pub use adaptive_learning::AdaptiveLearningConfig;
pub use adaptive_learning::AdaptiveLearningSystem;
pub use adaptive_learning::QualityFeedback;
pub use acceleration::AdaptiveEmbeddingAccelerator;
pub use acceleration::GpuEmbeddingAccelerator;
pub use batch_processing::BatchJob;
pub use batch_processing::BatchProcessingConfig;
pub use batch_processing::BatchProcessingManager;
pub use batch_processing::BatchProcessingResult;
pub use batch_processing::BatchProcessingStats;
pub use batch_processing::IncrementalConfig;
pub use batch_processing::JobProgress;
pub use batch_processing::JobStatus;
pub use batch_processing::OutputFormat;
pub use batch_processing::PartitioningStrategy;
pub use batch_processing::RetryConfig;
pub use biomedical_embeddings::BiomedicalEmbedding;
pub use biomedical_embeddings::BiomedicalEmbeddingConfig;
pub use biomedical_embeddings::BiomedicalEntityType;
pub use biomedical_embeddings::BiomedicalRelationType;
pub use biomedical_embeddings::FineTuningConfig;
pub use biomedical_embeddings::PreprocessingRule;
pub use biomedical_embeddings::SpecializedTextConfig;
pub use biomedical_embeddings::SpecializedTextEmbedding;
pub use biomedical_embeddings::SpecializedTextModel;
pub use caching::CacheConfig;
pub use caching::CacheManager;
pub use caching::CachedEmbeddingModel;
pub use causal_representation_learning::CausalDiscoveryAlgorithm;
pub use causal_representation_learning::CausalDiscoveryConfig;
pub use causal_representation_learning::CausalGraph;
pub use causal_representation_learning::CausalRepresentationConfig;
pub use causal_representation_learning::CausalRepresentationModel;
pub use causal_representation_learning::ConstraintSettings;
pub use causal_representation_learning::CounterfactualConfig;
pub use causal_representation_learning::CounterfactualQuery;
pub use causal_representation_learning::DisentanglementConfig;
pub use causal_representation_learning::DisentanglementMethod;
pub use causal_representation_learning::ExplanationType;
pub use causal_representation_learning::IndependenceTest;
pub use causal_representation_learning::InterventionConfig;
pub use causal_representation_learning::ScoreSettings;
pub use causal_representation_learning::StructuralCausalModelConfig;
pub use cloud_integration::AWSSageMakerService;
pub use cloud_integration::AutoScalingConfig;
pub use cloud_integration::AzureMLService;
pub use cloud_integration::BackupConfig;
pub use cloud_integration::CloudIntegrationConfig;
pub use cloud_integration::CloudIntegrationManager;
pub use cloud_integration::CloudProvider;
pub use cloud_integration::CloudService;
pub use cloud_integration::ClusterStatus;
pub use cloud_integration::CostEstimate;
pub use cloud_integration::CostOptimizationResult;
pub use cloud_integration::CostOptimizationStrategy;
pub use cloud_integration::DeploymentConfig;
pub use cloud_integration::DeploymentResult;
pub use cloud_integration::DeploymentStatus;
pub use cloud_integration::EndpointInfo;
pub use cloud_integration::FunctionInvocationResult;
pub use cloud_integration::GPUClusterConfig;
pub use cloud_integration::GPUClusterResult;
pub use cloud_integration::LifecyclePolicy;
pub use cloud_integration::OptimizationAction;
pub use cloud_integration::PerformanceTier;
pub use cloud_integration::ReplicationType;
pub use cloud_integration::ServerlessDeploymentResult;
pub use cloud_integration::ServerlessFunctionConfig;
pub use cloud_integration::ServerlessStatus;
pub use cloud_integration::StorageConfig;
pub use cloud_integration::StorageResult;
pub use cloud_integration::StorageStatus;
pub use cloud_integration::StorageType;
pub use compression::CompressedModel;
pub use compression::CompressionStats;
pub use compression::CompressionTarget;
pub use compression::DistillationConfig;
pub use compression::ModelCompressionManager;
pub use compression::NASConfig;
pub use compression::OptimizationTarget;
pub use compression::PruningConfig;
pub use compression::PruningMethod;
pub use compression::QuantizationConfig;
pub use compression::QuantizationMethod;
pub use consciousness_aware_embeddings::AttentionMechanism;
pub use consciousness_aware_embeddings::ConsciousnessAwareEmbedding;
pub use consciousness_aware_embeddings::ConsciousnessInsights;
pub use consciousness_aware_embeddings::ConsciousnessLevel;
pub use consciousness_aware_embeddings::MetaCognition;
pub use consciousness_aware_embeddings::WorkingMemory;
pub use continual_learning::ArchitectureConfig;
pub use continual_learning::BoundaryDetection;
pub use continual_learning::ConsolidationConfig;
pub use continual_learning::ContinualLearningConfig;
pub use continual_learning::ContinualLearningModel;
pub use continual_learning::MemoryConfig;
pub use continual_learning::MemoryType;
pub use continual_learning::MemoryUpdateStrategy;
pub use continual_learning::RegularizationConfig;
pub use continual_learning::ReplayConfig;
pub use continual_learning::ReplayMethod;
pub use continual_learning::TaskConfig;
pub use continual_learning::TaskDetection;
pub use continual_learning::TaskSwitching;
pub use cross_module_performance::CoordinatorConfig;
pub use cross_module_performance::CrossModulePerformanceCoordinator;
pub use cross_module_performance::GlobalPerformanceMetrics;
pub use cross_module_performance::ModuleMetrics;
pub use cross_module_performance::ModulePerformanceMonitor;
pub use cross_module_performance::OptimizationCache;
pub use cross_module_performance::PerformanceSnapshot;
pub use cross_module_performance::PredictivePerformanceEngine;
pub use cross_module_performance::ResourceAllocator;
pub use cross_module_performance::ResourceTracker;
pub use delta::ChangeRecord;
pub use delta::ChangeStatistics;
pub use delta::ChangeType;
pub use delta::DeltaConfig;
pub use delta::DeltaManager;
pub use delta::DeltaResult;
pub use delta::DeltaStats;
pub use delta::IncrementalStrategy;
pub use enterprise_knowledge::BehaviorMetrics;
pub use enterprise_knowledge::CareerPredictions;
pub use enterprise_knowledge::Category;
pub use enterprise_knowledge::CategoryHierarchy;
pub use enterprise_knowledge::CategoryPerformance;
pub use enterprise_knowledge::ColdStartStrategy;
pub use enterprise_knowledge::CommunicationFrequency;
pub use enterprise_knowledge::CommunicationPreferences;
pub use enterprise_knowledge::CustomerEmbedding;
pub use enterprise_knowledge::CustomerPreferences;
pub use enterprise_knowledge::CustomerRatings;
pub use enterprise_knowledge::CustomerSegment;
pub use enterprise_knowledge::Department;
pub use enterprise_knowledge::DepartmentPerformance;
pub use enterprise_knowledge::EmployeeEmbedding;
pub use enterprise_knowledge::EnterpriseConfig;
pub use enterprise_knowledge::EnterpriseKnowledgeAnalyzer;
pub use enterprise_knowledge::EnterpriseMetrics;
pub use enterprise_knowledge::ExperienceLevel;
pub use enterprise_knowledge::FeatureType;
pub use enterprise_knowledge::MarketAnalysis;
pub use enterprise_knowledge::OrganizationalStructure;
pub use enterprise_knowledge::PerformanceMetrics as EnterprisePerformanceMetrics;
pub use enterprise_knowledge::ProductAvailability;
pub use enterprise_knowledge::ProductEmbedding;
pub use enterprise_knowledge::ProductFeature;
pub use enterprise_knowledge::ProductRecommendation;
pub use enterprise_knowledge::Project;
pub use enterprise_knowledge::ProjectOutcome;
pub use enterprise_knowledge::ProjectParticipation;
pub use enterprise_knowledge::ProjectPerformance;
pub use enterprise_knowledge::ProjectStatus;
pub use enterprise_knowledge::Purchase;
pub use enterprise_knowledge::PurchaseChannel;
pub use enterprise_knowledge::RecommendationConfig;
pub use enterprise_knowledge::RecommendationEngine;
pub use enterprise_knowledge::RecommendationEngineType;
pub use enterprise_knowledge::RecommendationPerformance;
pub use enterprise_knowledge::RecommendationReason;
pub use enterprise_knowledge::SalesMetrics;
pub use enterprise_knowledge::Skill;
pub use enterprise_knowledge::SkillCategory;
pub use enterprise_knowledge::Team;
pub use enterprise_knowledge::TeamPerformance;
pub use evaluation::QueryAnsweringEvaluator;
pub use evaluation::QueryEvaluationConfig;
pub use evaluation::QueryEvaluationResults;
pub use evaluation::QueryMetric;
pub use evaluation::QueryResult;
pub use evaluation::QueryTemplate;
pub use evaluation::QueryType;
pub use evaluation::ReasoningChain;
pub use evaluation::ReasoningEvaluationConfig;
pub use evaluation::ReasoningEvaluationResults;
pub use evaluation::ReasoningRule;
pub use evaluation::ReasoningStep;
pub use evaluation::ReasoningTaskEvaluator;
pub use evaluation::ReasoningType;
pub use evaluation::TypeSpecificResults;
pub use federated_learning::AggregationEngine;
pub use federated_learning::AggregationStrategy;
pub use federated_learning::AuthenticationConfig;
pub use federated_learning::AuthenticationMethod;
pub use federated_learning::CertificateConfig;
pub use federated_learning::ClippingMechanisms;
pub use federated_learning::ClippingMethod;
pub use federated_learning::CommunicationConfig;
pub use federated_learning::CommunicationManager;
pub use federated_learning::CommunicationProtocol;
pub use federated_learning::CompressionAlgorithm;
pub use federated_learning::CompressionConfig;
pub use federated_learning::CompressionEngine;
pub use federated_learning::ConvergenceMetrics;
pub use federated_learning::ConvergenceStatus;
pub use federated_learning::DataSelectionStrategy;
pub use federated_learning::DataStatistics;
pub use federated_learning::EncryptionScheme;
pub use federated_learning::FederatedConfig;
pub use federated_learning::FederatedCoordinator;
pub use federated_learning::FederatedEmbeddingModel;
pub use federated_learning::FederatedMessage;
pub use federated_learning::FederatedRound;
pub use federated_learning::FederationStats;
pub use federated_learning::GlobalModelState;
pub use federated_learning::HardwareAccelerator;
pub use federated_learning::KeyManager;
pub use federated_learning::LocalModelState;
pub use federated_learning::LocalTrainingStats;
pub use federated_learning::LocalUpdate;
pub use federated_learning::MetaLearningConfig;
pub use federated_learning::NoiseGenerator;
pub use federated_learning::NoiseMechanism;
pub use federated_learning::OutlierAction;
pub use federated_learning::OutlierDetection;
pub use federated_learning::OutlierDetectionMethod;
pub use federated_learning::Participant;
pub use federated_learning::ParticipantCapabilities;
pub use federated_learning::ParticipantStatus;
pub use federated_learning::PersonalizationConfig;
pub use federated_learning::PersonalizationStrategy;
pub use federated_learning::PrivacyAccountant;
pub use federated_learning::PrivacyConfig;
pub use federated_learning::PrivacyEngine;
pub use federated_learning::PrivacyMetrics;
pub use federated_learning::PrivacyParams;
pub use federated_learning::RoundMetrics;
pub use federated_learning::RoundStatus;
pub use federated_learning::SecurityConfig;
pub use federated_learning::SecurityFeature;
pub use federated_learning::SecurityManager;
pub use federated_learning::TrainingConfig;
pub use federated_learning::VerificationEngine;
pub use federated_learning::VerificationMechanism;
pub use federated_learning::VerificationResult;
pub use federated_learning::WeightingScheme;
pub use gpu_acceleration::GpuAccelerationConfig;
pub use gpu_acceleration::GpuAccelerationManager;
pub use gpu_acceleration::GpuMemoryPool;
pub use gpu_acceleration::GpuPerformanceStats;
pub use gpu_acceleration::MixedPrecisionProcessor;
pub use gpu_acceleration::MultiStreamProcessor;
pub use gpu_acceleration::TensorCache;
pub use graphql_api::create_schema;
pub use graphql_api::BatchEmbeddingInput;
pub use graphql_api::BatchEmbeddingResult;
pub use graphql_api::BatchStatus;
pub use graphql_api::DistanceMetric;
pub use graphql_api::EmbeddingFormat;
pub use graphql_api::EmbeddingQueryInput;
pub use graphql_api::EmbeddingResult;
pub use graphql_api::EmbeddingSchema;
pub use graphql_api::GraphQLContext;
pub use graphql_api::ModelInfo;
pub use graphql_api::ModelType;
pub use graphql_api::SimilarityResult;
pub use graphql_api::SimilaritySearchInput;
pub use models::AggregationType;
pub use models::ComplEx;
pub use models::DistMult;
pub use models::GNNConfig;
pub use models::GNNEmbedding;
pub use models::GNNType;
pub use models::PoolingStrategy;
pub use models::RotatE;
pub use models::TransE;
pub use models::TransformerConfig;
pub use models::TransformerEmbedding;
pub use models::TransformerType;
pub use monitoring::Alert;
pub use monitoring::AlertSeverity;
pub use monitoring::AlertThresholds;
pub use monitoring::AlertType;
pub use monitoring::CacheMetrics;
pub use monitoring::ConsoleAlertHandler;
pub use monitoring::DriftMetrics;
pub use monitoring::ErrorEvent;
pub use monitoring::ErrorMetrics;
pub use monitoring::ErrorSeverity;
pub use monitoring::LatencyMetrics;
pub use monitoring::MonitoringConfig;
pub use monitoring::PerformanceMetrics as MonitoringPerformanceMetrics;
pub use monitoring::PerformanceMonitor;
pub use monitoring::QualityAssessment;
pub use monitoring::QualityMetrics;
pub use monitoring::ResourceMetrics;
pub use monitoring::SlackAlertHandler;
pub use monitoring::ThroughputMetrics;
pub use multimodal::AlignmentNetwork;
pub use multimodal::AlignmentObjective;
pub use multimodal::ContrastiveConfig;
pub use multimodal::CrossDomainConfig;
pub use multimodal::CrossModalConfig;
pub use multimodal::KGEncoder;
pub use multimodal::MultiModalEmbedding;
pub use multimodal::MultiModalStats;
pub use multimodal::TextEncoder;
pub use neural_symbolic_integration::ConstraintSatisfactionConfig;
pub use neural_symbolic_integration::ConstraintType;
pub use neural_symbolic_integration::KnowledgeIntegrationConfig;
pub use neural_symbolic_integration::KnowledgeRule;
pub use neural_symbolic_integration::LogicIntegrationConfig;
pub use neural_symbolic_integration::LogicProgrammingConfig;
pub use neural_symbolic_integration::LogicalFormula;
pub use neural_symbolic_integration::NeuralSymbolicConfig;
pub use neural_symbolic_integration::NeuralSymbolicModel;
pub use neural_symbolic_integration::NeuroSymbolicArchitectureConfig;
pub use neural_symbolic_integration::OntologicalConfig;
pub use neural_symbolic_integration::ReasoningEngine;
pub use neural_symbolic_integration::RuleBasedConfig;
pub use neural_symbolic_integration::SymbolicReasoningConfig;
pub use novel_architectures::ActivationType;
pub use novel_architectures::ArchitectureParams;
pub use novel_architectures::ArchitectureState;
pub use novel_architectures::ArchitectureType;
pub use novel_architectures::CurvatureComputation;
pub use novel_architectures::CurvatureMethod;
pub use novel_architectures::CurvatureType;
pub use novel_architectures::DynamicsConfig;
pub use novel_architectures::EntanglementStructure;
pub use novel_architectures::EquivarianceGroup;
pub use novel_architectures::FlowType;
pub use novel_architectures::GeometricConfig;
pub use novel_architectures::GeometricParams;
pub use novel_architectures::GeometricSpace;
pub use novel_architectures::GeometricState;
pub use novel_architectures::GraphTransformerParams;
pub use novel_architectures::GraphTransformerState;
pub use novel_architectures::HyperbolicDistance;
pub use novel_architectures::HyperbolicInit;
pub use novel_architectures::HyperbolicManifold;
pub use novel_architectures::HyperbolicParams;
pub use novel_architectures::HyperbolicState;
pub use novel_architectures::IntegrationScheme;
pub use novel_architectures::IntegrationStats;
pub use novel_architectures::ManifoldLearning;
pub use novel_architectures::ManifoldMethod;
pub use novel_architectures::ManifoldOptimizer;
pub use novel_architectures::NeuralODEParams;
pub use novel_architectures::NeuralODEState;
pub use novel_architectures::NovelArchitectureConfig;
pub use novel_architectures::NovelArchitectureModel;
pub use novel_architectures::ODERegularization;
pub use novel_architectures::ODESolverType;
pub use novel_architectures::ParallelTransport;
pub use novel_architectures::QuantumGateSet;
pub use novel_architectures::QuantumMeasurement;
pub use novel_architectures::QuantumNoise;
pub use novel_architectures::QuantumParams;
pub use novel_architectures::QuantumState;
pub use novel_architectures::StabilityConstraints;
pub use novel_architectures::StructuralBias;
pub use novel_architectures::TimeEvolution;
pub use novel_architectures::TransportMethod;
pub use quantum_circuits::Complex;
pub use quantum_circuits::MeasurementStrategy;
pub use quantum_circuits::QNNLayerType;
pub use quantum_circuits::QuantumApproximateOptimization;
pub use quantum_circuits::QuantumCircuit;
pub use quantum_circuits::QuantumGate;
pub use quantum_circuits::QuantumNeuralNetwork;
pub use quantum_circuits::QuantumNeuralNetworkLayer;
pub use quantum_circuits::QuantumSimulator;
pub use quantum_circuits::VariationalQuantumEigensolver;
pub use research_networks::AuthorEmbedding;
pub use research_networks::Citation;
pub use research_networks::CitationNetwork;
pub use research_networks::CitationType;
pub use research_networks::Collaboration;
pub use research_networks::CollaborationNetwork;
pub use research_networks::NetworkMetrics;
pub use research_networks::PaperSection;
pub use research_networks::PublicationEmbedding;
pub use research_networks::PublicationType;
pub use research_networks::ResearchCommunity;
pub use research_networks::ResearchNetworkAnalyzer;
pub use research_networks::ResearchNetworkConfig;
pub use research_networks::TopicModel;
pub use research_networks::TopicModelingConfig;
pub use vision_language_graph::AggregationFunction;
pub use vision_language_graph::CNNConfig;
pub use vision_language_graph::CrossAttentionConfig;
pub use vision_language_graph::DomainAdaptationConfig;
pub use vision_language_graph::DomainAdaptationMethod;
pub use vision_language_graph::EpisodeConfig;
pub use vision_language_graph::FewShotConfig;
pub use vision_language_graph::FewShotMethod;
pub use vision_language_graph::FusionStrategy;
pub use vision_language_graph::GraphArchitecture;
pub use vision_language_graph::GraphEncoder;
pub use vision_language_graph::GraphEncoderConfig;
pub use vision_language_graph::JointTrainingConfig;
pub use vision_language_graph::LanguageArchitecture;
pub use vision_language_graph::LanguageEncoder;
pub use vision_language_graph::LanguageEncoderConfig;
pub use vision_language_graph::LanguageTransformerConfig;
pub use vision_language_graph::MetaLearner;
pub use vision_language_graph::ModalityEncoding;
pub use vision_language_graph::MultiModalTransformer;
pub use vision_language_graph::MultiModalTransformerConfig;
pub use vision_language_graph::NormalizationType;
pub use vision_language_graph::PoolingType;
pub use vision_language_graph::PositionEncodingType;
pub use vision_language_graph::ReadoutFunction;
pub use vision_language_graph::TaskCategory;
pub use vision_language_graph::TaskSpecificParams;
pub use vision_language_graph::TrainingObjective;
pub use vision_language_graph::TransferLearningConfig;
pub use vision_language_graph::TransferStrategy;
pub use vision_language_graph::ViTConfig;
pub use vision_language_graph::VisionArchitecture;
pub use vision_language_graph::VisionEncoder;
pub use vision_language_graph::VisionEncoderConfig;
pub use vision_language_graph::VisionLanguageGraphConfig;
pub use vision_language_graph::VisionLanguageGraphModel;
pub use vision_language_graph::VisionLanguageGraphStats;
pub use vision_language_graph::ZeroShotConfig;
pub use vision_language_graph::ZeroShotMethod;
pub use crate::model_registry::ModelRegistry;
pub use crate::model_registry::ModelVersion;
pub use crate::model_registry::ResourceAllocation as ModelResourceAllocation;

Modules§

acceleration
Hardware acceleration modules for embedding computations
adaptive_learning
Adaptive Learning System for Real-Time Embedding Enhancement
advanced_profiler
Advanced Performance Profiler
application_tasks
Application-specific evaluation tasks for embedding models
batch_processing
Offline batch embedding generation with incremental updates
biological_computing
Biological Computing for Knowledge Graph Embeddings
biomedical_embeddings
Biomedical knowledge graph embeddings for scientific applications
caching
Advanced caching and precomputation system for embedding models
causal_representation_learning
Causal Representation Learning
cloud_integration
Cloud provider integration for embedding services
compression
Model compression and quantization for efficient embedding deployment
consciousness_aware_embeddings
Consciousness-Aware Embedding System
continual_learning
Continual Learning Capabilities
cross_domain_transfer
Cross-domain transfer learning for embedding models
cross_module_performance
Cross-Module Performance Coordinator
delta
Delta computation and incremental update system for embeddings
diffusion_embeddings
Diffusion Model-Based Knowledge Graph Embeddings
enterprise_knowledge
Enterprise Knowledge Graphs - Business Domain Embeddings
evaluation
Evaluation module for embeddings and knowledge graphs
federated_learning
Federated learning module with organized sub-modules
gpu_acceleration
GPU acceleration and optimization features for embedding models
graphql_api
Advanced GraphQL API for embedding queries and management
inference
High-performance inference engine for embedding models
integration
Integration utilities with other OxiRS components
mamba_attention
Mamba and State Space Model Attention Mechanisms
model_registry
Model Registry and Versioning System
models
Embedding model implementations
monitoring
Comprehensive monitoring and metrics system for embedding models
multimodal
Multi-modal embeddings and cross-modal alignment for unified representation learning
neural_symbolic_integration
Neural-Symbolic Integration
neuro_evolution
Neuro-Evolution for Automated Neural Architecture Search
novel_architectures
Novel architectures for cutting-edge embedding techniques
persistence
Model persistence and serialization utilities
quantum_circuits
Advanced Quantum Circuit Implementations for Quantum-Inspired Embeddings
quick_start
Convenience functions for quick setup and common operations
real_time_fine_tuning
Real-time Fine-tuning System
real_time_optimization
Real-time optimization system for knowledge graph embeddings
research_networks
Research Publication Networks - Academic Knowledge Graph Embeddings
training
Training utilities and advanced optimizers for embedding models
utils
Utility functions and helpers for embedding operations
vision_language_graph
Vision-Language-Graph Multi-Modal Integration

Structs§

ModelConfig
Configuration for embedding models
ModelStats
Model statistics
NamedNode
Named node for RDF resources
TrainingStats
Training statistics
Triple
Triple structure for RDF triples
VecVector
Multi-precision vector with enhanced functionality
Vector
Compatibility wrapper for Vector that provides the old interface while using the sophisticated oxirs-vec Vector internally

Enums§

EmbeddingError
Embedding errors

Traits§

EmbeddingModel
Basic embedding model trait