oxirs_core/query/
gpu.rs

1//! GPU-accelerated query operations for massive parallel processing
2//!
3//! This module provides GPU acceleration for RDF query operations using
4//! a generic interface that can work with CUDA, OpenCL, or WebGPU backends.
5
6#![allow(dead_code)]
7
8use crate::model::*;
9use crate::query::plan::ExecutionPlan;
10use crate::OxirsError;
11use std::sync::Arc;
12
13/// GPU backend types
14#[derive(Debug, Clone, Copy, PartialEq)]
15pub enum GpuBackend {
16    /// NVIDIA CUDA
17    Cuda,
18    /// OpenCL (cross-platform)
19    OpenCL,
20    /// WebGPU (modern cross-platform)
21    WebGPU,
22    /// CPU fallback
23    CpuFallback,
24}
25
26/// GPU device information
27#[derive(Debug, Clone)]
28pub struct GpuDevice {
29    /// Device name
30    pub name: String,
31    /// Total memory in bytes
32    pub memory_bytes: usize,
33    /// Number of compute units
34    pub compute_units: usize,
35    /// Maximum work group size
36    pub max_work_group_size: usize,
37    /// Backend type
38    pub backend: GpuBackend,
39}
40
41/// GPU-accelerated query executor
42pub struct GpuQueryExecutor {
43    /// Available GPU devices
44    devices: Vec<GpuDevice>,
45    /// Selected device index
46    selected_device: usize,
47    /// Memory pool for GPU operations
48    memory_pool: Arc<GpuMemoryPool>,
49}
50
51/// GPU memory pool for efficient allocation
52struct GpuMemoryPool {
53    /// Total pool size
54    total_size: usize,
55    /// Free blocks
56    free_blocks: Vec<MemoryBlock>,
57    /// Allocated blocks
58    allocated_blocks: Vec<MemoryBlock>,
59}
60
61/// Memory block on GPU
62#[derive(Debug, Clone)]
63struct MemoryBlock {
64    /// Offset in pool
65    offset: usize,
66    /// Size in bytes
67    size: usize,
68    /// Whether currently allocated
69    allocated: bool,
70}
71
72/// GPU kernel for triple pattern matching
73#[repr(C)]
74struct TripleMatchKernel {
75    /// Pattern to match (encoded)
76    pattern: [u32; 3],
77    /// Flags for which components to match
78    match_flags: u32,
79    /// Output buffer offset
80    output_offset: u32,
81}
82
83/// GPU-optimized triple representation
84#[repr(C)]
85struct GpuTriple {
86    /// Subject ID
87    subject_id: u32,
88    /// Predicate ID  
89    predicate_id: u32,
90    /// Object ID
91    object_id: u32,
92    /// Flags and metadata
93    flags: u32,
94}
95
96impl GpuQueryExecutor {
97    /// Create new GPU query executor
98    pub fn new() -> Result<Self, OxirsError> {
99        let devices = Self::detect_devices()?;
100
101        if devices.is_empty() {
102            return Err(OxirsError::Query("No GPU devices available".to_string()));
103        }
104
105        Ok(Self {
106            devices: devices.clone(),
107            selected_device: 0,
108            memory_pool: Arc::new(GpuMemoryPool::new(
109                devices[0].memory_bytes / 2, // Use half of GPU memory
110            )),
111        })
112    }
113
114    /// Detect available GPU devices
115    fn detect_devices() -> Result<Vec<GpuDevice>, OxirsError> {
116        let mut devices = Vec::new();
117
118        // Try CUDA first
119        if let Some(cuda_devices) = Self::detect_cuda_devices() {
120            devices.extend(cuda_devices);
121        }
122
123        // Try OpenCL
124        if let Some(opencl_devices) = Self::detect_opencl_devices() {
125            devices.extend(opencl_devices);
126        }
127
128        // Try WebGPU
129        if let Some(webgpu_devices) = Self::detect_webgpu_devices() {
130            devices.extend(webgpu_devices);
131        }
132
133        // Always add CPU fallback
134        devices.push(GpuDevice {
135            name: "CPU Fallback".to_string(),
136            memory_bytes: 8 * 1024 * 1024 * 1024, // 8GB
137            compute_units: std::thread::available_parallelism()
138                .map(|p| p.get())
139                .unwrap_or(1),
140            max_work_group_size: 1024,
141            backend: GpuBackend::CpuFallback,
142        });
143
144        Ok(devices)
145    }
146
147    /// Detect CUDA devices
148    fn detect_cuda_devices() -> Option<Vec<GpuDevice>> {
149        // Placeholder - would use CUDA API
150        None
151    }
152
153    /// Detect OpenCL devices
154    fn detect_opencl_devices() -> Option<Vec<GpuDevice>> {
155        // Placeholder - would use OpenCL API
156        None
157    }
158
159    /// Detect WebGPU devices
160    fn detect_webgpu_devices() -> Option<Vec<GpuDevice>> {
161        // Placeholder - would use WebGPU API
162        None
163    }
164
165    /// Execute query plan on GPU
166    pub fn execute_plan(
167        &self,
168        plan: &ExecutionPlan,
169        data: &GpuData,
170    ) -> Result<GpuResults, OxirsError> {
171        match self.devices[self.selected_device].backend {
172            GpuBackend::Cuda => self.execute_cuda(plan, data),
173            GpuBackend::OpenCL => self.execute_opencl(plan, data),
174            GpuBackend::WebGPU => self.execute_webgpu(plan, data),
175            GpuBackend::CpuFallback => {
176                #[cfg(feature = "parallel")]
177                return self.execute_cpu_parallel(plan, data);
178                #[cfg(not(feature = "parallel"))]
179                return Err(OxirsError::Query(
180                    "CPU fallback requires 'parallel' feature".to_string(),
181                ));
182            }
183        }
184    }
185
186    /// Execute on CUDA
187    fn execute_cuda(
188        &self,
189        _plan: &ExecutionPlan,
190        _data: &GpuData,
191    ) -> Result<GpuResults, OxirsError> {
192        Err(OxirsError::Query("CUDA not implemented".to_string()))
193    }
194
195    /// Execute on OpenCL
196    fn execute_opencl(
197        &self,
198        _plan: &ExecutionPlan,
199        _data: &GpuData,
200    ) -> Result<GpuResults, OxirsError> {
201        Err(OxirsError::Query("OpenCL not implemented".to_string()))
202    }
203
204    /// Execute on WebGPU
205    fn execute_webgpu(
206        &self,
207        _plan: &ExecutionPlan,
208        _data: &GpuData,
209    ) -> Result<GpuResults, OxirsError> {
210        Err(OxirsError::Query("WebGPU not implemented".to_string()))
211    }
212
213    /// Execute with CPU parallel fallback
214    #[cfg(feature = "parallel")]
215    fn execute_cpu_parallel(
216        &self,
217        plan: &ExecutionPlan,
218        data: &GpuData,
219    ) -> Result<GpuResults, OxirsError> {
220        use rayon::prelude::*;
221
222        match plan {
223            ExecutionPlan::TripleScan { pattern } => {
224                // Parallel scan using rayon
225                let results: Vec<usize> = data
226                    .triples
227                    .par_iter()
228                    .enumerate()
229                    .filter_map(|(idx, triple)| {
230                        if self.triple_matches_pattern(triple, pattern) {
231                            Some(idx)
232                        } else {
233                            None
234                        }
235                    })
236                    .collect();
237
238                Ok(GpuResults {
239                    indices: results,
240                    execution_time_ms: 0.0, // Would measure
241                })
242            }
243            _ => Err(OxirsError::Query(
244                "GPU execution not supported for this plan type".to_string(),
245            )),
246        }
247    }
248
249    /// Check if triple matches pattern
250    fn triple_matches_pattern(
251        &self,
252        _triple: &GpuTriple,
253        _pattern: &crate::model::pattern::TriplePattern,
254    ) -> bool {
255        // Simplified matching - would use actual term resolution
256        true
257    }
258
259    /// Upload data to GPU
260    pub fn upload_data(&self, triples: &[Triple]) -> Result<GpuData, OxirsError> {
261        // Convert triples to GPU format
262        let gpu_triples: Vec<GpuTriple> = triples
263            .iter()
264            .map(|t| self.triple_to_gpu(t))
265            .collect::<Result<Vec<_>, _>>()?;
266
267        // Allocate GPU memory
268        let size = gpu_triples.len() * std::mem::size_of::<GpuTriple>();
269        let block = self.memory_pool.allocate(size)?;
270
271        // Would copy to actual GPU memory
272        Ok(GpuData {
273            triples: gpu_triples,
274            memory_block: block,
275        })
276    }
277
278    /// Convert triple to GPU format
279    fn triple_to_gpu(&self, _triple: &Triple) -> Result<GpuTriple, OxirsError> {
280        // Would map terms to IDs
281        Ok(GpuTriple {
282            subject_id: 1,
283            predicate_id: 2,
284            object_id: 3,
285            flags: 0,
286        })
287    }
288}
289
290/// GPU data container
291pub struct GpuData {
292    /// Triples in GPU format
293    triples: Vec<GpuTriple>,
294    /// Memory block allocation
295    memory_block: MemoryBlock,
296}
297
298/// GPU query results
299pub struct GpuResults {
300    /// Matching triple indices
301    pub indices: Vec<usize>,
302    /// Execution time in milliseconds
303    pub execution_time_ms: f32,
304}
305
306impl GpuMemoryPool {
307    fn new(size: usize) -> Self {
308        Self {
309            total_size: size,
310            free_blocks: vec![MemoryBlock {
311                offset: 0,
312                size,
313                allocated: false,
314            }],
315            allocated_blocks: Vec::new(),
316        }
317    }
318
319    fn allocate(&self, size: usize) -> Result<MemoryBlock, OxirsError> {
320        // Simple first-fit allocation
321        for block in &self.free_blocks {
322            if !block.allocated && block.size >= size {
323                return Ok(MemoryBlock {
324                    offset: block.offset,
325                    size,
326                    allocated: true,
327                });
328            }
329        }
330
331        Err(OxirsError::Store("GPU memory exhausted".to_string()))
332    }
333}
334
335/// GPU kernel implementations (OpenCL/CUDA style)
336pub mod kernels {
337    /// Triple pattern matching kernel
338    pub const TRIPLE_MATCH_KERNEL: &str = r#"
339        __kernel void match_triples(
340            __global const uint3* triples,
341            __global const uint* pattern,
342            __global uint* results,
343            const uint num_triples,
344            const uint match_flags
345        ) {
346            const uint gid = get_global_id(0);
347            if (gid >= num_triples) return;
348            
349            const uint3 triple = triples[gid];
350            bool matches = true;
351            
352            // Check subject match
353            if (match_flags & 0x1) {
354                matches &= (triple.x == pattern[0]);
355            }
356            
357            // Check predicate match
358            if (match_flags & 0x2) {
359                matches &= (triple.y == pattern[1]);
360            }
361            
362            // Check object match
363            if (match_flags & 0x4) {
364                matches &= (triple.z == pattern[2]);
365            }
366            
367            if (matches) {
368                // Atomic increment result counter and store index
369                uint idx = atomic_inc(&results[0]);
370                results[idx + 1] = gid;
371            }
372        }
373    "#;
374
375    /// Join kernel for combining results
376    pub const JOIN_KERNEL: &str = r#"
377        __kernel void hash_join(
378            __global const uint* left_results,
379            __global const uint* right_results,
380            __global uint* output,
381            const uint left_size,
382            const uint right_size,
383            const uint join_column
384        ) {
385            const uint gid = get_global_id(0);
386            if (gid >= left_size) return;
387            
388            const uint left_val = left_results[gid * 3 + join_column];
389            
390            // Search for matches in right results
391            for (uint i = 0; i < right_size; i++) {
392                if (right_results[i * 3 + join_column] == left_val) {
393                    // Found match, output combined result
394                    uint idx = atomic_inc(&output[0]);
395                    output[idx * 6 + 1] = left_results[gid * 3];
396                    output[idx * 6 + 2] = left_results[gid * 3 + 1];
397                    output[idx * 6 + 3] = left_results[gid * 3 + 2];
398                    output[idx * 6 + 4] = right_results[i * 3];
399                    output[idx * 6 + 5] = right_results[i * 3 + 1];
400                    output[idx * 6 + 6] = right_results[i * 3 + 2];
401                }
402            }
403        }
404    "#;
405
406    /// Aggregation kernel
407    pub const AGGREGATE_KERNEL: &str = r#"
408        __kernel void count_aggregate(
409            __global const uint* input,
410            __global uint* counts,
411            const uint size,
412            const uint group_column
413        ) {
414            const uint gid = get_global_id(0);
415            if (gid >= size) return;
416            
417            const uint group_val = input[gid * 3 + group_column];
418            atomic_inc(&counts[group_val]);
419        }
420    "#;
421}
422
423/// GPU-accelerated operations
424pub trait GpuAccelerated {
425    /// Check if operation can be GPU accelerated
426    fn can_accelerate(&self) -> bool;
427
428    /// Estimate GPU speedup factor
429    fn estimate_speedup(&self, data_size: usize) -> f32;
430
431    /// Convert to GPU-executable format
432    fn to_gpu_operation(&self) -> Result<GpuOperation, OxirsError>;
433}
434
435/// GPU operation type
436pub enum GpuOperation {
437    /// Pattern matching
438    PatternMatch {
439        pattern: TriplePattern,
440        selectivity: f32,
441    },
442    /// Join operation
443    Join {
444        left_size: usize,
445        right_size: usize,
446        join_type: JoinType,
447    },
448    /// Aggregation
449    Aggregate {
450        function: AggregateFunction,
451        group_by: Option<Variable>,
452    },
453}
454
455/// Join types for GPU
456#[derive(Debug, Clone)]
457pub enum JoinType {
458    Hash,
459    Sort,
460    Index,
461}
462
463/// Aggregate functions
464#[derive(Debug, Clone)]
465pub enum AggregateFunction {
466    Count,
467    Sum,
468    Min,
469    Max,
470    Average,
471}
472
473#[cfg(test)]
474mod tests {
475    use super::*;
476
477    #[test]
478    fn test_gpu_detection() {
479        let devices = GpuQueryExecutor::detect_devices().unwrap();
480
481        // Should at least have CPU fallback
482        assert!(!devices.is_empty());
483        assert_eq!(devices.last().unwrap().backend, GpuBackend::CpuFallback);
484    }
485
486    #[test]
487    fn test_memory_pool() {
488        let pool = GpuMemoryPool::new(1024 * 1024); // 1MB
489
490        let block = pool.allocate(1024).unwrap();
491        assert_eq!(block.size, 1024);
492        assert!(block.allocated);
493    }
494}