1#![allow(dead_code)]
7
8use crate::model::*;
9use crate::query::plan::ExecutionPlan;
10use crate::OxirsError;
11use std::sync::Arc;
12
13#[derive(Debug, Clone, Copy, PartialEq)]
15pub enum GpuBackend {
16 Cuda,
18 OpenCL,
20 WebGPU,
22 CpuFallback,
24}
25
26#[derive(Debug, Clone)]
28pub struct GpuDevice {
29 pub name: String,
31 pub memory_bytes: usize,
33 pub compute_units: usize,
35 pub max_work_group_size: usize,
37 pub backend: GpuBackend,
39}
40
41pub struct GpuQueryExecutor {
43 devices: Vec<GpuDevice>,
45 selected_device: usize,
47 memory_pool: Arc<GpuMemoryPool>,
49}
50
51struct GpuMemoryPool {
53 total_size: usize,
55 free_blocks: Vec<MemoryBlock>,
57 allocated_blocks: Vec<MemoryBlock>,
59}
60
61#[derive(Debug, Clone)]
63struct MemoryBlock {
64 offset: usize,
66 size: usize,
68 allocated: bool,
70}
71
72#[repr(C)]
74struct TripleMatchKernel {
75 pattern: [u32; 3],
77 match_flags: u32,
79 output_offset: u32,
81}
82
83#[repr(C)]
85struct GpuTriple {
86 subject_id: u32,
88 predicate_id: u32,
90 object_id: u32,
92 flags: u32,
94}
95
96impl GpuQueryExecutor {
97 pub fn new() -> Result<Self, OxirsError> {
99 let devices = Self::detect_devices()?;
100
101 if devices.is_empty() {
102 return Err(OxirsError::Query("No GPU devices available".to_string()));
103 }
104
105 Ok(Self {
106 devices: devices.clone(),
107 selected_device: 0,
108 memory_pool: Arc::new(GpuMemoryPool::new(
109 devices[0].memory_bytes / 2, )),
111 })
112 }
113
114 fn detect_devices() -> Result<Vec<GpuDevice>, OxirsError> {
116 let mut devices = Vec::new();
117
118 if let Some(cuda_devices) = Self::detect_cuda_devices() {
120 devices.extend(cuda_devices);
121 }
122
123 if let Some(opencl_devices) = Self::detect_opencl_devices() {
125 devices.extend(opencl_devices);
126 }
127
128 if let Some(webgpu_devices) = Self::detect_webgpu_devices() {
130 devices.extend(webgpu_devices);
131 }
132
133 devices.push(GpuDevice {
135 name: "CPU Fallback".to_string(),
136 memory_bytes: 8 * 1024 * 1024 * 1024, compute_units: std::thread::available_parallelism()
138 .map(|p| p.get())
139 .unwrap_or(1),
140 max_work_group_size: 1024,
141 backend: GpuBackend::CpuFallback,
142 });
143
144 Ok(devices)
145 }
146
147 fn detect_cuda_devices() -> Option<Vec<GpuDevice>> {
149 None
151 }
152
153 fn detect_opencl_devices() -> Option<Vec<GpuDevice>> {
155 None
157 }
158
159 fn detect_webgpu_devices() -> Option<Vec<GpuDevice>> {
161 None
163 }
164
165 pub fn execute_plan(
167 &self,
168 plan: &ExecutionPlan,
169 data: &GpuData,
170 ) -> Result<GpuResults, OxirsError> {
171 match self.devices[self.selected_device].backend {
172 GpuBackend::Cuda => self.execute_cuda(plan, data),
173 GpuBackend::OpenCL => self.execute_opencl(plan, data),
174 GpuBackend::WebGPU => self.execute_webgpu(plan, data),
175 GpuBackend::CpuFallback => {
176 #[cfg(feature = "parallel")]
177 return self.execute_cpu_parallel(plan, data);
178 #[cfg(not(feature = "parallel"))]
179 return Err(OxirsError::Query(
180 "CPU fallback requires 'parallel' feature".to_string(),
181 ));
182 }
183 }
184 }
185
186 fn execute_cuda(
188 &self,
189 _plan: &ExecutionPlan,
190 _data: &GpuData,
191 ) -> Result<GpuResults, OxirsError> {
192 Err(OxirsError::Query("CUDA not implemented".to_string()))
193 }
194
195 fn execute_opencl(
197 &self,
198 _plan: &ExecutionPlan,
199 _data: &GpuData,
200 ) -> Result<GpuResults, OxirsError> {
201 Err(OxirsError::Query("OpenCL not implemented".to_string()))
202 }
203
204 fn execute_webgpu(
206 &self,
207 _plan: &ExecutionPlan,
208 _data: &GpuData,
209 ) -> Result<GpuResults, OxirsError> {
210 Err(OxirsError::Query("WebGPU not implemented".to_string()))
211 }
212
213 #[cfg(feature = "parallel")]
215 fn execute_cpu_parallel(
216 &self,
217 plan: &ExecutionPlan,
218 data: &GpuData,
219 ) -> Result<GpuResults, OxirsError> {
220 use rayon::prelude::*;
221
222 match plan {
223 ExecutionPlan::TripleScan { pattern } => {
224 let results: Vec<usize> = data
226 .triples
227 .par_iter()
228 .enumerate()
229 .filter_map(|(idx, triple)| {
230 if self.triple_matches_pattern(triple, pattern) {
231 Some(idx)
232 } else {
233 None
234 }
235 })
236 .collect();
237
238 Ok(GpuResults {
239 indices: results,
240 execution_time_ms: 0.0, })
242 }
243 _ => Err(OxirsError::Query(
244 "GPU execution not supported for this plan type".to_string(),
245 )),
246 }
247 }
248
249 fn triple_matches_pattern(
251 &self,
252 _triple: &GpuTriple,
253 _pattern: &crate::model::pattern::TriplePattern,
254 ) -> bool {
255 true
257 }
258
259 pub fn upload_data(&self, triples: &[Triple]) -> Result<GpuData, OxirsError> {
261 let gpu_triples: Vec<GpuTriple> = triples
263 .iter()
264 .map(|t| self.triple_to_gpu(t))
265 .collect::<Result<Vec<_>, _>>()?;
266
267 let size = gpu_triples.len() * std::mem::size_of::<GpuTriple>();
269 let block = self.memory_pool.allocate(size)?;
270
271 Ok(GpuData {
273 triples: gpu_triples,
274 memory_block: block,
275 })
276 }
277
278 fn triple_to_gpu(&self, _triple: &Triple) -> Result<GpuTriple, OxirsError> {
280 Ok(GpuTriple {
282 subject_id: 1,
283 predicate_id: 2,
284 object_id: 3,
285 flags: 0,
286 })
287 }
288}
289
290pub struct GpuData {
292 triples: Vec<GpuTriple>,
294 memory_block: MemoryBlock,
296}
297
298pub struct GpuResults {
300 pub indices: Vec<usize>,
302 pub execution_time_ms: f32,
304}
305
306impl GpuMemoryPool {
307 fn new(size: usize) -> Self {
308 Self {
309 total_size: size,
310 free_blocks: vec![MemoryBlock {
311 offset: 0,
312 size,
313 allocated: false,
314 }],
315 allocated_blocks: Vec::new(),
316 }
317 }
318
319 fn allocate(&self, size: usize) -> Result<MemoryBlock, OxirsError> {
320 for block in &self.free_blocks {
322 if !block.allocated && block.size >= size {
323 return Ok(MemoryBlock {
324 offset: block.offset,
325 size,
326 allocated: true,
327 });
328 }
329 }
330
331 Err(OxirsError::Store("GPU memory exhausted".to_string()))
332 }
333}
334
335pub mod kernels {
337 pub const TRIPLE_MATCH_KERNEL: &str = r#"
339 __kernel void match_triples(
340 __global const uint3* triples,
341 __global const uint* pattern,
342 __global uint* results,
343 const uint num_triples,
344 const uint match_flags
345 ) {
346 const uint gid = get_global_id(0);
347 if (gid >= num_triples) return;
348
349 const uint3 triple = triples[gid];
350 bool matches = true;
351
352 // Check subject match
353 if (match_flags & 0x1) {
354 matches &= (triple.x == pattern[0]);
355 }
356
357 // Check predicate match
358 if (match_flags & 0x2) {
359 matches &= (triple.y == pattern[1]);
360 }
361
362 // Check object match
363 if (match_flags & 0x4) {
364 matches &= (triple.z == pattern[2]);
365 }
366
367 if (matches) {
368 // Atomic increment result counter and store index
369 uint idx = atomic_inc(&results[0]);
370 results[idx + 1] = gid;
371 }
372 }
373 "#;
374
375 pub const JOIN_KERNEL: &str = r#"
377 __kernel void hash_join(
378 __global const uint* left_results,
379 __global const uint* right_results,
380 __global uint* output,
381 const uint left_size,
382 const uint right_size,
383 const uint join_column
384 ) {
385 const uint gid = get_global_id(0);
386 if (gid >= left_size) return;
387
388 const uint left_val = left_results[gid * 3 + join_column];
389
390 // Search for matches in right results
391 for (uint i = 0; i < right_size; i++) {
392 if (right_results[i * 3 + join_column] == left_val) {
393 // Found match, output combined result
394 uint idx = atomic_inc(&output[0]);
395 output[idx * 6 + 1] = left_results[gid * 3];
396 output[idx * 6 + 2] = left_results[gid * 3 + 1];
397 output[idx * 6 + 3] = left_results[gid * 3 + 2];
398 output[idx * 6 + 4] = right_results[i * 3];
399 output[idx * 6 + 5] = right_results[i * 3 + 1];
400 output[idx * 6 + 6] = right_results[i * 3 + 2];
401 }
402 }
403 }
404 "#;
405
406 pub const AGGREGATE_KERNEL: &str = r#"
408 __kernel void count_aggregate(
409 __global const uint* input,
410 __global uint* counts,
411 const uint size,
412 const uint group_column
413 ) {
414 const uint gid = get_global_id(0);
415 if (gid >= size) return;
416
417 const uint group_val = input[gid * 3 + group_column];
418 atomic_inc(&counts[group_val]);
419 }
420 "#;
421}
422
423pub trait GpuAccelerated {
425 fn can_accelerate(&self) -> bool;
427
428 fn estimate_speedup(&self, data_size: usize) -> f32;
430
431 fn to_gpu_operation(&self) -> Result<GpuOperation, OxirsError>;
433}
434
435pub enum GpuOperation {
437 PatternMatch {
439 pattern: TriplePattern,
440 selectivity: f32,
441 },
442 Join {
444 left_size: usize,
445 right_size: usize,
446 join_type: JoinType,
447 },
448 Aggregate {
450 function: AggregateFunction,
451 group_by: Option<Variable>,
452 },
453}
454
455#[derive(Debug, Clone)]
457pub enum JoinType {
458 Hash,
459 Sort,
460 Index,
461}
462
463#[derive(Debug, Clone)]
465pub enum AggregateFunction {
466 Count,
467 Sum,
468 Min,
469 Max,
470 Average,
471}
472
473#[cfg(test)]
474mod tests {
475 use super::*;
476
477 #[test]
478 fn test_gpu_detection() {
479 let devices = GpuQueryExecutor::detect_devices().unwrap();
480
481 assert!(!devices.is_empty());
483 assert_eq!(devices.last().unwrap().backend, GpuBackend::CpuFallback);
484 }
485
486 #[test]
487 fn test_memory_pool() {
488 let pool = GpuMemoryPool::new(1024 * 1024); let block = pool.allocate(1024).unwrap();
491 assert_eq!(block.size, 1024);
492 assert!(block.allocated);
493 }
494}