oxirs_cluster/
distributed_query.rs

1//! Distributed Query Processing Module
2//!
3//! Provides distributed SPARQL query execution, optimization, and result aggregation
4//! for the OxiRS cluster system.
5
6use anyhow::Result;
7use serde::{Deserialize, Serialize};
8use std::collections::{BTreeMap, HashMap, HashSet};
9use std::sync::Arc;
10use tokio::sync::RwLock;
11use tracing::{debug, error, info, warn};
12
13use crate::raft::OxirsNodeId;
14
15/// Distributed query execution plan
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct DistributedQueryPlan {
18    pub query_id: String,
19    pub original_sparql: String,
20    pub subqueries: Vec<SubqueryPlan>,
21    pub join_operations: Vec<JoinOperation>,
22    pub aggregation_plan: Option<AggregationPlan>,
23    pub estimated_cost: f64,
24}
25
26/// Subquery execution plan for a specific node
27#[derive(Debug, Clone, Serialize, Deserialize)]
28pub struct SubqueryPlan {
29    pub subquery_id: String,
30    pub target_node: OxirsNodeId,
31    pub sparql_fragment: String,
32    pub variables: Vec<String>,
33    pub estimated_rows: u64,
34    pub estimated_latency_ms: u64,
35}
36
37/// Join operation between subquery results
38#[derive(Debug, Clone, Serialize, Deserialize)]
39pub struct JoinOperation {
40    pub left_subquery: String,
41    pub right_subquery: String,
42    pub join_variables: Vec<String>,
43    pub join_type: JoinType,
44}
45
46#[derive(Debug, Clone, Serialize, Deserialize)]
47pub enum JoinType {
48    Inner,
49    Left,
50    Optional,
51    Union,
52}
53
54/// Aggregation plan for result combination
55#[derive(Debug, Clone, Serialize, Deserialize)]
56pub struct AggregationPlan {
57    pub group_by: Vec<String>,
58    pub aggregates: Vec<AggregateFunction>,
59    pub having_conditions: Vec<String>,
60    pub order_by: Vec<OrderByClause>,
61    pub limit: Option<u64>,
62    pub offset: Option<u64>,
63}
64
65#[derive(Debug, Clone, Serialize, Deserialize)]
66pub struct AggregateFunction {
67    pub function: String,
68    pub variable: String,
69    pub alias: Option<String>,
70}
71
72#[derive(Debug, Clone, Serialize, Deserialize)]
73pub struct OrderByClause {
74    pub variable: String,
75    pub ascending: bool,
76}
77
78/// Query execution statistics
79#[derive(Debug, Clone, Serialize, Deserialize)]
80pub struct QueryStats {
81    pub query_id: String,
82    pub execution_time_ms: u64,
83    pub nodes_involved: u32,
84    pub total_intermediate_results: u64,
85    pub final_result_count: u64,
86    pub network_transfer_bytes: u64,
87    pub cache_hits: u32,
88    pub cache_misses: u32,
89}
90
91/// Result binding for SPARQL variables
92#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
93pub struct ResultBinding {
94    pub variables: BTreeMap<String, String>,
95}
96
97impl Default for ResultBinding {
98    fn default() -> Self {
99        Self::new()
100    }
101}
102
103impl ResultBinding {
104    pub fn new() -> Self {
105        Self {
106            variables: BTreeMap::new(),
107        }
108    }
109
110    pub fn add_binding(&mut self, variable: String, value: String) {
111        self.variables.insert(variable, value);
112    }
113
114    pub fn get(&self, variable: &str) -> Option<&String> {
115        self.variables.get(variable)
116    }
117
118    pub fn merge(&self, other: &ResultBinding) -> Option<ResultBinding> {
119        let mut merged = self.clone();
120        for (var, val) in &other.variables {
121            if let Some(existing) = merged.variables.get(var) {
122                if existing != val {
123                    return None; // Conflict
124                }
125            } else {
126                merged.variables.insert(var.clone(), val.clone());
127            }
128        }
129        Some(merged)
130    }
131}
132
133/// Distributed query executor
134#[derive(Debug)]
135pub struct DistributedQueryExecutor {
136    #[allow(dead_code)]
137    node_id: OxirsNodeId,
138    cluster_nodes: Arc<RwLock<HashSet<OxirsNodeId>>>,
139    query_cache: Arc<RwLock<HashMap<String, Vec<ResultBinding>>>>,
140    statistics: Arc<RwLock<HashMap<String, QueryStats>>>,
141}
142
143impl DistributedQueryExecutor {
144    pub fn new(node_id: OxirsNodeId) -> Self {
145        Self {
146            node_id,
147            cluster_nodes: Arc::new(RwLock::new(HashSet::new())),
148            query_cache: Arc::new(RwLock::new(HashMap::new())),
149            statistics: Arc::new(RwLock::new(HashMap::new())),
150        }
151    }
152
153    /// Add a node to the cluster
154    pub async fn add_node(&self, node_id: OxirsNodeId) {
155        let mut nodes = self.cluster_nodes.write().await;
156        nodes.insert(node_id);
157        info!("Added node {} to distributed query executor", node_id);
158    }
159
160    /// Remove a node from the cluster
161    pub async fn remove_node(&self, node_id: OxirsNodeId) {
162        let mut nodes = self.cluster_nodes.write().await;
163        nodes.remove(&node_id);
164        info!("Removed node {} from distributed query executor", node_id);
165    }
166
167    /// Execute a distributed SPARQL query
168    pub async fn execute_query(&self, sparql: &str) -> Result<Vec<ResultBinding>> {
169        let query_id = uuid::Uuid::new_v4().to_string();
170        let start_time = std::time::Instant::now();
171
172        info!("Executing distributed query {}: {}", query_id, sparql);
173
174        // Check cache first
175        if let Some(cached_results) = self.check_cache(sparql).await {
176            info!("Cache hit for query {}", query_id);
177            return Ok(cached_results);
178        }
179
180        // Create execution plan
181        let plan = self.create_execution_plan(&query_id, sparql).await?;
182
183        // Execute subqueries in parallel
184        let subquery_results = self.execute_subqueries(&plan).await?;
185
186        // Join and aggregate results
187        let final_results = self.combine_results(&plan, subquery_results).await?;
188
189        // Cache results
190        self.cache_results(sparql, &final_results).await;
191
192        // Record statistics
193        let execution_time = start_time.elapsed().as_millis() as u64;
194        self.record_statistics(&query_id, &plan, &final_results, execution_time)
195            .await;
196
197        info!(
198            "Completed distributed query {} in {}ms, {} results",
199            query_id,
200            execution_time,
201            final_results.len()
202        );
203
204        Ok(final_results)
205    }
206
207    /// Create an optimized execution plan for the query
208    async fn create_execution_plan(
209        &self,
210        query_id: &str,
211        sparql: &str,
212    ) -> Result<DistributedQueryPlan> {
213        // Parse SPARQL query (simplified implementation)
214        let parsed = self.parse_sparql(sparql)?;
215
216        // Analyze data distribution
217        let data_distribution = self.analyze_data_distribution().await?;
218
219        // Create subqueries based on data locality
220        let subqueries = self.create_subqueries(&parsed, &data_distribution).await?;
221
222        // Plan join operations
223        let join_operations = self.plan_joins(&subqueries)?;
224
225        // Create aggregation plan if needed
226        let aggregation_plan = self.create_aggregation_plan(&parsed)?;
227
228        // Estimate cost
229        let estimated_cost = self.estimate_cost(&subqueries, &join_operations).await;
230
231        Ok(DistributedQueryPlan {
232            query_id: query_id.to_string(),
233            original_sparql: sparql.to_string(),
234            subqueries,
235            join_operations,
236            aggregation_plan,
237            estimated_cost,
238        })
239    }
240
241    /// Parse SPARQL query into structure (simplified)
242    fn parse_sparql(&self, sparql: &str) -> Result<ParsedQuery> {
243        // This is a simplified parser - in production you'd use a full SPARQL parser
244
245        let mut variables = Vec::new();
246        let mut triple_patterns = Vec::new();
247        let filters = Vec::new();
248
249        // Extract SELECT variables
250        if let Some(select_part) = sparql.split("WHERE").next() {
251            if select_part.contains("SELECT") {
252                let vars_part = select_part.replace("SELECT", "").trim().to_string();
253                if vars_part != "*" {
254                    variables = vars_part
255                        .split_whitespace()
256                        .filter(|v| v.starts_with('?'))
257                        .map(|v| v.to_string())
258                        .collect();
259                }
260            }
261        }
262
263        // Extract triple patterns (very simplified)
264        if let Some(where_part) = sparql.split("WHERE").nth(1) {
265            let clean_where = where_part.replace(['{', '}'], "");
266            for line in clean_where.lines() {
267                let line = line.trim();
268                if !line.is_empty() && line.contains(' ') {
269                    let parts: Vec<&str> = line.split_whitespace().collect();
270                    if parts.len() >= 3 {
271                        triple_patterns.push(TriplePattern {
272                            subject: parts[0].to_string(),
273                            predicate: parts[1].to_string(),
274                            object: parts[2].replace('.', ""),
275                        });
276                    }
277                }
278            }
279        }
280
281        Ok(ParsedQuery {
282            variables,
283            triple_patterns,
284            filters,
285            limit: None,
286            offset: None,
287            order_by: Vec::new(),
288        })
289    }
290
291    /// Analyze data distribution across cluster nodes
292    async fn analyze_data_distribution(&self) -> Result<DataDistribution> {
293        let nodes = self.cluster_nodes.read().await;
294        let mut distribution = DataDistribution {
295            node_triple_counts: HashMap::new(),
296            predicate_distribution: HashMap::new(),
297            subject_distribution: HashMap::new(),
298        };
299
300        // In a real implementation, this would query each node for statistics
301        for &node_id in nodes.iter() {
302            distribution.node_triple_counts.insert(node_id, 10000); // Simulate
303        }
304
305        Ok(distribution)
306    }
307
308    /// Create subqueries for parallel execution
309    async fn create_subqueries(
310        &self,
311        parsed: &ParsedQuery,
312        _distribution: &DataDistribution,
313    ) -> Result<Vec<SubqueryPlan>> {
314        let mut subqueries = Vec::new();
315        let nodes: Vec<_> = self.cluster_nodes.read().await.iter().cloned().collect();
316
317        if nodes.is_empty() {
318            return Err(anyhow::anyhow!("No nodes available for query execution"));
319        }
320
321        // Simple strategy: distribute triple patterns across nodes
322        for (i, triple_pattern) in parsed.triple_patterns.iter().enumerate() {
323            let target_node = nodes[i % nodes.len()];
324
325            let sparql_fragment = format!(
326                "SELECT {} WHERE {{ {} {} {} }}",
327                parsed.variables.join(" "),
328                triple_pattern.subject,
329                triple_pattern.predicate,
330                triple_pattern.object
331            );
332
333            subqueries.push(SubqueryPlan {
334                subquery_id: format!("subquery_{i}"),
335                target_node,
336                sparql_fragment,
337                variables: parsed.variables.clone(),
338                estimated_rows: 1000, // Estimate based on statistics
339                estimated_latency_ms: 50,
340            });
341        }
342
343        Ok(subqueries)
344    }
345
346    /// Plan join operations between subqueries
347    fn plan_joins(&self, subqueries: &[SubqueryPlan]) -> Result<Vec<JoinOperation>> {
348        let mut joins = Vec::new();
349
350        // Create joins between consecutive subqueries that share variables
351        for i in 0..subqueries.len().saturating_sub(1) {
352            let left = &subqueries[i];
353            let right = &subqueries[i + 1];
354
355            // Find common variables
356            let common_vars: Vec<String> = left
357                .variables
358                .iter()
359                .filter(|v| right.variables.contains(v))
360                .cloned()
361                .collect();
362
363            if !common_vars.is_empty() {
364                joins.push(JoinOperation {
365                    left_subquery: left.subquery_id.clone(),
366                    right_subquery: right.subquery_id.clone(),
367                    join_variables: common_vars,
368                    join_type: JoinType::Inner,
369                });
370            }
371        }
372
373        Ok(joins)
374    }
375
376    /// Create aggregation plan if needed
377    fn create_aggregation_plan(&self, parsed: &ParsedQuery) -> Result<Option<AggregationPlan>> {
378        // Check if aggregation is needed (simplified)
379        if parsed.order_by.is_empty() && parsed.limit.is_none() {
380            return Ok(None);
381        }
382
383        Ok(Some(AggregationPlan {
384            group_by: Vec::new(),
385            aggregates: Vec::new(),
386            having_conditions: Vec::new(),
387            order_by: parsed.order_by.clone(),
388            limit: parsed.limit,
389            offset: parsed.offset,
390        }))
391    }
392
393    /// Estimate execution cost
394    async fn estimate_cost(&self, subqueries: &[SubqueryPlan], joins: &[JoinOperation]) -> f64 {
395        let mut total_cost = 0.0;
396
397        // Cost of subqueries
398        for subquery in subqueries {
399            total_cost += subquery.estimated_rows as f64 * 0.001; // Cost per row
400            total_cost += subquery.estimated_latency_ms as f64 * 0.01; // Latency cost
401        }
402
403        // Cost of joins
404        for _join in joins {
405            total_cost += 10.0; // Fixed join cost
406        }
407
408        total_cost
409    }
410
411    /// Execute subqueries in parallel
412    async fn execute_subqueries(
413        &self,
414        plan: &DistributedQueryPlan,
415    ) -> Result<HashMap<String, Vec<ResultBinding>>> {
416        let mut results = HashMap::new();
417        let mut handles = Vec::new();
418
419        for subquery in &plan.subqueries {
420            let subquery_clone = subquery.clone();
421            let handle =
422                tokio::spawn(async move { Self::execute_single_subquery(subquery_clone).await });
423            handles.push((subquery.subquery_id.clone(), handle));
424        }
425
426        // Collect results
427        for (subquery_id, handle) in handles {
428            match handle.await {
429                Ok(Ok(subquery_results)) => {
430                    results.insert(subquery_id, subquery_results);
431                }
432                Ok(Err(e)) => {
433                    error!("Subquery {} failed: {}", subquery_id, e);
434                    return Err(e);
435                }
436                Err(e) => {
437                    error!("Subquery {} task failed: {}", subquery_id, e);
438                    return Err(anyhow::anyhow!("Task execution failed: {}", e));
439                }
440            }
441        }
442
443        Ok(results)
444    }
445
446    /// Execute a single subquery on a target node
447    async fn execute_single_subquery(subquery: SubqueryPlan) -> Result<Vec<ResultBinding>> {
448        debug!(
449            "Executing subquery {} on node {}",
450            subquery.subquery_id, subquery.target_node
451        );
452
453        // Create HTTP client for real network communication
454        let client = reqwest::Client::builder()
455            .timeout(tokio::time::Duration::from_millis(
456                subquery.estimated_latency_ms * 3,
457            ))
458            .build()
459            .map_err(|e| anyhow::anyhow!("Failed to create HTTP client: {}", e))?;
460
461        // Construct endpoint URL (assumes standard SPARQL endpoint pattern)
462        let endpoint_url = format!("http://node-{}/sparql", subquery.target_node);
463
464        let response = client
465            .post(&endpoint_url)
466            .header("Content-Type", "application/sparql-query")
467            .header("Accept", "application/sparql-results+json")
468            .body(subquery.sparql_fragment.clone())
469            .send()
470            .await;
471
472        match response {
473            Ok(resp) if resp.status().is_success() => {
474                let json: serde_json::Value = resp
475                    .json()
476                    .await
477                    .map_err(|e| anyhow::anyhow!("Failed to parse JSON response: {}", e))?;
478
479                Self::parse_sparql_json_results(json)
480            }
481            Ok(resp) => {
482                // Network request succeeded but returned error status
483                warn!(
484                    "Node {} returned error status {}: falling back to simulation",
485                    subquery.target_node,
486                    resp.status()
487                );
488                Self::simulate_subquery_execution(subquery).await
489            }
490            Err(e) => {
491                // Network request failed - fall back to simulation for development
492                warn!(
493                    "Failed to reach node {}: {} - falling back to simulation",
494                    subquery.target_node, e
495                );
496                Self::simulate_subquery_execution(subquery).await
497            }
498        }
499    }
500
501    /// Parse SPARQL JSON results into ResultBinding format
502    fn parse_sparql_json_results(json: serde_json::Value) -> Result<Vec<ResultBinding>> {
503        let bindings_array = json
504            .get("results")
505            .and_then(|r| r.get("bindings"))
506            .and_then(|b| b.as_array())
507            .ok_or_else(|| anyhow::anyhow!("Invalid SPARQL JSON results format"))?;
508
509        let mut results = Vec::new();
510        for binding_obj in bindings_array {
511            if let Some(binding_map) = binding_obj.as_object() {
512                let mut result_binding = ResultBinding::new();
513
514                for (var_name, var_value) in binding_map {
515                    if let Some(value_obj) = var_value.as_object() {
516                        let value = value_obj
517                            .get("value")
518                            .and_then(|v| v.as_str())
519                            .unwrap_or("")
520                            .to_string();
521                        result_binding.add_binding(format!("?{var_name}"), value);
522                    }
523                }
524                results.push(result_binding);
525            }
526        }
527
528        Ok(results)
529    }
530
531    /// Simulate subquery execution for development/fallback
532    async fn simulate_subquery_execution(subquery: SubqueryPlan) -> Result<Vec<ResultBinding>> {
533        // Simulate network latency
534        tokio::time::sleep(tokio::time::Duration::from_millis(
535            subquery.estimated_latency_ms,
536        ))
537        .await;
538
539        // Generate mock results based on query pattern
540        let mut results = Vec::new();
541        let result_count = std::cmp::min(subquery.estimated_rows, 100);
542
543        for i in 0..result_count {
544            let mut binding = ResultBinding::new();
545            for var in &subquery.variables {
546                // Generate more realistic values based on variable names
547                let value = match var.as_str() {
548                    "?s" | "?subject" => format!("http://example.org/resource_{i}"),
549                    "?p" | "?predicate" => format!("http://example.org/property_{}", i % 10),
550                    "?o" | "?object" => format!("\"Object value {i}\""),
551                    "?name" => format!("\"Name {i}\""),
552                    "?type" => "http://example.org/Type".to_string(),
553                    _ => format!("value_{}_{}", subquery.target_node, i),
554                };
555                binding.add_binding(var.clone(), value);
556            }
557            results.push(binding);
558        }
559
560        Ok(results)
561    }
562
563    /// Combine subquery results using joins and aggregation
564    async fn combine_results(
565        &self,
566        plan: &DistributedQueryPlan,
567        subquery_results: HashMap<String, Vec<ResultBinding>>,
568    ) -> Result<Vec<ResultBinding>> {
569        let mut current_results = Vec::new();
570
571        // Start with first subquery results
572        if let Some(first_subquery) = plan.subqueries.first() {
573            if let Some(first_results) = subquery_results.get(&first_subquery.subquery_id) {
574                current_results = first_results.clone();
575            }
576        }
577
578        // Apply joins sequentially
579        for join in &plan.join_operations {
580            if let Some(right_results) = subquery_results.get(&join.right_subquery) {
581                current_results = self
582                    .execute_join(&current_results, right_results, join)
583                    .await?;
584            }
585        }
586
587        // Apply aggregation if specified
588        if let Some(agg_plan) = &plan.aggregation_plan {
589            current_results = self.apply_aggregation(current_results, agg_plan).await?;
590        }
591
592        Ok(current_results)
593    }
594
595    /// Execute a join operation between two result sets
596    async fn execute_join(
597        &self,
598        left_results: &[ResultBinding],
599        right_results: &[ResultBinding],
600        join: &JoinOperation,
601    ) -> Result<Vec<ResultBinding>> {
602        let mut joined_results = Vec::new();
603
604        match join.join_type {
605            JoinType::Inner => {
606                for left_binding in left_results {
607                    for right_binding in right_results {
608                        if self.bindings_compatible(
609                            left_binding,
610                            right_binding,
611                            &join.join_variables,
612                        ) {
613                            if let Some(merged) = left_binding.merge(right_binding) {
614                                joined_results.push(merged);
615                            }
616                        }
617                    }
618                }
619            }
620            JoinType::Left => {
621                for left_binding in left_results {
622                    let mut found_match = false;
623                    for right_binding in right_results {
624                        if self.bindings_compatible(
625                            left_binding,
626                            right_binding,
627                            &join.join_variables,
628                        ) {
629                            if let Some(merged) = left_binding.merge(right_binding) {
630                                joined_results.push(merged);
631                                found_match = true;
632                            }
633                        }
634                    }
635                    if !found_match {
636                        joined_results.push(left_binding.clone());
637                    }
638                }
639            }
640            JoinType::Optional => {
641                // Similar to left join for this implementation
642                joined_results = Box::pin(self.execute_join(
643                    left_results,
644                    right_results,
645                    &JoinOperation {
646                        left_subquery: join.left_subquery.clone(),
647                        right_subquery: join.right_subquery.clone(),
648                        join_variables: join.join_variables.clone(),
649                        join_type: JoinType::Left,
650                    },
651                ))
652                .await?;
653            }
654            JoinType::Union => {
655                joined_results.extend_from_slice(left_results);
656                joined_results.extend_from_slice(right_results);
657                // Remove duplicates
658                joined_results.sort_by(|a, b| format!("{a:?}").cmp(&format!("{b:?}")));
659                joined_results.dedup();
660            }
661        }
662
663        Ok(joined_results)
664    }
665
666    /// Check if two bindings are compatible for joining
667    fn bindings_compatible(
668        &self,
669        left: &ResultBinding,
670        right: &ResultBinding,
671        join_variables: &[String],
672    ) -> bool {
673        for var in join_variables {
674            if let (Some(left_val), Some(right_val)) = (left.get(var), right.get(var)) {
675                if left_val != right_val {
676                    return false;
677                }
678            }
679        }
680        true
681    }
682
683    /// Apply aggregation operations
684    async fn apply_aggregation(
685        &self,
686        mut results: Vec<ResultBinding>,
687        agg_plan: &AggregationPlan,
688    ) -> Result<Vec<ResultBinding>> {
689        // Apply ordering
690        if !agg_plan.order_by.is_empty() {
691            results.sort_by(|a, b| {
692                for order_clause in &agg_plan.order_by {
693                    let empty_string = String::new();
694                    let a_val = a.get(&order_clause.variable).unwrap_or(&empty_string);
695                    let b_val = b.get(&order_clause.variable).unwrap_or(&empty_string);
696                    let cmp = if order_clause.ascending {
697                        a_val.cmp(b_val)
698                    } else {
699                        b_val.cmp(a_val)
700                    };
701                    if cmp != std::cmp::Ordering::Equal {
702                        return cmp;
703                    }
704                }
705                std::cmp::Ordering::Equal
706            });
707        }
708
709        // Apply limit and offset
710        if let Some(offset) = agg_plan.offset {
711            if offset < results.len() as u64 {
712                results = results.into_iter().skip(offset as usize).collect();
713            } else {
714                results.clear();
715            }
716        }
717
718        if let Some(limit) = agg_plan.limit {
719            results.truncate(limit as usize);
720        }
721
722        Ok(results)
723    }
724
725    /// Check query cache
726    async fn check_cache(&self, sparql: &str) -> Option<Vec<ResultBinding>> {
727        let cache = self.query_cache.read().await;
728        cache.get(sparql).cloned()
729    }
730
731    /// Cache query results
732    async fn cache_results(&self, sparql: &str, results: &[ResultBinding]) {
733        let mut cache = self.query_cache.write().await;
734        cache.insert(sparql.to_string(), results.to_vec());
735
736        // Limit cache size
737        if cache.len() > 1000 {
738            let keys_to_remove: Vec<_> = cache.keys().take(100).cloned().collect();
739            for key in keys_to_remove {
740                cache.remove(&key);
741            }
742        }
743    }
744
745    /// Record query execution statistics
746    async fn record_statistics(
747        &self,
748        query_id: &str,
749        plan: &DistributedQueryPlan,
750        results: &[ResultBinding],
751        execution_time_ms: u64,
752    ) {
753        let stats = QueryStats {
754            query_id: query_id.to_string(),
755            execution_time_ms,
756            nodes_involved: plan.subqueries.len() as u32,
757            total_intermediate_results: plan.subqueries.iter().map(|s| s.estimated_rows).sum(),
758            final_result_count: results.len() as u64,
759            network_transfer_bytes: 0, // Would calculate in real implementation
760            cache_hits: 0,
761            cache_misses: 1,
762        };
763
764        let mut statistics = self.statistics.write().await;
765        statistics.insert(query_id.to_string(), stats);
766
767        // Limit statistics storage
768        if statistics.len() > 10000 {
769            let keys_to_remove: Vec<_> = statistics.keys().take(1000).cloned().collect();
770            for key in keys_to_remove {
771                statistics.remove(&key);
772            }
773        }
774    }
775
776    /// Get query statistics
777    pub async fn get_statistics(&self) -> HashMap<String, QueryStats> {
778        self.statistics.read().await.clone()
779    }
780
781    /// Clear query cache
782    pub async fn clear_cache(&self) {
783        let mut cache = self.query_cache.write().await;
784        cache.clear();
785        info!("Query cache cleared");
786    }
787}
788
789/// Parsed SPARQL query structure
790#[derive(Debug, Clone)]
791struct ParsedQuery {
792    variables: Vec<String>,
793    triple_patterns: Vec<TriplePattern>,
794    #[allow(dead_code)]
795    filters: Vec<String>,
796    limit: Option<u64>,
797    offset: Option<u64>,
798    order_by: Vec<OrderByClause>,
799}
800
801#[derive(Debug, Clone)]
802struct TriplePattern {
803    subject: String,
804    predicate: String,
805    object: String,
806}
807
808/// Data distribution information
809#[derive(Debug, Clone)]
810struct DataDistribution {
811    node_triple_counts: HashMap<OxirsNodeId, u64>,
812    #[allow(dead_code)]
813    predicate_distribution: HashMap<String, Vec<OxirsNodeId>>,
814    #[allow(dead_code)]
815    subject_distribution: HashMap<String, Vec<OxirsNodeId>>,
816}
817
818#[cfg(test)]
819mod tests {
820    use super::*;
821
822    #[tokio::test]
823    async fn test_distributed_query_executor_creation() {
824        let executor = DistributedQueryExecutor::new(1);
825        executor.add_node(2).await;
826        executor.add_node(3).await;
827
828        let nodes = executor.cluster_nodes.read().await;
829        assert_eq!(nodes.len(), 2);
830        assert!(nodes.contains(&2));
831        assert!(nodes.contains(&3));
832    }
833
834    #[tokio::test]
835    async fn test_result_binding() {
836        let mut binding1 = ResultBinding::new();
837        binding1.add_binding("?x".to_string(), "value1".to_string());
838
839        let mut binding2 = ResultBinding::new();
840        binding2.add_binding("?y".to_string(), "value2".to_string());
841
842        let merged = binding1.merge(&binding2).unwrap();
843        assert_eq!(merged.get("?x"), Some(&"value1".to_string()));
844        assert_eq!(merged.get("?y"), Some(&"value2".to_string()));
845    }
846
847    #[tokio::test]
848    async fn test_result_binding_conflict() {
849        let mut binding1 = ResultBinding::new();
850        binding1.add_binding("?x".to_string(), "value1".to_string());
851
852        let mut binding2 = ResultBinding::new();
853        binding2.add_binding("?x".to_string(), "value2".to_string());
854
855        let merged = binding1.merge(&binding2);
856        assert!(merged.is_none()); // Should conflict
857    }
858
859    #[test]
860    fn test_sparql_parsing() {
861        let executor = DistributedQueryExecutor::new(1);
862        let sparql = "SELECT ?x ?y WHERE { ?x <predicate> ?y }";
863        let parsed = executor.parse_sparql(sparql).unwrap();
864
865        assert_eq!(parsed.variables, vec!["?x", "?y"]);
866        assert_eq!(parsed.triple_patterns.len(), 1);
867    }
868
869    #[tokio::test]
870    async fn test_query_execution() {
871        let executor = DistributedQueryExecutor::new(1);
872        executor.add_node(2).await;
873        executor.add_node(3).await;
874
875        let sparql = "SELECT ?x WHERE { ?x <type> <Person> }";
876        let results = executor.execute_query(sparql).await.unwrap();
877
878        // Should have some results from the mock execution
879        assert!(!results.is_empty());
880    }
881
882    #[tokio::test]
883    async fn test_query_caching() {
884        let executor = DistributedQueryExecutor::new(1);
885        executor.add_node(2).await;
886
887        let sparql = "SELECT ?x WHERE { ?x <type> <Person> }";
888
889        // First execution - cache miss
890        let results1 = executor.execute_query(sparql).await.unwrap();
891
892        // Second execution - should hit cache
893        let results2 = executor.execute_query(sparql).await.unwrap();
894
895        assert_eq!(results1.len(), results2.len());
896    }
897}