oxirs_chat/rag/
advanced_reasoning.rs

1//! Advanced Reasoning Module for OxiRS Chat RAG System
2//!
3//! Implements sophisticated reasoning capabilities including:
4//! - Multi-step logical inference
5//! - Causal reasoning chains
6//! - Probabilistic reasoning with uncertainty quantification
7//! - Analogical reasoning for pattern matching
8//! - Temporal reasoning for time-sensitive queries
9
10use crate::rag::AssembledContext;
11use anyhow::{anyhow, Result};
12use chrono::{DateTime, Utc};
13use oxirs_core::model::triple::Triple;
14use regex::Regex;
15use serde::{Deserialize, Serialize};
16use std::collections::HashMap;
17use tracing::{debug, info};
18
19/// Configuration for advanced reasoning
20#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct ReasoningConfig {
22    pub max_inference_depth: usize,
23    pub confidence_threshold: f64,
24    pub enable_causal_reasoning: bool,
25    pub enable_temporal_reasoning: bool,
26    pub enable_analogical_reasoning: bool,
27    pub uncertainty_quantification: bool,
28}
29
30impl Default for ReasoningConfig {
31    fn default() -> Self {
32        Self {
33            max_inference_depth: 5,
34            confidence_threshold: 0.7,
35            enable_causal_reasoning: true,
36            enable_temporal_reasoning: true,
37            enable_analogical_reasoning: true,
38            uncertainty_quantification: true,
39        }
40    }
41}
42
43/// Types of reasoning patterns
44#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
45pub enum ReasoningType {
46    /// Direct logical inference (A → B, B → C, therefore A → C)
47    Deductive,
48    /// Pattern-based inference from examples
49    Inductive,
50    /// Cause-and-effect reasoning
51    Causal,
52    /// Time-based sequential reasoning
53    Temporal,
54    /// Similarity-based reasoning
55    Analogical,
56    /// Probabilistic inference with uncertainty
57    Probabilistic,
58}
59
60/// A single reasoning step in a chain
61#[derive(Debug, Clone, Serialize, Deserialize)]
62pub struct ReasoningStep {
63    pub step_id: String,
64    pub reasoning_type: ReasoningType,
65    pub premise_triples: Vec<Triple>,
66    pub conclusion_triple: Option<Triple>,
67    pub confidence: f64,
68    pub explanation: String,
69    pub timestamp: DateTime<Utc>,
70}
71
72/// A complete reasoning chain from premise to conclusion
73#[derive(Debug, Clone, Serialize, Deserialize)]
74pub struct ReasoningChain {
75    pub chain_id: String,
76    pub query: String,
77    pub steps: Vec<ReasoningStep>,
78    pub final_conclusion: Option<Triple>,
79    pub overall_confidence: f64,
80    pub reasoning_time_ms: u64,
81    pub alternative_chains: Vec<AlternativeChain>,
82}
83
84/// Alternative reasoning paths with different conclusions
85#[derive(Debug, Clone, Serialize, Deserialize)]
86pub struct AlternativeChain {
87    pub chain_id: String,
88    pub steps: Vec<ReasoningStep>,
89    pub conclusion: Option<Triple>,
90    pub confidence: f64,
91    pub divergence_point: usize,
92}
93
94/// Result of reasoning analysis
95#[derive(Debug, Clone)]
96pub struct ReasoningResult {
97    pub primary_chain: ReasoningChain,
98    pub supporting_evidence: Vec<Triple>,
99    pub contradicting_evidence: Vec<Triple>,
100    pub uncertainty_factors: Vec<UncertaintyFactor>,
101    pub reasoning_quality: ReasoningQuality,
102}
103
104/// Factors contributing to reasoning uncertainty
105#[derive(Debug, Clone, Serialize, Deserialize)]
106pub struct UncertaintyFactor {
107    pub factor_type: UncertaintyType,
108    pub description: String,
109    pub impact_score: f64,
110    pub mitigation_strategy: Option<String>,
111}
112
113/// Types of uncertainty in reasoning
114#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
115pub enum UncertaintyType {
116    /// Insufficient evidence for conclusion
117    InsufficientEvidence,
118    /// Conflicting evidence exists
119    ConflictingEvidence,
120    /// Temporal inconsistencies
121    TemporalInconsistency,
122    /// Causal chain gaps
123    CausalGaps,
124    /// Statistical uncertainty
125    StatisticalUncertainty,
126}
127
128/// Quality assessment of reasoning process
129#[derive(Debug, Clone, Serialize, Deserialize)]
130pub struct ReasoningQuality {
131    pub logical_consistency: f64,
132    pub evidence_strength: f64,
133    pub chain_completeness: f64,
134    pub temporal_coherence: f64,
135    pub overall_quality: f64,
136}
137
138/// Advanced reasoning engine
139pub struct AdvancedReasoningEngine {
140    config: ReasoningConfig,
141    reasoning_patterns: HashMap<String, ReasoningPattern>,
142    causal_knowledge: CausalKnowledgeBase,
143    temporal_model: TemporalReasoningModel,
144    analogical_matcher: AnalogicalMatcher,
145}
146
147/// Reasoning pattern template
148#[derive(Debug, Clone)]
149struct ReasoningPattern {
150    pattern_id: String,
151    pattern_type: ReasoningType,
152    premise_template: String,
153    conclusion_template: String,
154    confidence_modifier: f64,
155}
156
157/// Causal knowledge base for cause-effect reasoning
158#[derive(Debug, Clone)]
159struct CausalKnowledgeBase {
160    causal_relations: HashMap<String, Vec<CausalRelation>>,
161}
162
163/// Temporal reasoning model
164#[derive(Debug, Clone)]
165struct TemporalReasoningModel {
166    temporal_relations: HashMap<String, TemporalRelation>,
167    time_constraints: Vec<TimeConstraint>,
168}
169
170/// Analogical pattern matcher
171#[derive(Debug, Clone)]
172struct AnalogicalMatcher {
173    similarity_patterns: HashMap<String, Vec<AnalogicalPattern>>,
174}
175
176#[derive(Debug, Clone)]
177struct CausalRelation {
178    cause: String,
179    effect: String,
180    strength: f64,
181    conditions: Vec<String>,
182}
183
184#[derive(Debug, Clone)]
185struct TemporalRelation {
186    relation_type: String,
187    before_entity: String,
188    after_entity: String,
189    time_interval: Option<std::time::Duration>,
190}
191
192#[derive(Debug, Clone)]
193struct TimeConstraint {
194    constraint_type: String,
195    entities: Vec<String>,
196    temporal_bound: DateTime<Utc>,
197}
198
199#[derive(Debug, Clone)]
200struct AnalogicalPattern {
201    source_domain: String,
202    target_domain: String,
203    mapping_strength: f64,
204    structural_similarity: f64,
205}
206
207impl AdvancedReasoningEngine {
208    /// Create a new advanced reasoning engine
209    pub fn new(config: ReasoningConfig) -> Self {
210        Self {
211            config,
212            reasoning_patterns: Self::initialize_reasoning_patterns(),
213            causal_knowledge: CausalKnowledgeBase {
214                causal_relations: HashMap::new(),
215            },
216            temporal_model: TemporalReasoningModel {
217                temporal_relations: HashMap::new(),
218                time_constraints: Vec::new(),
219            },
220            analogical_matcher: AnalogicalMatcher {
221                similarity_patterns: HashMap::new(),
222            },
223        }
224    }
225
226    /// Initialize standard reasoning patterns
227    fn initialize_reasoning_patterns() -> HashMap<String, ReasoningPattern> {
228        let mut patterns = HashMap::new();
229
230        // Deductive reasoning patterns
231        patterns.insert(
232            "modus_ponens".to_string(),
233            ReasoningPattern {
234                pattern_id: "modus_ponens".to_string(),
235                pattern_type: ReasoningType::Deductive,
236                premise_template: "If {P} then {Q}; {P} is true".to_string(),
237                conclusion_template: "Therefore {Q} is true".to_string(),
238                confidence_modifier: 0.95,
239            },
240        );
241
242        // Causal reasoning patterns
243        patterns.insert(
244            "causal_chain".to_string(),
245            ReasoningPattern {
246                pattern_id: "causal_chain".to_string(),
247                pattern_type: ReasoningType::Causal,
248                premise_template: "{A} causes {B}; {B} causes {C}".to_string(),
249                conclusion_template: "{A} causes {C}".to_string(),
250                confidence_modifier: 0.8,
251            },
252        );
253
254        // Temporal reasoning patterns
255        patterns.insert(
256            "temporal_sequence".to_string(),
257            ReasoningPattern {
258                pattern_id: "temporal_sequence".to_string(),
259                pattern_type: ReasoningType::Temporal,
260                premise_template: "{A} happens before {B}; {B} happens before {C}".to_string(),
261                conclusion_template: "{A} happens before {C}".to_string(),
262                confidence_modifier: 0.9,
263            },
264        );
265
266        patterns
267    }
268
269    /// Perform advanced reasoning on assembled context
270    pub async fn reason(
271        &mut self,
272        query: &str,
273        context: &AssembledContext,
274    ) -> Result<ReasoningResult> {
275        let start_time = std::time::Instant::now();
276        info!("Starting advanced reasoning for query: {}", query);
277
278        // Build reasoning chains from different perspectives
279        let mut reasoning_chains = Vec::new();
280
281        // Deductive reasoning chain
282        if let Some(deductive_chain) = self.build_deductive_chain(query, context).await? {
283            reasoning_chains.push(deductive_chain);
284        }
285
286        // Causal reasoning chain
287        if self.config.enable_causal_reasoning {
288            if let Some(causal_chain) = self.build_causal_chain(query, context).await? {
289                reasoning_chains.push(causal_chain);
290            }
291        }
292
293        // Temporal reasoning chain
294        if self.config.enable_temporal_reasoning {
295            if let Some(temporal_chain) = self.build_temporal_chain(query, context).await? {
296                reasoning_chains.push(temporal_chain);
297            }
298        }
299
300        // Analogical reasoning chain
301        if self.config.enable_analogical_reasoning {
302            if let Some(analogical_chain) = self.build_analogical_chain(query, context).await? {
303                reasoning_chains.push(analogical_chain);
304            }
305        }
306
307        // Select the best reasoning chain
308        let primary_chain = self.select_best_chain(reasoning_chains)?;
309
310        // Gather supporting and contradicting evidence
311        let (supporting_evidence, contradicting_evidence) =
312            self.gather_evidence(&primary_chain, context).await?;
313
314        // Quantify uncertainty if enabled
315        let uncertainty_factors = if self.config.uncertainty_quantification {
316            self.quantify_uncertainty(&primary_chain, context).await?
317        } else {
318            Vec::new()
319        };
320
321        // Assess reasoning quality
322        let reasoning_quality = self
323            .assess_reasoning_quality(&primary_chain, context)
324            .await?;
325
326        let reasoning_time = start_time.elapsed().as_millis() as u64;
327        info!("Advanced reasoning completed in {}ms", reasoning_time);
328
329        Ok(ReasoningResult {
330            primary_chain,
331            supporting_evidence,
332            contradicting_evidence,
333            uncertainty_factors,
334            reasoning_quality,
335        })
336    }
337
338    /// Build deductive reasoning chain
339    async fn build_deductive_chain(
340        &self,
341        query: &str,
342        context: &AssembledContext,
343    ) -> Result<Option<ReasoningChain>> {
344        debug!("Building deductive reasoning chain");
345
346        let mut steps = Vec::new();
347        let mut current_premises = context
348            .semantic_results
349            .iter()
350            .map(|r| r.triple.clone())
351            .collect::<Vec<_>>();
352
353        // Apply modus ponens pattern iteratively
354        for depth in 0..self.config.max_inference_depth {
355            if let Some(new_conclusion) = self.apply_modus_ponens(&current_premises)? {
356                let step = ReasoningStep {
357                    step_id: format!("deductive_step_{depth}"),
358                    reasoning_type: ReasoningType::Deductive,
359                    premise_triples: current_premises.clone(),
360                    conclusion_triple: Some(new_conclusion.clone()),
361                    confidence: 0.9 - (depth as f64 * 0.1),
362                    explanation: format!("Applied deductive inference at depth {depth}"),
363                    timestamp: Utc::now(),
364                };
365                steps.push(step);
366                current_premises.push(new_conclusion);
367            } else {
368                break;
369            }
370        }
371
372        if steps.is_empty() {
373            return Ok(None);
374        }
375
376        let overall_confidence = steps
377            .iter()
378            .map(|s| s.confidence)
379            .fold(1.0, |acc, conf| acc * conf);
380
381        Ok(Some(ReasoningChain {
382            chain_id: uuid::Uuid::new_v4().to_string(),
383            query: query.to_string(),
384            steps,
385            final_conclusion: current_premises.last().cloned(),
386            overall_confidence,
387            reasoning_time_ms: 0, // Will be set by caller
388            alternative_chains: Vec::new(),
389        }))
390    }
391
392    /// Build causal reasoning chain
393    async fn build_causal_chain(
394        &self,
395        query: &str,
396        context: &AssembledContext,
397    ) -> Result<Option<ReasoningChain>> {
398        debug!("Building causal reasoning chain");
399
400        // Look for causal relationships in the context
401        let causal_triples = context
402            .semantic_results
403            .iter()
404            .filter(|r| self.is_causal_relation(&r.triple))
405            .map(|r| r.triple.clone())
406            .collect::<Vec<_>>();
407
408        if causal_triples.is_empty() {
409            return Ok(None);
410        }
411
412        let mut steps = Vec::new();
413        let mut causal_chain = Vec::new();
414
415        // Build causal chain step by step
416        for (i, triple) in causal_triples.iter().enumerate() {
417            let step = ReasoningStep {
418                step_id: format!("causal_step_{i}"),
419                reasoning_type: ReasoningType::Causal,
420                premise_triples: vec![triple.clone()],
421                conclusion_triple: None, // Will be derived from causal inference
422                confidence: 0.8,
423                explanation: format!("Identified causal relationship: {}", triple.object()),
424                timestamp: Utc::now(),
425            };
426            steps.push(step);
427            causal_chain.push(triple.clone());
428        }
429
430        let overall_confidence = 0.8_f64.powi(steps.len() as i32);
431
432        Ok(Some(ReasoningChain {
433            chain_id: uuid::Uuid::new_v4().to_string(),
434            query: query.to_string(),
435            steps,
436            final_conclusion: causal_chain.last().cloned(),
437            overall_confidence,
438            reasoning_time_ms: 0,
439            alternative_chains: Vec::new(),
440        }))
441    }
442
443    /// Build temporal reasoning chain
444    async fn build_temporal_chain(
445        &self,
446        query: &str,
447        context: &AssembledContext,
448    ) -> Result<Option<ReasoningChain>> {
449        debug!("Building temporal reasoning chain");
450
451        // Look for temporal relationships
452        let temporal_triples = context
453            .semantic_results
454            .iter()
455            .filter(|r| self.is_temporal_relation(&r.triple))
456            .map(|r| r.triple.clone())
457            .collect::<Vec<_>>();
458
459        if temporal_triples.is_empty() {
460            return Ok(None);
461        }
462
463        // Sort by temporal order if possible
464        let mut sorted_triples = temporal_triples;
465
466        // Implement temporal sorting based on timestamps and sequential relationships
467        sorted_triples.sort_by(|a, b| {
468            // Try to extract temporal information from the triple objects
469            let a_temporal_score = self.extract_temporal_score(a);
470            let b_temporal_score = self.extract_temporal_score(b);
471
472            a_temporal_score
473                .partial_cmp(&b_temporal_score)
474                .unwrap_or(std::cmp::Ordering::Equal)
475        });
476
477        let mut steps = Vec::new();
478        for (i, triple) in sorted_triples.iter().enumerate() {
479            let step = ReasoningStep {
480                step_id: format!("temporal_step_{i}"),
481                reasoning_type: ReasoningType::Temporal,
482                premise_triples: vec![triple.clone()],
483                conclusion_triple: None,
484                confidence: 0.85,
485                explanation: format!("Temporal sequence element: {}", triple.object()),
486                timestamp: Utc::now(),
487            };
488            steps.push(step);
489        }
490
491        let overall_confidence = 0.85_f64.powi(steps.len() as i32);
492
493        Ok(Some(ReasoningChain {
494            chain_id: uuid::Uuid::new_v4().to_string(),
495            query: query.to_string(),
496            steps,
497            final_conclusion: sorted_triples.last().cloned(),
498            overall_confidence,
499            reasoning_time_ms: 0,
500            alternative_chains: Vec::new(),
501        }))
502    }
503
504    /// Build analogical reasoning chain
505    async fn build_analogical_chain(
506        &self,
507        query: &str,
508        context: &AssembledContext,
509    ) -> Result<Option<ReasoningChain>> {
510        debug!("Building analogical reasoning chain");
511
512        // Find analogical patterns in the data
513        let analogical_candidates = context
514            .semantic_results
515            .iter()
516            .filter(|r| self.has_analogical_potential(&r.triple))
517            .map(|r| r.triple.clone())
518            .collect::<Vec<_>>();
519
520        if analogical_candidates.is_empty() {
521            return Ok(None);
522        }
523
524        let mut steps = Vec::new();
525        for (i, triple) in analogical_candidates.iter().enumerate() {
526            let step = ReasoningStep {
527                step_id: format!("analogical_step_{i}"),
528                reasoning_type: ReasoningType::Analogical,
529                premise_triples: vec![triple.clone()],
530                conclusion_triple: None,
531                confidence: 0.7, // Lower confidence for analogical reasoning
532                explanation: format!("Analogical pattern identified: {}", triple.object()),
533                timestamp: Utc::now(),
534            };
535            steps.push(step);
536        }
537
538        let overall_confidence = 0.7_f64.powi(steps.len() as i32);
539
540        Ok(Some(ReasoningChain {
541            chain_id: uuid::Uuid::new_v4().to_string(),
542            query: query.to_string(),
543            steps,
544            final_conclusion: analogical_candidates.last().cloned(),
545            overall_confidence,
546            reasoning_time_ms: 0,
547            alternative_chains: Vec::new(),
548        }))
549    }
550
551    /// Apply modus ponens reasoning pattern
552    fn apply_modus_ponens(&self, premises: &[Triple]) -> Result<Option<Triple>> {
553        // Simplified modus ponens: look for implication patterns
554        // In a real implementation, this would involve sophisticated logical inference
555
556        for premise in premises {
557            // Look for "implies" or similar predicates
558            let predicate_str = premise.predicate().to_string();
559            if predicate_str.contains("implies") || predicate_str.contains("causes") {
560                // Extract conclusion from implication
561                // This is a simplified version - real implementation would be more sophisticated
562                return Ok(Some(premise.clone()));
563            }
564        }
565
566        Ok(None)
567    }
568
569    /// Check if a triple represents a causal relation
570    fn is_causal_relation(&self, triple: &Triple) -> bool {
571        let predicate = triple.predicate().to_string().to_lowercase();
572        predicate.contains("cause")
573            || predicate.contains("result")
574            || predicate.contains("lead")
575            || predicate.contains("effect")
576    }
577
578    /// Check if a triple represents a temporal relation
579    fn is_temporal_relation(&self, triple: &Triple) -> bool {
580        let predicate = triple.predicate().to_string().to_lowercase();
581        predicate.contains("before")
582            || predicate.contains("after")
583            || predicate.contains("during")
584            || predicate.contains("when")
585            || predicate.contains("time")
586    }
587
588    /// Check if a triple has analogical potential
589    fn has_analogical_potential(&self, triple: &Triple) -> bool {
590        let predicate = triple.predicate().to_string().to_lowercase();
591        predicate.contains("similar")
592            || predicate.contains("like")
593            || predicate.contains("analogy")
594            || predicate.contains("resemble")
595    }
596
597    /// Select the best reasoning chain from candidates
598    fn select_best_chain(&self, chains: Vec<ReasoningChain>) -> Result<ReasoningChain> {
599        if chains.is_empty() {
600            return Err(anyhow!("No valid reasoning chains found"));
601        }
602
603        // Select chain with highest confidence above threshold
604        let best_chain = chains
605            .into_iter()
606            .filter(|chain| chain.overall_confidence >= self.config.confidence_threshold)
607            .max_by(|a, b| {
608                a.overall_confidence
609                    .partial_cmp(&b.overall_confidence)
610                    .unwrap()
611            });
612
613        best_chain.ok_or_else(|| anyhow!("No reasoning chain meets confidence threshold"))
614    }
615
616    /// Gather supporting and contradicting evidence
617    async fn gather_evidence(
618        &self,
619        _chain: &ReasoningChain,
620        context: &AssembledContext,
621    ) -> Result<(Vec<Triple>, Vec<Triple>)> {
622        let mut supporting = Vec::new();
623        let mut contradicting = Vec::new();
624
625        // Simple evidence gathering based on semantic similarity
626        for result in &context.semantic_results {
627            if result.score > 0.8 {
628                supporting.push(result.triple.clone());
629            } else if result.score < 0.3 {
630                contradicting.push(result.triple.clone());
631            }
632        }
633
634        Ok((supporting, contradicting))
635    }
636
637    /// Quantify uncertainty in reasoning
638    async fn quantify_uncertainty(
639        &self,
640        chain: &ReasoningChain,
641        context: &AssembledContext,
642    ) -> Result<Vec<UncertaintyFactor>> {
643        let mut factors = Vec::new();
644
645        // Check for insufficient evidence
646        if context.semantic_results.len() < 3 {
647            factors.push(UncertaintyFactor {
648                factor_type: UncertaintyType::InsufficientEvidence,
649                description: "Limited evidence available for reasoning".to_string(),
650                impact_score: 0.3,
651                mitigation_strategy: Some("Gather more relevant information".to_string()),
652            });
653        }
654
655        // Check for conflicting evidence
656        let confidence_variance = chain
657            .steps
658            .iter()
659            .map(|s| s.confidence)
660            .fold((0.0, 0.0), |acc, conf| (acc.0 + conf, acc.1 + conf * conf));
661
662        let mean_confidence = confidence_variance.0 / chain.steps.len() as f64;
663        let variance =
664            (confidence_variance.1 / chain.steps.len() as f64) - mean_confidence * mean_confidence;
665
666        if variance > 0.1 {
667            factors.push(UncertaintyFactor {
668                factor_type: UncertaintyType::ConflictingEvidence,
669                description: "High variance in step confidences".to_string(),
670                impact_score: variance,
671                mitigation_strategy: Some("Resolve conflicting information".to_string()),
672            });
673        }
674
675        Ok(factors)
676    }
677
678    /// Assess overall reasoning quality
679    async fn assess_reasoning_quality(
680        &self,
681        chain: &ReasoningChain,
682        context: &AssembledContext,
683    ) -> Result<ReasoningQuality> {
684        // Logical consistency
685        let logical_consistency = chain
686            .steps
687            .iter()
688            .map(|s| s.confidence)
689            .fold(0.0, |acc, conf| acc + conf)
690            / chain.steps.len() as f64;
691
692        // Evidence strength
693        let evidence_strength = context
694            .semantic_results
695            .iter()
696            .map(|r| r.score as f64)
697            .fold(0.0, |acc, score| acc + score)
698            / context.semantic_results.len().max(1) as f64;
699
700        // Chain completeness
701        let chain_completeness = if chain.final_conclusion.is_some() {
702            1.0
703        } else {
704            0.5
705        };
706
707        // Temporal coherence (enhanced analysis)
708        let temporal_coherence = self.analyze_temporal_coherence(chain);
709
710        let overall_quality =
711            (logical_consistency + evidence_strength + chain_completeness + temporal_coherence)
712                / 4.0;
713
714        Ok(ReasoningQuality {
715            logical_consistency,
716            evidence_strength,
717            chain_completeness,
718            temporal_coherence,
719            overall_quality,
720        })
721    }
722
723    /// Extract temporal score from a triple for sorting purposes
724    fn extract_temporal_score(&self, triple: &Triple) -> f64 {
725        let object_str = triple.object().to_string().to_lowercase();
726
727        // Look for temporal keywords and assign scores
728        if object_str.contains("before")
729            || object_str.contains("first")
730            || object_str.contains("initial")
731        {
732            0.0
733        } else if object_str.contains("during")
734            || object_str.contains("while")
735            || object_str.contains("concurrent")
736        {
737            0.5
738        } else if object_str.contains("after")
739            || object_str.contains("then")
740            || object_str.contains("following")
741        {
742            1.0
743        } else if object_str.contains("finally")
744            || object_str.contains("last")
745            || object_str.contains("end")
746        {
747            2.0
748        } else {
749            // Try to extract year or date information
750            if let Some(year) = self.extract_year_from_string(&object_str) {
751                year as f64 / 10000.0 // Normalize to smaller range
752            } else {
753                0.5 // Default middle position
754            }
755        }
756    }
757
758    /// Extract year from string if present
759    fn extract_year_from_string(&self, text: &str) -> Option<i32> {
760        // Simple regex to find 4-digit years between 1000-2100
761        let year_regex = Regex::new(r"\b(1[0-9]{3}|20[0-9]{2}|21[0-9]{2})\b").ok()?;
762        if let Some(captures) = year_regex.find(text) {
763            captures.as_str().parse().ok()
764        } else {
765            None
766        }
767    }
768
769    /// Enhanced temporal coherence analysis
770    fn analyze_temporal_coherence(&self, chain: &ReasoningChain) -> f64 {
771        if chain.steps.len() < 2 {
772            return 1.0; // Single step is coherent
773        }
774
775        let mut coherence_scores = Vec::new();
776
777        for i in 1..chain.steps.len() {
778            let prev_step = &chain.steps[i - 1];
779            let curr_step = &chain.steps[i];
780
781            // Check if temporal order makes sense
782            let prev_temporal = self.extract_temporal_info_from_step(prev_step);
783            let curr_temporal = self.extract_temporal_info_from_step(curr_step);
784
785            let coherence = if prev_temporal <= curr_temporal {
786                1.0 // Correct temporal order
787            } else {
788                0.3 // Potential temporal inconsistency
789            };
790
791            coherence_scores.push(coherence);
792        }
793
794        coherence_scores.iter().sum::<f64>() / coherence_scores.len() as f64
795    }
796
797    /// Extract temporal information from a reasoning step
798    fn extract_temporal_info_from_step(&self, step: &ReasoningStep) -> f64 {
799        if let Some(conclusion) = &step.conclusion_triple {
800            self.extract_temporal_score(conclusion)
801        } else if !step.premise_triples.is_empty() {
802            self.extract_temporal_score(&step.premise_triples[0])
803        } else {
804            0.5 // Default neutral position
805        }
806    }
807}
808
809#[cfg(test)]
810mod tests {
811    use super::*;
812
813    #[tokio::test]
814    async fn test_reasoning_engine_creation() {
815        let config = ReasoningConfig::default();
816        let engine = AdvancedReasoningEngine::new(config);
817
818        assert_eq!(engine.config.max_inference_depth, 5);
819        assert_eq!(engine.config.confidence_threshold, 0.7);
820    }
821
822    #[test]
823    fn test_reasoning_patterns_initialization() {
824        let patterns = AdvancedReasoningEngine::initialize_reasoning_patterns();
825
826        assert!(patterns.contains_key("modus_ponens"));
827        assert!(patterns.contains_key("causal_chain"));
828        assert!(patterns.contains_key("temporal_sequence"));
829    }
830
831    #[test]
832    fn test_causal_relation_detection() {
833        let _engine = AdvancedReasoningEngine::new(ReasoningConfig::default());
834
835        // This test would require actual Triple instances
836        // In a real implementation, you'd create test triples with causal predicates
837    }
838}