oxidd_parser/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//! Collection of parsers for various problem formats
//!
//! ## Example
//!
//! ```no_run
//! # use oxidd_parser::load_file::load_file;
//! # use oxidd_parser::*;
//! let parse_options = ParseOptionsBuilder::default().build().unwrap();
//! let Some(problem) = load_file("foo.dimacs", &parse_options) else {
//!     return; // an error message has been printed to stderr
//! };
//! match problem {
//!     Problem::CNF(cnf) => println!("{:?}", cnf.clauses()),
//!     Problem::Prop(prop) => println!("{:?}", prop.formula()),
//!     _ => todo!("problem kind not yet supported"),
//! }
//! ```
//!
//! ## Feature flags
#![doc = document_features::document_features!()]
#![forbid(unsafe_code)]
#![warn(missing_docs)]
#![allow(clippy::type_complexity)]

use std::fmt;

use derive_builder::Builder;

pub mod aiger;
pub mod dimacs;
mod tv_bitvec;
mod util;
mod vec2d;

use tv_bitvec::TVBitVec;
pub use vec2d::{Vec2d, Vec2dIter};

#[cfg(feature = "load-file")]
pub mod load_file;

/// Variable type
///
/// The most significant bit is never set.
pub type Var = usize;

/// A possibly negated variable
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Literal(usize);

impl Literal {
    /// Create a new literal
    pub fn new(negative: bool, var: usize) -> Self {
        debug_assert_eq!(
            var & 1 << (usize::BITS - 1),
            0,
            "Most significant bit of `var` must not be set"
        );
        Self(var << 1 | negative as usize)
    }

    /// Is the literal positive?
    ///
    /// Same as [`!self.negative()`][Self::negative]
    #[inline(always)]
    pub fn positive(self) -> bool {
        self.0 & 1 == 0
    }
    /// Is the literal negative?
    ///
    /// Same as [`!self.positive()`][Self::positive]
    #[inline(always)]
    pub fn negative(self) -> bool {
        !self.positive()
    }

    /// Get the variable number
    #[inline(always)]
    pub fn variable(self) -> Var {
        self.0 >> 1
    }
}

impl fmt::Display for Literal {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let sign = if self.positive() { '+' } else { '-' };
        write!(f, "{sign}{}", self.variable())
    }
}
impl fmt::Debug for Literal {
    #[inline(always)]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        <Self as fmt::Display>::fmt(self, f)
    }
}

/// Rooted tree with values of type `T` at the leaves
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Tree<T> {
    /// Conjunction
    Inner(Box<[Tree<T>]>),
    /// Clause index (starting from 0)
    Leaf(T),
}

impl<T: Clone> Tree<T> {
    fn flatten_into(&self, into: &mut Vec<T>) {
        match self {
            Tree::Inner(sub) => sub.iter().for_each(|t| t.flatten_into(into)),
            Tree::Leaf(v) => into.push(v.clone()),
        }
    }
}

/// Different problem kinds that may be returned by the problem parsers
#[non_exhaustive]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Problem {
    /// Conjunctive normal form
    CNF(Box<CNFProblem>),
    /// Propositional formula
    Prop(Box<PropProblem>),
    /// And-inverter graph
    AIG(Box<AIG>),
}

/// Variable set, potentially along with a variable order and variable names
///
/// The variable numbers are in range `0..self.len()`.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct VarSet {
    /// Number of variables
    len: usize,

    /// Permutation of the variables. `order[0]` is supposed to be the number of
    /// the top-most variable.
    order: Vec<Var>,
    /// If present, `order` is just the flattened tree
    order_tree: Option<Tree<Var>>,

    /// Mapping from variable numbers to optional names. Has minimal length,
    /// i.e., `names.last() != Some(&None)`.
    names: Vec<Option<String>>,
}

impl VarSet {
    /// Create a variable set without a variable order and names
    fn simple(n: usize) -> Self {
        VarSet {
            len: n,
            order: Vec::new(),
            order_tree: None,
            names: Vec::new(),
        }
    }

    /// Number of variables
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true iff the number of variables is 0
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Get the linear variable order, if present
    ///
    /// If [`self.order_tree()`][Self::order_tree] is not `None`, then it is the
    /// flattened tree.
    #[inline]
    pub fn order(&self) -> Option<&[Var]> {
        if self.len != self.order.len() {
            None
        } else {
            Some(&self.order)
        }
    }

    /// Get the tree of variable groups, if present
    ///
    /// This may be useful for, e.g., group sifting.
    #[inline]
    pub fn order_tree(&self) -> Option<&Tree<Var>> {
        self.order_tree.as_ref()
    }

    /// Get the name for variable `var`
    #[inline]
    pub fn name(&self, var: Var) -> Option<&str> {
        self.names.get(var)?.as_deref()
    }

    #[allow(unused)]
    fn check_valid(&self) {
        assert!(self.order.is_empty() || self.order.len() == self.len);
        assert!(!self.order.is_empty() || self.order_tree.is_none());
        assert_ne!(self.names.last(), Some(&None));
    }
}

/// CNF problem instance
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct CNFProblem {
    vars: VarSet,
    clauses: Vec2d<Literal>,
    clause_order_tree: Option<Tree<usize>>,
}

impl CNFProblem {
    /// Get the variable set
    #[inline(always)]
    pub fn vars(&self) -> &VarSet {
        &self.vars
    }

    /// Get the clauses
    #[inline(always)]
    pub fn clauses(&self) -> &Vec2d<Literal> {
        &self.clauses
    }
    /// Get the clauses
    pub fn clauses_mut(&mut self) -> &mut Vec2d<Literal> {
        &mut self.clauses
    }

    /// Clause order tree
    ///
    /// Since conjunction is a commutative and associative operator, a list of
    /// clauses may be processed in different ways. In some cases, `A ∧ (B ∧ C)`
    /// may be much more efficient to process `(A ∧ B) ∧ C`.
    #[inline(always)]
    pub fn clause_order(&self) -> Option<&Tree<usize>> {
        self.clause_order_tree.as_ref()
    }
}

/// Propositional formula problem
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PropProblem {
    vars: VarSet,
    xor: bool,
    eq: bool,
    ast: Prop,
}

impl PropProblem {
    /// Get the variable set
    #[inline(always)]
    pub fn vars(&self) -> &VarSet {
        &self.vars
    }

    /// Get the formula
    #[inline(always)]
    pub fn formula(&self) -> &Prop {
        &self.ast
    }

    /// Whether the formula may contain exclusive disjunctions
    #[inline(always)]
    pub fn xor_allowed(&self) -> bool {
        self.xor
    }
    /// Whether the formula may contain equivalences
    #[inline(always)]
    pub fn eq_allowed(&self) -> bool {
        self.eq
    }
}

/// Propositional formula
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Prop {
    /// A literal
    Lit(Literal),
    /// Negation of the inner propositional formula
    Neg(Box<Prop>),
    /// Conjunction of the inner propositional formulas
    And(Vec<Prop>),
    /// Disjunction of the inner propositional formulas
    Or(Vec<Prop>),
    /// Exclusive disjunction of the inner propositional formulas
    Xor(Vec<Prop>),
    /// Equivalence of the inner propositional formulas
    Eq(Vec<Prop>),
}

impl fmt::Display for Prop {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let list = match self {
            Prop::Lit(l) => return write!(f, "{l}"),
            Prop::Neg(e) => return write!(f, "(- {e})"),
            Prop::And(l) => {
                write!(f, "(*")?;
                l
            }
            Prop::Or(l) => {
                write!(f, "(+")?;
                l
            }
            Prop::Xor(l) => {
                write!(f, "(^")?;
                l
            }
            Prop::Eq(l) => {
                write!(f, "(=")?;
                l
            }
        };
        for e in list {
            write!(f, " {e}")?;
        }
        write!(f, ")")
    }
}

/// And-inverter graph
///
/// A variable `i` (of a [`Literal`]) has the following meaning:
/// - `0`: `⊥`
/// - `1..(1 + inputs)`: input variable `i - 1`
/// - `(1 + inputs)..(1 + inputs + latches.len())`: output of `latches[i - 1
///   - inputs]`
/// - `(1 + inputs + latches.len())..(1 + inputs + latches.len() +
///   and_gates.len())`: output of `and_gates[i - 1 - inputs - latches.len()]`
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct AIG {
    /// Number of input variables
    inputs: usize,
    /// Latch inputs
    latches: Vec<Literal>,
    /// Latch initial values
    latch_init_values: TVBitVec,
    /// And gate inputs
    and_gates: Vec<(Literal, Literal)>,
    /// Outputs
    outputs: Vec<Literal>,
    /// Bad state literals
    bad: Vec<Literal>,
    /// Invariant constraints
    invariants: Vec<Literal>,
    /// Justice properties
    justice: Vec2d<Literal>,
    /// Fairness constraints
    fairness: Vec<Literal>,

    /// Input names
    ///
    /// Either empty or has length `inputs`
    input_names: Vec<Option<String>>,
    /// Latch names
    ///
    /// Either empty or has the same length as `latches`
    latch_names: Vec<Option<String>>,
    /// Output names
    ///
    /// Either empty or has the same length as `outputs`
    output_names: Vec<Option<String>>,
    /// Bad state literal names
    ///
    /// Either empty or has the same length as `bad`
    bad_names: Vec<Option<String>>,
    /// Invariant state names
    ///
    /// Either empty or has the same length as `invariants`
    invariant_names: Vec<Option<String>>,
    /// Justice property names
    ///
    /// Either empty or has the same length as `justice`
    justice_names: Vec<Option<String>>,
    /// Fairness constraint names
    ///
    /// Either empty or has the same length as `fairness`
    fairness_names: Vec<Option<String>>,
}

/// Kinds of AIG vars
///
/// See also [`AIG::decode_var()`]
#[non_exhaustive]
pub enum AIGVar {
    /// false
    False,
    /// i-th input
    Input(usize),
    /// i-th latch
    Latch(usize),
    /// i-th and gate
    AndGate(usize),
}

impl AIG {
    /// Decode `var` into the respective variable kinds
    ///
    /// The indices of [`AIGVar::Latch`] and [`AIGVar::AndGate`] are valid for
    /// the slices returned by [`Self::latches()`] or [`Self::and_gates()`],
    /// respectively.
    #[inline]
    pub fn decode_var(&self, var: Var) -> Option<AIGVar> {
        let first_latch = 1 + self.inputs;
        if var < first_latch {
            Some(if var == 0 {
                AIGVar::False
            } else {
                AIGVar::Input(var - 1)
            })
        } else {
            let first_and_gate = first_latch + self.latches.len();
            if var < first_and_gate {
                Some(AIGVar::Latch(var - first_latch))
            } else if var < first_and_gate + self.and_gates.len() {
                Some(AIGVar::AndGate(var - first_and_gate))
            } else {
                None
            }
        }
    }

    /// Get the number of input variables
    #[inline(always)]
    pub fn inputs(&self) -> usize {
        self.inputs
    }

    /// Get the input literals of latch
    #[inline(always)]
    pub fn latches(&self) -> &[Literal] {
        &self.latches
    }
    /// Get the initial value of latch `i`
    #[inline(always)]
    pub fn latch_init_value(&self, i: usize) -> Option<bool> {
        self.latch_init_values[i]
    }

    /// Get the and gate definitions (i.e., their two inputs)
    #[inline(always)]
    pub fn and_gates(&self) -> &[(Literal, Literal)] {
        &self.and_gates
    }

    /// Get the output definitions
    #[inline(always)]
    pub fn outputs(&self) -> &[Literal] {
        &self.outputs
    }

    /// Get the name for input `i`
    #[inline(always)]
    pub fn input_name(&self, i: usize) -> Option<&str> {
        self.input_names.get(i)?.as_deref()
    }
    /// Get the name for latch `i`
    #[inline(always)]
    pub fn latch_name(&self, i: usize) -> Option<&str> {
        self.latch_names.get(i)?.as_deref()
    }
    /// Get the name for output `i`
    #[inline(always)]
    pub fn output_name(&self, i: usize) -> Option<&str> {
        self.output_names.get(i)?.as_deref()
    }
    /// Get the name for bad state literal `i`
    #[inline(always)]
    pub fn bad_name(&self, i: usize) -> Option<&str> {
        self.bad_names.get(i)?.as_deref()
    }
    /// Get the name for invariant constraint `i`
    #[inline(always)]
    pub fn invariant_name(&self, i: usize) -> Option<&str> {
        self.invariant_names.get(i)?.as_deref()
    }
    /// Get the name for justice constraint `i`
    #[inline(always)]
    pub fn justice_name(&self, i: usize) -> Option<&str> {
        self.justice_names.get(i)?.as_deref()
    }
}

/// Options for the parsers
#[non_exhaustive]
#[derive(Clone, Builder, Default, Debug)]
pub struct ParseOptions {
    /// Whether to parse orders (e.g., variable or clause order)
    ///
    /// The [DIMACS satisfiability formats][dimacs], for instance, do not
    /// natively support specifying orders, however it is not uncommon to use
    /// the comment lines for them. But while some files may contain orders in
    /// the comment lines, others may use them for arbitrary comments. Hence, it
    /// may be desired to turn on parsing orders for some files and turn it off
    /// for other files.
    #[builder(default = "false")]
    pub orders: bool,
}