1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//! Literals

use std::{
    fmt,
    hash::{Hash, Hasher},
};

use bitflags::bitflags;
use num_bigint::BigInt;
use oxc_span::{Atom, Span};
use oxc_syntax::{BigintBase, NumberBase};
#[cfg(feature = "serde")]
use serde::Serialize;

#[derive(Debug, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize), serde(tag = "type"))]
pub struct BooleanLiteral {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub span: Span,
    pub value: bool,
}

impl BooleanLiteral {
    pub fn new(span: Span, value: bool) -> Self {
        Self { span, value }
    }

    pub fn as_str(&self) -> &'static str {
        if self.value {
            "true"
        } else {
            "false"
        }
    }
}

#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize), serde(tag = "type"))]
pub struct NullLiteral {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub span: Span,
}

impl Hash for NullLiteral {
    fn hash<H: Hasher>(&self, state: &mut H) {
        None::<bool>.hash(state);
    }
}

impl NullLiteral {
    pub fn new(span: Span) -> Self {
        Self { span }
    }
}

#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize), serde(tag = "type"))]
pub struct NumberLiteral<'a> {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub span: Span,
    pub value: f64,
    #[cfg_attr(feature = "serde", serde(skip))]
    pub raw: &'a str,
    #[cfg_attr(feature = "serde", serde(skip))]
    pub base: NumberBase,
}

impl<'a> NumberLiteral<'a> {
    pub fn new(span: Span, value: f64, raw: &'a str, base: NumberBase) -> Self {
        Self { span, value, raw, base }
    }

    /// port from [closure compiler](https://github.com/google/closure-compiler/blob/a4c880032fba961f7a6c06ef99daa3641810bfdd/src/com/google/javascript/jscomp/base/JSCompDoubles.java#L113)
    /// <https://262.ecma-international.org/5.1/#sec-9.5>
    #[allow(clippy::cast_possible_truncation)] // for `as i32`
    pub fn ecmascript_to_int32(num: f64) -> i32 {
        // Fast path for most common case. Also covers -0.0
        let int32_value = num as i32;
        if (f64::from(int32_value) - num).abs() < f64::EPSILON {
            return int32_value;
        }

        // NaN, Infinity if not included in our NumberLiteral, so we just skip step 2.

        // step 3
        let pos_int = num.signum() * num.abs().floor();

        // step 4
        let int32bit = pos_int % 2f64.powi(32);

        // step5
        if int32bit >= 2f64.powi(31) {
            (int32bit - 2f64.powi(32)) as i32
        } else {
            int32bit as i32
        }
    }
}

impl<'a> Hash for NumberLiteral<'a> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.base.hash(state);
        self.raw.hash(state);
    }
}

#[derive(Debug, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize), serde(tag = "type"))]
pub struct BigintLiteral {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub span: Span,
    #[cfg_attr(feature = "serde", serde(serialize_with = "crate::serialize::serialize_bigint"))]
    pub value: BigInt,
    #[cfg_attr(feature = "serde", serde(skip))]
    pub base: BigintBase,
}

#[derive(Debug, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize), serde(tag = "type"))]
pub struct RegExpLiteral {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub span: Span,
    // valid regex is printed as {}
    // invalid regex is printed as null, which we can't implement yet
    pub value: EmptyObject,
    pub regex: RegExp,
}

#[derive(Debug, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize))]
pub struct RegExp {
    pub pattern: Atom,
    pub flags: RegExpFlags,
}

impl fmt::Display for RegExp {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "/{}/{}", self.pattern, self.flags)
    }
}

bitflags! {
    #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
    pub struct RegExpFlags: u8 {
        const G = 1 << 0;
        const I = 1 << 1;
        const M = 1 << 2;
        const S = 1 << 3;
        const U = 1 << 4;
        const Y = 1 << 5;
        const D = 1 << 6;
        /// v flag from `https://github.com/tc39/proposal-regexp-set-notation`
        const V = 1 << 7;
    }
}

impl TryFrom<char> for RegExpFlags {
    type Error = char;

    fn try_from(value: char) -> Result<Self, Self::Error> {
        match value {
            'g' => Ok(Self::G),
            'i' => Ok(Self::I),
            'm' => Ok(Self::M),
            's' => Ok(Self::S),
            'u' => Ok(Self::U),
            'y' => Ok(Self::Y),
            'd' => Ok(Self::D),
            'v' => Ok(Self::V),
            _ => Err(value),
        }
    }
}

impl fmt::Display for RegExpFlags {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.contains(Self::G) {
            write!(f, "g")?;
        }
        if self.contains(Self::I) {
            write!(f, "i")?;
        }
        if self.contains(Self::M) {
            write!(f, "m")?;
        }
        if self.contains(Self::S) {
            write!(f, "s")?;
        }
        if self.contains(Self::U) {
            write!(f, "u")?;
        }
        if self.contains(Self::Y) {
            write!(f, "y")?;
        }
        if self.contains(Self::D) {
            write!(f, "d")?;
        }
        if self.contains(Self::V) {
            write!(f, "v")?;
        }
        Ok(())
    }
}

#[derive(Debug, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize))]
pub struct EmptyObject;

#[derive(Debug, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize), serde(tag = "type"))]
pub struct StringLiteral {
    #[cfg_attr(feature = "serde", serde(flatten))]
    pub span: Span,
    pub value: Atom,
}

impl StringLiteral {
    pub fn new(span: Span, value: Atom) -> Self {
        Self { span, value }
    }

    /// Static Semantics: `IsStringWellFormedUnicode`
    /// test for \uD800-\uDFFF
    pub fn is_string_well_formed_unicode(&self) -> bool {
        let mut chars = self.value.chars();
        while let Some(c) = chars.next() {
            if c == '\\' && chars.next() == Some('u') {
                let hex = &chars.as_str()[..4];
                if let Ok(hex) = u32::from_str_radix(hex, 16) {
                    if (0xd800..=0xdfff).contains(&hex) {
                        return false;
                    }
                };
            }
        }
        true
    }
}