1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
//! Types that own and pin data to its location in memory.
//!
//! While the [`Pin<P>`] wrapper in Rust's standard library enables pinning data
//! in memory, it has no guarantee of "owning" the pinned data, which prevents
//! the usage to semantically-but-not-concerning-memory moving the ownership of
//! the pinned data:
//!
//! ```rust,no_run
//! use core::pin::{Pin, pin};
//! use core::marker::PhantomPinned;
//!
//! fn try_to_take_the_ownership_of<T>(pinned: Pin<&mut T>) {}
//!
//! let mut value = pin!(PhantomPinned);
//! // The caller can reborrow the value...
//! try_to_take_the_ownership_of(value.as_mut());
//! // ... so the same pinned data can be used twice,
//! // thus unable to guarantee the move semantics.
//! try_to_take_the_ownership_of(value.as_mut());
//! ```
//!
//! Function implementors may use `unsafe` keyword to state the contract of
//! moving the ownership of the data. However, this remedy significantly
//! increases the difficulty of maintaining the code.
//!
//! In practice, this is because there is no such smart pointer that owns data
//! by holding a unique reference to some other location on the stack.
//!
//! Thus, we introduce the [`OnStack<T>`] smart pointer, which does the work
//! mentioned above in a memory-safe way, and a type alias [`OPin<T>`] =
//! `Pin<OnStack<T>>`, which both enable the example above to work as desired:
//!
//! ```rust,compile_fail
//! use owned_pin::{OPin, opin};
//! use core::marker::PhantomPinned;
//!
//! // `OPin<'a, T>` equals to `Pin<OnStack<'a, T>>`.
//! fn take_the_ownership_of<T>(owned_and_pinned: OPin<T>) {}
//!
//! let value = opin!(PhantomPinned);
//! // The `as_mut` method of `OPin` actually returns `Pin<&mut T>`...
//! take_the_ownership_of(value);
//! // ... so the value itself cannot be used again.
//! // The line below causes rustc to emit `E0382`.
//! take_the_ownership_of(value);
//! ```
//!
//! # `Unpin`
//!
//! `Pin<OnStack<T>>`'s moving semantics provides it with more functionality
//! than an ordinary `Pin<&mut T>`. For example, owning an `Unpin`ned data means
//! we can move out the raw data from this wrapper:
//!
//! ```rust
//! use owned_pin::{OPin, opin, unpin};
//!
//! fn take_the_ownership_of(pointer: OPin<String>) {
//! // Wow! the unpinned ownership is now ours!
//! let string: String = unpin(pointer);
//! println!("{string}");
//! }
//!
//! take_the_ownership_of(opin!(String::from("Hello")));
//! ```
//!
//! This magic works safe and sound thanks to the full potential of
//! [`ManuallyDrop`], implying that the wrapped pointer actually points to a
//! `ManuallyDrop<T>`.
//!
//! Note that `Pin<Box<T>>` does all the things above as good as `OPin<T>`, and
//! the former can even be `'static` if `T` is `'static`. Nevertheless,
//! additional heap memory is consumed the achieve the result, which is
//! unrecommendable in memory-constraint scenarios.
//!
//! # Relationship with R-value references in C++
//!
//! This crate is in fact inspired by R-value references in C++, and `OPin<T>`
//! behaves more similar to R-value references than the original move semantics
//! in Rust and the `Pin<&mut T>` wrapper. However, there is still no "default
//! value" left when some data is `OPin`ned or moved out, guaranteeing the
//! memory safety requirements of Rust.
//!
//! The more detailed comparison is yet to be discussed.
//!
//! # Utilities
//!
//! Beside introducing the new `OnStack` type, we have also built some basic
//! data structures that can be pinned onto the stack, demonstrating some of its
//! potential by the way:
//!
//! - [`Arsc<P>`](sync::Arsc): an intrusive & thread-safe reference-counting
//! pointer **wrapper**.
//!
//! Other utilities are currently under development.
#![no_std]
#![allow(internal_features)]
#![feature(allocator_api)]
#![feature(allow_internal_unstable)]
#![feature(coerce_unsized)]
#![feature(coroutine_trait)]
#![feature(dispatch_from_dyn)]
#![feature(exclusive_wrapper)]
#![feature(error_generic_member_access)]
#![feature(error_in_core)]
#![feature(fn_traits)]
#![feature(receiver_trait)]
#![feature(tuple_trait)]
#![feature(unboxed_closures)]
#![feature(unsize)]
#![cfg_attr(feature = "alloc", feature(new_uninit))]
mod pointer;
#[cfg(target_has_atomic = "ptr")]
pub mod sync;
#[doc(hidden)]
pub use core::{
marker::PhantomData,
mem::{ManuallyDrop, MaybeUninit},
pin::Pin,
};
use core::{ops::Deref, ptr::NonNull};
#[doc(hidden)]
#[cfg(feature = "pinned-init")]
pub use pinned_init::{init, pin_init};
pub use self::pointer::OnStack;
#[cfg(feature = "alloc")]
extern crate alloc;
/// A wrapper that both owns and pins data on the stack.
pub type OPin<'a, T> = Pin<OnStack<'a, T>>;
/// Represents a smart pointer whose pointed data can be safely moved out by
/// [`into_inner`](IntoInner::into_inner).
///
/// Implementing this trait proves the smart pointer owns its pointed data.
pub trait IntoInner: Unpin + Deref {
/// Move out the desired target, and call the possible dropping function of
/// the additional metadata held by the pointer.
fn into_inner(self) -> Self::Target;
/// Move out the desired target, and call the possible dropping function of
/// the additional metadata held by the pointer.
fn try_unwrap(this: Self) -> Result<Self::Target, Self>
where
Self::Target: Sized,
Self: Sized,
{
Ok(this.into_inner())
}
}
/// Smart pointers that can convert themselves into raw forms, and is able to
/// convert raw forms back to themselves.
///
/// # Safety
///
/// The implementor of this trait must enable any valid raw form to be converted
/// back to its corresponding valid smart pointer.
pub unsafe trait RawConvertable: Deref {
/// The additional metadata needed to be converted back.
type Metadata: Sized;
/// Converts a smart pointer into its raw form.
fn into_raw(this: Self) -> (NonNull<Self::Target>, Self::Metadata);
/// Converts the raw form of a smart pointer back.
///
/// # Safety
///
/// `pointer` and `metadata` must be the ones that is previously returned
/// from the same call of [`into_raw`](RawConvertable::into_raw).
unsafe fn from_raw(pointer: NonNull<Self::Target>, metadata: Self::Metadata) -> Self;
}
/// Smart pointers that can convert their uninitialized forms into initialized
/// forms.
///
/// # Safety
///
/// The implementor of this trait must enable any valid uninitialized form to
/// convert to its corresponding valid initialized form.
pub unsafe trait Uninit: Deref
where
<Self as Deref>::Target: Sized,
{
type Uninit: Deref<Target = MaybeUninit<Self::Target>>;
/// Converts to its initialized form.
///
/// # Safety
///
/// See [`MaybeUninit::assume_init`] for more information.
unsafe fn assume_init(this: Self::Uninit) -> Self;
}
unsafe impl<T> Uninit for ManuallyDrop<T> {
type Uninit = ManuallyDrop<MaybeUninit<T>>;
unsafe fn assume_init(this: Self::Uninit) -> Self {
ManuallyDrop::new(unsafe { ManuallyDrop::into_inner(this).assume_init() })
}
}
#[cfg(feature = "alloc")]
mod alloc2 {
use alloc::{boxed::Box, rc::Rc, sync::Arc};
use core::{alloc::Allocator, mem::MaybeUninit, ptr::NonNull};
use crate::{IntoInner, RawConvertable, Uninit};
impl<T, A: Allocator + 'static> IntoInner for Box<T, A> {
fn into_inner(self) -> T {
*self
}
}
impl<T, A: Allocator> IntoInner for Rc<T, A> {
fn into_inner(self) -> T {
Rc::into_inner(self).unwrap()
}
fn try_unwrap(this: Self) -> Result<T, Self> {
Rc::try_unwrap(this)
}
}
impl<T, A: Allocator> IntoInner for Arc<T, A> {
fn into_inner(self) -> T {
Arc::into_inner(self).unwrap()
}
fn try_unwrap(this: Self) -> Result<T, Self> {
Arc::try_unwrap(this)
}
}
// SAFETY: The implementation of `Box`es is correct.
unsafe impl<T, A: Allocator> RawConvertable for Box<T, A> {
type Metadata = A;
/// See [`Box::into_raw_with_allocator`] for more information.
fn into_raw(this: Self) -> (NonNull<T>, A) {
let (ptr, alloc) = Box::into_raw_with_allocator(this);
// SAFETY: The pointer to the heap memory is always not-null, whether its
// dangling for ZSTs for not.
(unsafe { NonNull::new_unchecked(ptr) }, alloc)
}
/// See [`Box::from_raw_in`] for more information.
unsafe fn from_raw(pointer: NonNull<T>, metadata: A) -> Self {
// SAFETY: The safety requirement is upheld by the caller.
unsafe { Box::from_raw_in(pointer.as_ptr(), metadata) }
}
}
// SAFETY: The implementation of `Rc`s is correct.
unsafe impl<T, A: Allocator + Clone> RawConvertable for Rc<T, A> {
type Metadata = A;
/// See [`Rc::into_raw`] and [`Rc::allocator`] for more information.
fn into_raw(this: Self) -> (NonNull<T>, A) {
let alloc = Rc::allocator(&this).clone();
let ptr = Rc::into_raw(this);
// SAFETY: The pointer to the heap memory is always not-null, whether its
// dangling for ZSTs for not.
(unsafe { NonNull::new_unchecked(ptr.cast_mut()) }, alloc)
}
/// See [`Rc::from_raw_in`] for more information.
unsafe fn from_raw(pointer: NonNull<T>, metadata: A) -> Self {
// SAFETY: The safety requirement is upheld by the caller.
unsafe { Rc::from_raw_in(pointer.as_ptr(), metadata) }
}
}
// SAFETY: The implementation of `Rc`s is correct.
unsafe impl<T, A: Allocator + Clone> RawConvertable for Arc<T, A> {
type Metadata = A;
/// See [`Rc::into_raw`] and [`Rc::allocator`] for more information.
fn into_raw(this: Self) -> (NonNull<T>, A) {
let alloc = Arc::allocator(&this).clone();
let ptr = Arc::into_raw(this);
// SAFETY: The pointer to the heap memory is always not-null, whether its
// dangling for ZSTs for not.
(unsafe { NonNull::new_unchecked(ptr.cast_mut()) }, alloc)
}
/// See [`Rc::from_raw_in`] for more information.
unsafe fn from_raw(pointer: NonNull<T>, metadata: A) -> Self {
// SAFETY: The safety requirement is upheld by the caller.
unsafe { Arc::from_raw_in(pointer.as_ptr(), metadata) }
}
}
unsafe impl<T, A: Allocator> Uninit for Box<T, A> {
type Uninit = Box<MaybeUninit<T>, A>;
unsafe fn assume_init(this: Self::Uninit) -> Self {
Box::<MaybeUninit<T>, A>::assume_init(this)
}
}
unsafe impl<T, A: Allocator + Clone> Uninit for Rc<T, A> {
type Uninit = Rc<MaybeUninit<T>, A>;
unsafe fn assume_init(this: Self::Uninit) -> Self {
Rc::<MaybeUninit<T>, A>::assume_init(this)
}
}
unsafe impl<T, A: Allocator + Clone> Uninit for Arc<T, A> {
type Uninit = Arc<MaybeUninit<T>, A>;
unsafe fn assume_init(this: Self::Uninit) -> Self {
Arc::<MaybeUninit<T>, A>::assume_init(this)
}
}
}
/// Moves out the underlying pinned value, if it is `Unpin`.
///
/// See the example in the documentation of [`opin`] for more information.
pub fn unpin<P>(pinned: Pin<P>) -> P::Target
where
P: Deref + IntoInner,
P::Target: Unpin + Sized,
{
Pin::into_inner(pinned).into_inner()
}
/// Attempts to move out the underlying pinned value, if it is `Unpin`.
///
/// When the underlying pointer fails to unwrap the value, the original pinned
/// pointer is returned, wrapped in [`Err`].
///
/// See the example in the documentation of [`opin`] for more information.
pub fn try_unpin<P>(pinned: Pin<P>) -> Result<P::Target, Pin<P>>
where
P: Deref + IntoInner,
P::Target: Unpin + Sized,
{
P::try_unwrap(Pin::into_inner(pinned)).map_err(Pin::new)
}