1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//! Bitboard-related stuff

use crate::types::Coord;
use derive_more::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not};
use std::fmt;
use std::iter::IntoIterator;

/// Bitmask on chess board
///
/// Bitboard is just a set of squares on the chess board. It is represented as a single `u64`,
/// each bit of which corresponds to a single square on the board. The bits correspond to squares
/// in the same order as the squares are numbered. See [`Coord::index`](crate::types::Coord::index)
/// for details. So, the square with index `0` corresponds to the lowest bit, and the square with
/// index `63` corresponds to the highest bit.
///
/// As you can see, operations with bitboards are extremely fast and lightweight. Thus, bitboards
/// are extensively used, for example, in move generation or pattern detection.
#[derive(
    Default,
    Copy,
    Clone,
    PartialEq,
    Eq,
    Hash,
    BitAnd,
    BitAndAssign,
    BitOr,
    BitOrAssign,
    BitXor,
    BitXorAssign,
    Not,
)]
pub struct Bitboard(u64);

impl Bitboard {
    /// Empty bitboard, containing no squares
    pub const EMPTY: Bitboard = Bitboard(0);

    /// Full bitboard, containing all the squares
    pub const FULL: Bitboard = Bitboard(u64::MAX);

    /// Wraps a raw `u64` into bitboard
    ///
    /// This function does the same as [`Bitboard::from()`](#method.from-1), except that this one is `const`.
    #[inline]
    pub const fn from_raw(val: u64) -> Bitboard {
        Bitboard(val)
    }

    /// Makes a bitboard containing a single square `Coord`
    #[inline]
    pub const fn from_coord(coord: Coord) -> Bitboard {
        Bitboard(1_u64 << coord.index())
    }

    /// Adds square `coord` to the bitboard
    ///
    /// If the provided square is already present, the bitboard is returned unchanged.
    #[inline]
    pub const fn with(self, coord: Coord) -> Bitboard {
        Bitboard(self.0 | (1_u64 << coord.index()))
    }

    /// Removes square `coord` from the bitboard
    ///
    /// If the provided bitboard doesn't have square `coord`, it is returned unchanged.
    #[inline]
    pub const fn without(self, coord: Coord) -> Bitboard {
        Bitboard(self.0 & !(1_u64 << coord.index()))
    }

    /// Performs a left bitwise shift of the inner value
    #[inline]
    pub const fn shl(self, by: usize) -> Bitboard {
        Bitboard(self.0 << by)
    }

    /// Performs a right bitwise shift of the inner value
    #[inline]
    pub const fn shr(self, by: usize) -> Bitboard {
        Bitboard(self.0 >> by)
    }

    /// Creates a new bitboard from the lower bits of `x`, using `self` as mask
    ///
    /// The operation is similar to [PDEP](https://www.felixcloutier.com/x86/pdep) instruction
    /// on x86. The lowest bits from `x` are deposited to the places of ones in `self`. All other
    /// bits remain set to zero.
    ///
    /// Note that the implemetation currently uses good old loops and is not optimized to use
    /// PDEP instruction directly.
    ///
    /// # Example
    ///
    /// ```
    /// # use owlchess_base::bitboard::Bitboard;
    /// #
    /// let b = Bitboard::from(0b11011001);
    /// let x = 0b10110;
    /// // Suppose that the bits are numbered from 0 in order from lower to higher.
    /// // The 0th bit of `x` is placed to the 0th bit of `b`.
    /// // The 1st bit of `x` is placed to the 3rd bit of `b`.
    /// // The 2nd bit of `x` is placed to the 4th bit of `b`.
    /// // The 3rd bit of `x` is placed to the 6th bit of `b`.
    /// // The 4th bit of `x` is placed to the 7th bit of `b`.
    /// assert_eq!(b.deposit_bits(x), Bitboard::from(0b10011000));
    ///
    /// let x = 0b10110110;
    /// // `b` has only five bits set, so the bits from 5th to 7th in `x` are just ignored.
    /// assert_eq!(b.deposit_bits(x), Bitboard::from(0b10011000));
    /// ```
    #[inline]
    pub fn deposit_bits(&self, mut x: u64) -> Bitboard {
        let mut res: u64 = 0;
        let mut msk = self.0;
        while msk != 0 {
            let bit = msk & msk.wrapping_neg();
            if (x & 1) != 0 {
                res |= bit;
            }
            msk ^= bit;
            x >>= 1;
        }
        Bitboard(res)
    }

    /// Adds square `coord` to the bitboard
    ///
    /// If the provided square is already present, the bitboard is unchanged.
    ///
    /// This function does the same as [`with()`](Bitboard::with), but mutates the bitboard instead
    /// of returning a new one.
    #[inline]
    pub fn set(&mut self, coord: Coord) {
        *self = self.with(coord);
    }

    /// Removes square `coord` from the bitboard
    ///
    /// If the provided bitboard doesn't have square `coord`, it is unchanged.
    ///
    /// This function does the same as [`without()`](Bitboard::without), but mutates the bitboard instead
    /// of returning a new one.
    #[inline]
    pub fn unset(&mut self, coord: Coord) {
        *self = self.without(coord);
    }

    /// Flips the ranks in the bitboard
    #[inline]
    pub const fn flipped_rank(self) -> Self {
        Self(self.0.swap_bytes())
    }

    /// Flips the files in the bitboard
    #[inline]
    pub const fn flipped_file(self) -> Self {
        Self(self.0.reverse_bits().swap_bytes())
    }

    /// Returns `true` if the bitboard has square `coord`
    #[inline]
    pub const fn has(&self, coord: Coord) -> bool {
        ((self.0 >> coord.index()) & 1) != 0
    }

    /// Unwraps the bitboard into raw `u64`
    ///
    /// This function does the same as [`u64::from()`](#method.from), except that this one is `const`.
    #[inline]
    pub const fn as_raw(&self) -> u64 {
        self.0
    }

    /// Returns the number of bits in the bitboard
    #[inline]
    pub const fn len(&self) -> u32 {
        self.0.count_ones()
    }

    /// Returns `true` if the bitboard doesn't contain any squares
    #[inline]
    pub const fn is_empty(&self) -> bool {
        self.0 == 0
    }

    /// The opposite of [`is_empty()`](Bitboard::is_empty())
    #[inline]
    pub const fn is_nonempty(&self) -> bool {
        self.0 != 0
    }
}

impl From<Bitboard> for u64 {
    #[inline]
    fn from(b: Bitboard) -> u64 {
        b.0
    }
}

impl From<u64> for Bitboard {
    #[inline]
    fn from(u: u64) -> Bitboard {
        Bitboard(u)
    }
}

impl fmt::Debug for Bitboard {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "Bitboard({})", self)
    }
}

impl fmt::Display for Bitboard {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        let v = self.0.reverse_bits();
        write!(
            f,
            "{:08b}/{:08b}/{:08b}/{:08b}/{:08b}/{:08b}/{:08b}/{:08b}",
            (v >> 56) & 0xff,
            (v >> 48) & 0xff,
            (v >> 40) & 0xff,
            (v >> 32) & 0xff,
            (v >> 24) & 0xff,
            (v >> 16) & 0xff,
            (v >> 8) & 0xff,
            v & 0xff,
        )
    }
}

/// Iterator over the squares containing in a [`Bitboard`]
///
/// The squares are iterated in the increasing order of [`index()`](crate::types::Coord::index).
///
/// # Example
///
/// ```
/// # use owlchess_base::{bitboard::Bitboard, types::Coord};
/// #
/// let b = Bitboard::from(0b1100_1011);
/// let mut iter = b.into_iter();
/// assert_eq!(iter.next(), Some(Coord::from_index(0)));
/// assert_eq!(iter.next(), Some(Coord::from_index(1)));
/// assert_eq!(iter.next(), Some(Coord::from_index(3)));
/// assert_eq!(iter.next(), Some(Coord::from_index(6)));
/// assert_eq!(iter.next(), Some(Coord::from_index(7)));
/// assert_eq!(iter.next(), None);
/// ```
#[derive(Clone)]
pub struct Iter(u64);

impl Iterator for Iter {
    type Item = Coord;

    #[inline]
    fn next(&mut self) -> Option<Coord> {
        if self.0 == 0 {
            return None;
        }
        let bit = self.0.trailing_zeros();
        self.0 &= self.0.wrapping_sub(1_u64);
        unsafe { Some(Coord::from_index_unchecked(bit as usize)) }
    }
}

impl IntoIterator for Bitboard {
    type Item = Coord;
    type IntoIter = Iter;

    #[inline]
    fn into_iter(self) -> Iter {
        Iter(self.0)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::types::{Coord, File, Rank};

    #[test]
    fn test_iter() {
        let bb = Bitboard::EMPTY
            .with(Coord::from_parts(File::A, Rank::R4))
            .with(Coord::from_parts(File::E, Rank::R2))
            .with(Coord::from_parts(File::F, Rank::R3));
        assert_eq!(
            bb.into_iter().collect::<Vec<_>>(),
            vec![
                Coord::from_parts(File::A, Rank::R4),
                Coord::from_parts(File::F, Rank::R3),
                Coord::from_parts(File::E, Rank::R2)
            ],
        );
    }

    #[test]
    fn test_bitops() {
        let ca = Coord::from_parts(File::A, Rank::R4);
        let cb = Coord::from_parts(File::E, Rank::R2);
        let cc = Coord::from_parts(File::F, Rank::R3);

        let bb1 = Bitboard::EMPTY.with(ca).with(cb);
        let bb2 = Bitboard::EMPTY.with(cb).with(cc);
        assert_eq!(bb1 & bb2, Bitboard::EMPTY.with(cb));
        assert_eq!(bb1 | bb2, Bitboard::EMPTY.with(ca).with(cb).with(cc));
        assert_eq!(bb1 ^ bb2, Bitboard::EMPTY.with(ca).with(cc));

        assert_eq!((!bb1).into_iter().count(), 62);
        assert_eq!((!bb1).len(), 62);
    }

    #[test]
    fn test_format() {
        let bb = Bitboard::EMPTY
            .with(Coord::from_parts(File::A, Rank::R4))
            .with(Coord::from_parts(File::E, Rank::R2))
            .with(Coord::from_parts(File::F, Rank::R3))
            .with(Coord::from_parts(File::H, Rank::R8));
        assert_eq!(
            bb.to_string(),
            "00000001/00000000/00000000/00000000/10000000/00000100/00001000/00000000"
        );
    }
}