orx_tree/
tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
use crate::{
    aliases::Col,
    iter::AncestorsIterPtr,
    memory::{Auto, MemoryPolicy},
    pinned_storage::{PinnedStorage, SplitRecursive},
    tree_node_idx::INVALID_IDX_ERROR,
    tree_variant::RefsChildren,
    Node, NodeIdx, NodeMut, NodeSwapError, TreeVariant,
};
use orx_selfref_col::{NodeIdxError, NodePtr, RefsSingle};

/// Core tree structure.
pub struct Tree<V, M = Auto, P = SplitRecursive>(pub(crate) Col<V, M, P>)
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage;

impl<V> Tree<V, Auto, SplitRecursive>
where
    V: TreeVariant,
{
    /// Creates a new tree including the root node with the given `root_value`.
    ///
    /// Note that the following is the preferred constructor for non-empty trees
    ///
    /// ```ignore
    /// let tree = DynTree::new(42);
    /// ```
    ///
    /// while it is equivalent and shorthand for the following:
    ///
    /// ```ignore
    /// let mut tree = DynTree::empty();
    /// tree.push_root(42);
    /// ```
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_tree::*;
    ///
    /// let tree = DynTree::new(42);
    ///
    /// assert_eq!(tree.len(), 1);
    /// assert_eq!(tree.root().data(), &42);
    /// ```
    pub fn new(root_value: V::Item) -> Self {
        Self::new_with_root(root_value)
    }

    /// Creates an empty tree.
    ///
    /// You may call [`push_root`] to instantiate the empty tree.
    ///
    /// [`push_root`]: Self::push_root
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_tree::*;
    ///
    /// let tree = DynTree::<String>::empty();
    ///
    /// assert!(tree.is_empty());
    /// assert_eq!(tree.get_root(), None);
    /// ```
    pub fn empty() -> Self {
        Self(Col::<V, Auto, SplitRecursive>::new())
    }
}

impl<V, M, P> Default for Tree<V, M, P>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
    P::PinnedVec<V>: Default,
{
    fn default() -> Self {
        Self(Col::<V, M, P>::default())
    }
}

impl<V, M, P> Tree<V, M, P>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
{
    /// ***O(1)*** Returns the number of nodes in the tree.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// let mut tree: DynTree<i32> = DynTree::new(42);
    /// assert_eq!(tree.len(), 1);
    ///
    /// let mut root = tree.root_mut();
    /// let [_, idx] = root.push_children([4, 2]);
    ///
    /// assert_eq!(tree.len(), 3);
    ///
    /// let mut node = tree.node_mut(&idx);
    /// node.push_child(7);
    ///
    /// assert_eq!(tree.len(), 4);
    /// ```
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns true if the tree is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Pushes the root to the empty tree.
    ///
    /// # Panics
    ///
    /// Panics if push_root is called when the tree is not empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// let mut tree: DynTree<i32> = DynTree::empty();
    ///
    /// assert!(tree.is_empty());
    /// assert_eq!(tree.get_root(), None);
    ///
    /// tree.push_root(42);
    /// assert!(!tree.is_empty());
    /// assert_eq!(tree.len(), 1);
    /// assert_eq!(tree.root().data(), &42);
    /// ```
    pub fn push_root(&mut self, root_value: V::Item) -> NodeIdx<V> {
        assert!(
            self.is_empty(),
            "Cannot push root to the tree which already has a root."
        );

        let root_idx = self.0.push_get_idx(root_value);
        let root_mut: &mut RefsSingle<V> = self.0.ends_mut();
        root_mut.set_some(root_idx.node_ptr());

        NodeIdx(root_idx)
    }

    /// Removes all the nodes including the root of the tree.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// let mut tree: BinaryTree<i32> = BinaryTree::new(42);
    ///
    /// let mut root = tree.root_mut();
    /// root.push_child(4);
    /// let [idx] = root.push_children([2]);
    ///
    /// let mut node = tree.node_mut(&idx);
    /// node.push_child(7);
    ///
    /// assert_eq!(tree.len(), 4);
    /// assert_eq!(tree.root().data(), &42);
    ///
    /// tree.clear();
    /// assert!(tree.is_empty());
    /// assert_eq!(tree.get_root(), None);
    /// ```
    pub fn clear(&mut self) {
        self.0.clear();
        self.0.ends_mut().set_none();
    }

    // get root

    /// Returns the root node of the tree.
    ///
    /// # Panics
    ///
    /// Panics if the tree is empty and has no root.
    ///
    /// When not certain, you may use [`is_empty`] or [`get_root`] methods to have a safe access.
    ///
    /// [`is_empty`]: Self::is_empty
    /// [`get_root`]: Self::get_root
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// // initiate a rooted tree
    /// let mut tree = DynTree::<_>::new('a');
    /// assert_eq!(tree.root().data(), &'a');
    ///
    /// tree.clear();
    /// // assert_eq!(tree.get_root().data(), 'x'); // panics!
    ///
    /// // initiate an empty tree
    /// let mut tree = BinaryTree::<_>::empty();
    /// // assert_eq!(tree.get_root().data(), 'x'); // panics!
    ///
    /// tree.push_root('a');
    /// assert_eq!(tree.root().data(), &'a');
    /// ```
    pub fn root(&self) -> Node<V, M, P> {
        self.root_ptr()
            .cloned()
            .map(|p| Node::new(&self.0, p))
            .expect("Tree is empty and has no root. You may use `push_root` to add a root and/or `get_root` to safely access the root if it exists.")
    }

    /// Returns the mutable root node of the tree.
    ///
    /// # Panics
    ///
    /// Panics if the tree is empty and has no root.
    ///
    /// When not certain, you may use [`is_empty`] or [`get_root_mut`] methods to have a safe access.
    ///
    /// [`is_empty`]: Self::is_empty
    /// [`get_root_mut`]: Self::get_root_mut
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// // initiate a rooted tree
    /// let mut tree = DynTree::<_>::new('a');
    /// *tree.root_mut().data_mut() = 'x';
    /// assert_eq!(tree.root().data(), &'x');
    ///
    /// tree.clear();
    /// // *tree.root_mut().data_mut() = 'x'; // panics!
    ///
    /// // initiate an empty tree
    /// let mut tree = BinaryTree::<_>::empty();
    /// // *tree.root_mut().data_mut() = 'x'; // panics!
    ///
    /// tree.push_root('a');
    ///
    /// // build the tree from the root
    /// let mut root = tree.root_mut();
    /// assert_eq!(root.data(), &'a');
    ///
    /// let [b, c] = root.push_children(['b', 'c']);
    /// tree.node_mut(&b).push_child('d');
    /// tree.node_mut(&c).push_children(['e', 'f']);
    /// ```
    pub fn root_mut(&mut self) -> NodeMut<V, M, P> {
        self.root_ptr()
            .cloned()
            .map(|p| NodeMut::new(&mut self.0, p))
            .expect("Tree is empty and has no root. You may use `push_root` to add a root and/or `get_root` to safely access the root if it exists.")
    }

    /// Returns the root node of the tree; None if the tree is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// // initiate a rooted tree
    /// let mut tree = DynTree::<_>::new('a');
    /// assert_eq!(tree.root().data(), &'a');
    ///
    /// tree.clear();
    /// assert_eq!(tree.get_root(), None);
    ///
    /// // initiate an empty tree
    /// let mut tree = BinaryTree::<_>::empty();
    /// assert_eq!(tree.get_root(), None);
    ///
    /// tree.push_root('a');
    /// assert_eq!(tree.root().data(), &'a');
    /// ```
    pub fn get_root(&self) -> Option<Node<V, M, P>> {
        self.root_ptr().cloned().map(|p| Node::new(&self.0, p))
    }

    /// Returns the root as a mutable node of the tree; None if the tree is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// let mut tree = DynTree::<_>::new('a');
    ///
    /// let mut root = tree.root_mut();
    ///
    /// assert_eq!(root.data(), &'a');
    /// *root.data_mut() = 'x';
    /// assert_eq!(root.data(), &'x');
    ///
    /// root.push_child('b');
    /// let idx = root.push_child('c');
    ///
    /// tree.clear();
    /// assert_eq!(tree.get_root_mut(), None);
    /// ```
    pub fn get_root_mut(&mut self) -> Option<NodeMut<V, M, P>> {
        self.root_ptr()
            .cloned()
            .map(|p| NodeMut::new(&mut self.0, p))
    }

    // get nodes

    /// Returns true if the `node_idx` is valid for this tree.
    ///
    /// Returns false if any of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// * If [`is_node_idx_valid`] is true, then [`node_idx_error`] is None;
    /// * If [`is_node_idx_valid`] is false, then [`node_idx_error`] is Some.
    ///
    /// [`is_node_idx_valid`]: crate::Tree::is_node_idx_valid
    /// [`node_idx_error`]: crate::Tree::node_idx_error
    #[inline(always)]
    pub fn is_node_idx_valid(&self, node_idx: &NodeIdx<V>) -> bool {
        node_idx.0.is_valid_for(&self.0)
    }

    /// Returns the node index error if the `node_idx` is invalid.
    /// Returns None if the index is valid for this tree.
    ///
    /// Returns Some if any of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// * If [`is_node_idx_valid`] is true, then [`node_idx_error`] is None;
    /// * If [`is_node_idx_valid`] is false, then [`node_idx_error`] is Some.
    ///
    /// [`is_node_idx_valid`]: crate::Tree::is_node_idx_valid
    /// [`node_idx_error`]: crate::Tree::node_idx_error
    pub fn node_idx_error(&self, node_idx: &NodeIdx<V>) -> Option<NodeIdxError> {
        self.0.node_idx_error(&node_idx.0)
    }

    /// Returns the node with the given `node_idx`.
    ///
    /// # Panics
    ///
    /// Panics if this node index is not valid for the given `tree`; i.e., when either of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// When not certain, you may use [`is_node_idx_valid`] or [`get_node`] methods to have a safe access.
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// [`is_node_idx_valid`]: crate::Tree::is_node_idx_valid
    /// [`get_node`]: Self::get_node
    ///
    /// [`NodeIdxError::OutOfBounds`]: crate::NodeIdxError::OutOfBounds
    /// [`NodeIdxError::RemovedNode`]: crate::NodeIdxError::RemovedNode
    /// [`NodeIdxError::ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //        ╱ ╲
    /// //       4   5
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let n2 = tree.node(&id2);
    /// assert_eq!(n2.data(), &2);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// n3.push_children([4, 5]);
    ///
    /// let bfs_values: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_values, [1, 2, 3, 4, 5]);
    /// ```
    #[inline(always)]
    pub fn node(&self, node_idx: &NodeIdx<V>) -> Node<V, M, P> {
        assert!(self.is_node_idx_valid(node_idx), "{}", INVALID_IDX_ERROR);
        Node::new(&self.0, node_idx.0.node_ptr())
    }

    /// Returns the mutable node with the given `node_idx`.
    ///
    /// # Panics
    ///
    /// Panics if this node index is not valid for the given `tree`; i.e., when either of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// When not certain, you may use [`is_node_idx_valid`] or [`get_node_mut`] methods to have a safe access.
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// [`is_node_idx_valid`]: crate::Tree::is_node_idx_valid
    /// [`get_node_mut`]: Self::get_node_mut
    ///
    /// [`NodeIdxError::OutOfBounds`]: crate::NodeIdxError::OutOfBounds
    /// [`NodeIdxError::RemovedNode`]: crate::NodeIdxError::RemovedNode
    /// [`NodeIdxError::ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //        ╱ ╲
    /// //       4   5
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let n2 = tree.node(&id2);
    /// assert_eq!(n2.data(), &2);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// n3.push_children([4, 5]);
    ///
    /// let bfs_values: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_values, [1, 2, 3, 4, 5]);
    /// ```
    #[inline(always)]
    pub fn node_mut(&mut self, node_idx: &NodeIdx<V>) -> NodeMut<V, M, P> {
        assert!(self.is_node_idx_valid(node_idx), "{}", INVALID_IDX_ERROR);
        NodeMut::new(&mut self.0, node_idx.0.node_ptr())
    }

    /// Returns the node with the given `node_idx`; returns None if the node index is invalid.
    ///
    /// The node index is invalid if any of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// You may use [`try_node`] method to get the underlying reason when the index is invalid.
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// [`try_node`]: Self::try_node
    /// [`NodeIdxError::OutOfBounds`]: crate::NodeIdxError::OutOfBounds
    /// [`NodeIdxError::RemovedNode`]: crate::NodeIdxError::RemovedNode
    /// [`NodeIdxError::ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
    #[inline(always)]
    pub fn get_node(&self, node_idx: &NodeIdx<V>) -> Option<Node<V, M, P>> {
        self.is_node_idx_valid(node_idx)
            .then(|| Node::new(&self.0, node_idx.0.node_ptr()))
    }

    /// Returns the mutable node with the given `node_idx`; returns None if the node index is invalid.
    ///
    /// The node index is invalid if any of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// You may use [`try_node_mut`] method to get the underlying reason when the index is invalid.
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// [`try_node_mut`]: Self::try_node_mut
    /// [`NodeIdxError::OutOfBounds`]: crate::NodeIdxError::OutOfBounds
    /// [`NodeIdxError::RemovedNode`]: crate::NodeIdxError::RemovedNode
    /// [`NodeIdxError::ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
    #[inline(always)]
    pub fn get_node_mut(&mut self, node_idx: &NodeIdx<V>) -> Option<NodeMut<V, M, P>> {
        self.is_node_idx_valid(node_idx)
            .then(|| NodeMut::new(&mut self.0, node_idx.0.node_ptr()))
    }

    /// Returns the node with the given `node_idx`; returns the corresponding error if the node index is invalid.
    ///
    /// The node index is invalid if any of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// [`try_node`]: Self::try_node
    /// [`NodeIdxError::OutOfBounds`]: crate::NodeIdxError::OutOfBounds
    /// [`NodeIdxError::RemovedNode`]: crate::NodeIdxError::RemovedNode
    /// [`NodeIdxError::ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
    #[inline(always)]
    pub fn try_node(&self, node_idx: &NodeIdx<V>) -> Result<Node<V, M, P>, NodeIdxError> {
        self.0
            .try_get_ptr(&node_idx.0)
            .map(|ptr| Node::new(&self.0, ptr))
    }

    /// Returns the node with the given `node_idx`; returns the corresponding error if the node index is invalid.
    ///
    /// The node index is invalid if any of the following holds:
    ///
    /// * the node index is created from a different tree => [`NodeIdxError::OutOfBounds`]
    /// * the node that this index is created for is removed from the tree => [`NodeIdxError::RemovedNode`]
    /// * the tree is using `Auto` memory reclaim policy and nodes are reorganized due to node removals
    ///   => [`NodeIdxError::ReorganizedCollection`]
    ///
    /// Please see [`NodeIdx`] documentation for details on the validity of node indices.
    ///
    /// [`try_node`]: Self::try_node
    /// [`NodeIdxError::OutOfBounds`]: crate::NodeIdxError::OutOfBounds
    /// [`NodeIdxError::RemovedNode`]: crate::NodeIdxError::RemovedNode
    /// [`NodeIdxError::ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
    #[inline(always)]
    pub fn try_node_mut(
        &mut self,
        node_idx: &NodeIdx<V>,
    ) -> Result<NodeMut<V, M, P>, NodeIdxError> {
        self.0
            .try_get_ptr(&node_idx.0)
            .map(|ptr| NodeMut::new(&mut self.0, ptr))
    }

    /// Returns the node with the given `node_idx`.
    ///
    /// # Safety
    ///
    /// It omits the index validity assertions that [`node`] method performs; hence it is only safe to use
    /// this method when we are certain that '`is_node_idx_valid`' would have returned true.
    ///
    /// [`node`]: Self::node
    /// [`is_node_idx_valid`]: Self::is_node_idx_valid
    #[inline(always)]
    pub unsafe fn node_unchecked(&self, node_idx: &NodeIdx<V>) -> Node<V, M, P> {
        Node::new(&self.0, node_idx.0.node_ptr())
    }

    /// Returns the mutable node with the given `node_idx`.
    ///
    /// # Safety
    ///
    /// It omits the index validity assertions that [`node_mut`] method performs; hence it is only safe to use
    /// this method when we are certain that '`is_node_idx_valid`' would have returned true.
    ///
    /// [`node_mut`]: Self::node_mut
    /// [`is_node_idx_valid`]: Self::is_node_idx_valid
    #[inline(always)]
    pub unsafe fn node_mut_unchecked(&mut self, node_idx: &NodeIdx<V>) -> NodeMut<V, M, P> {
        NodeMut::new(&mut self.0, node_idx.0.node_ptr())
    }

    // move nodes

    /// ***O(1)*** Tries to swap the nodes together with their subtrees rooted at the given `first_idx` and `second_idx`
    /// in constant time (*).
    ///
    /// The indices remain valid.
    ///
    /// In order to have a valid swap operation, the two subtrees must be **independent** of each other without
    /// any shared node. Necessary and sufficient condition is then as follows:
    ///
    /// * node with the `first_idx` is not an ancestor of the node with the `second_idx`,
    /// * and vice versa.
    ///
    /// Swap operation will succeed if both indices are valid and the above condition holds. Panics ...
    ///
    /// # Panics
    ///
    /// * Panics if either of the node indices is invalid.
    /// * Panics if node with the `first_idx` is an ancestor of the node with the `second_idx`; or vice versa.
    ///
    /// # See also
    ///
    /// (*) Validation of the independence of the subtrees is performed in ***O(D)*** time where D is the maximum
    /// depth of the tree. When we are certain that the subtrees do not intersect, we can use the unsafe variant
    /// [`swap_subtrees_unchecked`] to bypass the validation.
    ///
    /// See also:
    ///
    /// * [`swap_data_with`]
    /// * [`swap_subtrees`]
    /// * [`try_swap_nodes`]
    /// * [`swap_subtrees_unchecked`]
    ///
    /// [`swap_data_with`]: crate::NodeMut::swap_data_with
    /// [`swap_subtrees`]: crate::Tree::swap_subtrees
    /// [`try_swap_nodes`]: crate::Tree::try_swap_nodes
    /// [`swap_subtrees_unchecked`]: crate::Tree::swap_subtrees_unchecked
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// let [_, _] = tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // we can swap n2 & n7
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   7     3
    /// //  ╱ ╲   ╱ ╲
    /// // 10 11 6   2
    /// //       |  ╱ ╲
    /// //       9 4   5
    /// //         |
    /// //         8
    ///
    /// tree.swap_subtrees(&id2, &id7);
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 7, 3, 10, 11, 6, 2, 9, 4, 5, 8]);
    /// ```
    pub fn swap_subtrees(&mut self, first_idx: &NodeIdx<V>, second_idx: &NodeIdx<V>) {
        assert!(self.is_node_idx_valid(first_idx), "{}", INVALID_IDX_ERROR);
        assert!(self.is_node_idx_valid(second_idx), "{}", INVALID_IDX_ERROR);
        let ptr_root = self.root_ptr().expect("tree is not empty");
        let ptr_p = first_idx.0.node_ptr();
        let ptr_q = second_idx.0.node_ptr();

        match ptr_p == ptr_q {
            true => {}
            false => {
                assert!(
                    AncestorsIterPtr::new(ptr_root.clone(), ptr_p.clone()).all(|x| x != ptr_q),
                    "Node with `second_idx` is an ancestor of the node with `first_idx`; cannot swap nodes."
                );
                assert!(
                    AncestorsIterPtr::new(ptr_root.clone(), ptr_q.clone()).all(|x| x != ptr_p),
                    "Node with `first_idx` is an ancestor of the node with `second_idx`; cannot swap nodes."
                );
                // # SAFETY: all possible error cases are checked and handled
                unsafe { self.swap_subtrees_unchecked(first_idx, second_idx) };
            }
        }
    }

    /// ***O(1)*** Tries to swap the nodes together with their subtrees rooted at the given `first_idx` and `second_idx`
    /// in constant time (*).
    /// Returns the error if the swap operation is invalid.
    ///
    /// The indices remain valid.
    ///
    /// In order to have a valid swap operation, the two subtrees must be **independent** of each other without
    /// any shared node. Necessary and sufficient condition is then as follows:
    ///
    /// * node with the `first_idx` is not an ancestor of the node with the `second_idx`,
    /// * and vice versa.
    ///
    /// Swap operation will succeed and return Ok if both indices are valid and the above condition holds.
    /// It will the corresponding [`NodeSwapError`] otherwise.
    ///
    /// # See also
    ///
    /// (*) Validation of the independence of the subtrees is performed in ***O(D)*** time where D is the maximum
    /// depth of the tree. When we are certain that the subtrees do not intersect, we can use the unsafe variant
    /// [`swap_subtrees_unchecked`] to bypass the validation.
    ///
    /// See also:
    ///
    /// * [`swap_data_with`]
    /// * [`swap_subtrees`]
    /// * [`try_swap_nodes`]
    /// * [`swap_subtrees_unchecked`]
    ///
    /// [`swap_data_with`]: crate::NodeMut::swap_data_with
    /// [`swap_subtrees`]: crate::Tree::swap_subtrees
    /// [`try_swap_nodes`]: crate::Tree::try_swap_nodes
    /// [`swap_subtrees_unchecked`]: crate::Tree::swap_subtrees_unchecked
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let id1 = root.idx();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// let [id10, _] = tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // cannot swap n3 & n10
    ///
    /// assert_eq!(
    ///     tree.try_swap_nodes(&id3, &id10),
    ///     Err(NodeSwapError::FirstNodeIsAncestorOfSecond)
    /// );
    ///
    /// // cannot swap n4 & n1 (root)
    ///
    /// assert_eq!(
    ///     tree.try_swap_nodes(&id4, &id1),
    ///     Err(NodeSwapError::SecondNodeIsAncestorOfFirst)
    /// );
    ///
    /// // we can swap n2 & n7
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   7     3
    /// //  ╱ ╲   ╱ ╲
    /// // 10 11 6   2
    /// //       |  ╱ ╲
    /// //       9 4   5
    /// //         |
    /// //         8
    ///
    /// let result = tree.try_swap_nodes(&id2, &id7);
    /// assert_eq!(result, Ok(()));
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 7, 3, 10, 11, 6, 2, 9, 4, 5, 8]);
    /// ```
    pub fn try_swap_nodes(
        &mut self,
        first_idx: &NodeIdx<V>,
        second_idx: &NodeIdx<V>,
    ) -> Result<(), NodeSwapError> {
        let ptr_root = match self.root_ptr() {
            Some(x) => x,
            None => return Err(NodeSwapError::NodeIdxError(NodeIdxError::RemovedNode)),
        };
        let ptr_p = self.0.try_get_ptr(&first_idx.0)?;
        let ptr_q = self.0.try_get_ptr(&second_idx.0)?;

        if ptr_p == ptr_q {
            Ok(())
        } else if AncestorsIterPtr::new(ptr_root.clone(), ptr_p.clone()).any(|x| x == ptr_q) {
            Err(NodeSwapError::SecondNodeIsAncestorOfFirst)
        } else if AncestorsIterPtr::new(ptr_root.clone(), ptr_q.clone()).any(|x| x == ptr_p) {
            Err(NodeSwapError::FirstNodeIsAncestorOfSecond)
        } else {
            // # SAFETY: all possible error cases are checked and handled
            unsafe { self.swap_subtrees_unchecked(first_idx, second_idx) };
            Ok(())
        }
    }

    /// ***O(1)*** Swaps the nodes together with their subtrees rooted at the given `first_idx` and `second_idx`.
    ///
    /// The indices remain valid.
    ///
    /// In order to have a valid swap operation, the two subtrees must be **independent** of each other without
    /// any shared node. Necessary and sufficient condition is then as follows:
    ///
    /// * node with the `first_idx` is not an ancestor of the node with the `second_idx`,
    /// * and vice versa.
    ///
    /// # Panics
    ///
    /// Panics if either of the node indices is invalid.
    ///
    /// # Safety
    ///
    /// It is safe to use this method only when the swap operation is valid; i.e., abovementioned independence condition
    /// of the subtrees holds.
    ///
    /// # See also
    ///
    /// * [`swap_data_with`]
    /// * [`swap_subtrees`]
    /// * [`try_swap_nodes`]
    /// * [`swap_subtrees_unchecked`]
    ///
    /// [`swap_data_with`]: crate::NodeMut::swap_data_with
    /// [`swap_subtrees`]: crate::Tree::swap_subtrees
    /// [`try_swap_nodes`]: crate::Tree::try_swap_nodes
    /// [`swap_subtrees_unchecked`]: crate::Tree::swap_subtrees_unchecked
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// let [_, _] = tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // we can swap n2 & n5
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   7     3
    /// //  ╱ ╲   ╱ ╲
    /// // 10 11 6   2
    /// //       |  ╱ ╲
    /// //       9 4   5
    /// //         |
    /// //         8
    ///
    /// unsafe { tree.swap_subtrees_unchecked(&id2, &id7) };
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 7, 3, 10, 11, 6, 2, 9, 4, 5, 8]);
    /// ```
    pub unsafe fn swap_subtrees_unchecked(
        &mut self,
        first_idx: &NodeIdx<V>,
        second_idx: &NodeIdx<V>,
    ) {
        assert!(self.is_node_idx_valid(first_idx), "{}", INVALID_IDX_ERROR);
        assert!(self.is_node_idx_valid(second_idx), "{}", INVALID_IDX_ERROR);

        let ptr_p = first_idx.0.node_ptr();
        let ptr_q = second_idx.0.node_ptr();

        if ptr_p == ptr_q {
            return;
        }

        let p = unsafe { &mut *ptr_p.ptr_mut() };
        let q = unsafe { &mut *ptr_q.ptr_mut() };

        let parent_p = p.prev().get().cloned();
        let parent_q = q.prev().get().cloned();

        match parent_p {
            Some(parent_ptr_p) => {
                let parent_p = unsafe { &mut *parent_ptr_p.ptr_mut() };
                parent_p.next_mut().replace_with(&ptr_p, ptr_q.clone());

                q.prev_mut().set_some(parent_ptr_p);
            }
            None => {
                q.prev_mut().set_none();
            }
        }

        match parent_q {
            Some(parent_ptr_q) => {
                let parent_q = unsafe { &mut *parent_ptr_q.ptr_mut() };
                parent_q.next_mut().replace_with(&ptr_q, ptr_p);

                p.prev_mut().set_some(parent_ptr_q);
            }
            None => {
                p.prev_mut().set_none();
            }
        }

        if p.prev().get().is_none() {
            self.0.ends_mut().set_some(first_idx.0.node_ptr());
        } else if q.prev().get().is_none() {
            self.0.ends_mut().set_some(second_idx.0.node_ptr());
        }
    }

    // helpers

    pub(crate) fn new_with_root(root_value: V::Item) -> Self
    where
        P::PinnedVec<V>: Default,
    {
        let mut col = Col::<V, M, P>::new();
        let root_ptr = col.push(root_value);
        let root_mut: &mut RefsSingle<V> = col.ends_mut();
        root_mut.set_some(root_ptr);

        Self(col)
    }

    /// Returns the pointer to the root; None if empty.
    fn root_ptr(&self) -> Option<&NodePtr<V>> {
        self.0.ends().get()
    }
}