orx_tree/memory.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
use crate::{pinned_storage::PinnedStorage, Tree, TreeVariant};
use orx_selfref_col::{MemoryReclaimNever, MemoryReclaimOnThreshold, MemoryReclaimer, Utilization};
/// Trees use a pinned vector ([`PinnedVec`]) as its underlying storage.
/// Deletions from the tree are lazy in the sense that the nodes are closed; not removed from the vector.
/// Therefore, deletions leave a gap in the underlying collection.
/// How these nodes will be reclaimed is determined by the `MemoryPolicy`.
///
/// This is important because during memory reclaim, nodes of the collection are reorganized which
/// invalidates the node indices which are obtained prior to this operation.
/// Node indices, or [`NodeIdx`], are analogous to usize indices of a slice and allow for safe direct
/// constant time access to the node it is created for.
///
/// There are three available policies:
///
/// * [`Auto`]
/// * The default policy.
/// * It automatically reclaims memory whenever the utilization falls below 75%.
/// * Automatic triggers of memory reclaims might lead to implicit invalidation of node indices due to [`ReorganizedCollection`].
/// * It is important to note that, even when using Auto policy, tree growth will never trigger memory reclaim.
/// Only node removing mutations such as [`prune`] can trigger node reorganization.
/// * [`AutoWithThreshold`]
/// * This is a generalization of the Auto policy; in particular, Auto is equivalent to `AutoWithThreshold<2>`.
/// * Its constant parameter `D` defines the utilization threshold to trigger the memory reclaim operation.
/// * Specifically, memory of closed nodes will be reclaimed whenever the ratio of closed nodes to all nodes exceeds one over `2^D`.
/// The greater the `D`, the greater the utilization threshold.
/// * [`Lazy`]
/// * It never reclaims memory.
/// * It never leads to implicit invalidation of node indices.
/// In other words, a node index can only be invalidated if we prune that node from the tree ([`RemovedNode`]).
///
/// An ideal use pattern can conveniently be achieved by using auto and lazy policies together,
/// using the free memory policy transformation methods.
/// Such a use case is demonstrated in the example below.
///
/// [`PinnedVec`]: orx_pinned_vec::PinnedVec
/// [`NodeIdx`]: crate::NodeIdx
/// [`prune`]: crate::NodeMut::prune
/// [`ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
/// [`RemovedNode`]: crate::NodeIdxError::RemovedNode
///
/// # Examples
///
/// ## Auto Memory Claim
///
/// Since Auto is the default memory policy, we do not need to include it in the tree type signature.
/// The following example demonstrates how this policy impacts the validity of node indices.
///
/// The follow up example will demonstrate how to switch between the [`Lazy`] and [`Auto`] policies
/// to make best use of these policies and use both node indices and memory efficiently.
///
/// ```
/// use orx_tree::*;
///
/// // # 1 - BUILD UP
///
/// // 1
/// // ╱ ╲
/// // ╱ ╲
/// // 2 3
/// // ╱ ╲ ╱ ╲
/// // 4 5 6 7
/// // | | ╱ ╲
/// // 8 9 10 11
///
/// fn bfs_values(tree: &DynTree<i32>) -> Vec<i32> {
/// tree.root().walk::<Bfs>().copied().collect()
/// }
///
/// // # 1. GROW
///
/// // equivalently => DynTree::<i32, Auto>::new(1)
/// let mut tree = DynTree::new(1);
///
/// let [id2, id3] = tree.root_mut().push_children([2, 3]);
/// let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
/// let [id8] = tree.node_mut(&id4).push_children([8]);
/// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
/// tree.node_mut(&id6).push_child(9);
/// tree.node_mut(&id7).push_children([10, 11]);
///
/// assert_eq!(bfs_values(&tree), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]);
///
/// // all id's above are valid => the tree only grew
/// assert!(tree.is_node_idx_valid(&id2)); // is_valid_for => true
/// assert!(tree.get_node(&id4).is_some()); // get_node => Some(Node)
/// assert!(tree.try_node(&id6).is_ok()); // try_get_node => Ok(Node)
/// let _node7 = tree.node(&id7); // no panic
///
/// // # 2 - SHRINK BUT WITHOUT A MEMORY RECLAIM
///
/// // let's close two nodes (nodes 4 & 8)
/// // this is not enough to trigger a memory reclaim
/// tree.node_mut(&id4).prune();
/// assert_eq!(bfs_values(&tree), [1, 2, 3, 5, 6, 7, 9, 10, 11]);
///
/// assert!(tree.is_node_idx_valid(&id2)); // is_valid_for => true
/// assert!(tree.try_node(&id6).is_ok()); // try_get_node => Ok(Node)
/// let node7 = tree.node(&id7); // no panic
///
/// // what about id4 & id8 => invalidated due to RemovedNode
/// assert!(!tree.is_node_idx_valid(&id4));
/// assert!(tree.get_node(&id4).is_none());
/// assert_eq!(tree.try_node(&id4), Err(NodeIdxError::RemovedNode));
/// // let node4 = id4.node(&tree); // panics!!!
///
/// // # 3 - SHRINK TRIGGERING MEMORY RECLAIM
///
/// // let's close more nodes (7, 10, 11) to trigger the memory reclaim
/// tree.node_mut(&id7).prune();
/// assert_eq!(bfs_values(&tree), [1, 2, 3, 5, 6, 9]);
///
/// // even node 2 is still on the tree;
/// // its idx is invalidated => ReorganizedCollection
/// assert!(!tree.is_node_idx_valid(&id2));
/// assert_eq!(
/// tree.try_node(&id2),
/// Err(NodeIdxError::ReorganizedCollection)
/// );
///
/// // all indices obtained prior to reorganization are now invalid
/// // we can restore the valid indices again
///
/// let id2 = tree.root().get_child(0).unwrap().idx();
/// assert!(tree.is_node_idx_valid(&id2));
/// assert!(tree.try_node(&id2).is_ok());
/// let n2 = tree.node(&id2);
/// assert_eq!(n2.data(), &2);
/// ```
///
/// ## Lazy Memory Claim: Preventing Invalid Indices
///
/// Now assume that we want to make sure that the indices we cached during growth
/// are valid during the stages #2 and #3.
/// We can achieve this by switching to Lazy policy and only after stage #3,
/// when we are done using the indices, we can switch back to Auto policy.
/// Note that these transformations of the memory policies are free.
///
/// ```
/// use orx_tree::*;
///
/// // # 1 - BUILD UP
///
/// // 1
/// // ╱ ╲
/// // ╱ ╲
/// // 2 3
/// // ╱ ╲ ╱ ╲
/// // 4 5 6 7
/// // | | ╱ ╲
/// // 8 9 10 11
///
/// fn bfs_values<M: MemoryPolicy>(tree: &DynTree<i32, M>) -> Vec<i32> {
/// tree.root().walk::<Bfs>().copied().collect()
/// }
///
/// // # 1. GROW
///
/// // or just => DynTree::<i32, Lazy>::new(1);
/// let mut tree = DynTree::new(1).into_lazy_reclaim();
///
/// let [id2, id3] = tree.root_mut().push_children([2, 3]);
/// let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
/// let [id8] = tree.node_mut(&id4).push_children([8]);
/// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
/// tree.node_mut(&id6).push_child(9);
/// tree.node_mut(&id7).push_children([10, 11]);
///
/// assert_eq!(bfs_values(&tree), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]);
///
/// // all id's above are valid => we are in Lazy mode & the tree only grew
/// assert!(tree.is_node_idx_valid(&id2)); // is_valid_for => true
/// assert!(tree.get_node(&id4).is_some()); // get_node => Some(Node)
/// assert!(tree.try_node(&id6).is_ok()); // try_get_node => Ok(Node)
/// let _node7 = tree.node(&id7); // no panic!
///
/// // # 2 - SHRINK, NO MEMORY RECLAIM
///
/// // let's close two nodes (nodes 4 & 8)
/// tree.node_mut(&id4).prune();
/// assert_eq!(bfs_values(&tree), [1, 2, 3, 5, 6, 7, 9, 10, 11]);
///
/// assert!(tree.is_node_idx_valid(&id2)); // is_valid_for => true
/// assert!(tree.try_node(&id6).is_ok()); // try_get_node => Ok(Node)
/// let node7 = tree.node(&id7); // no panic
///
/// // only id4 & id8 are affected (explicit) => invalidated due to RemovedNode
/// assert!(!tree.is_node_idx_valid(&id4));
/// assert!(tree.get_node(&id4).is_none());
/// assert_eq!(tree.try_node(&id4), Err(NodeIdxError::RemovedNode));
/// // let node4 = id4.node(&tree); // panics!
///
/// // # 3 - SHRINK HEAVILY, STILL NO MEMORY RECLAIM
///
/// // let's close more nodes (7, 10, 11)
/// // this would've triggered memory reclaim in Auto policy, but not in Lazy policy
/// tree.node_mut(&id7).prune();
/// assert_eq!(bfs_values(&tree), [1, 2, 3, 5, 6, 9]);
///
/// // all indices are still valid ✓
/// assert!(tree.is_node_idx_valid(&id2));
/// assert!(tree.try_node(&id2).is_ok());
/// let n2 = tree.node(&id2);
/// assert_eq!(n2.data(), &2);
///
/// // # 4 - END OF HEAVY MUTATIONS, RECLAIM THE MEMORY
///
/// // since utilization was below 75% (6 active nodes / 11)
/// // memory is reclaimed immediately once switch to Auto.
/// // now, all prior indices are invalid
/// let tree: DynTree<i32, Auto> = tree.into_auto_reclaim();
/// assert!(!tree.is_node_idx_valid(&id2));
/// assert!(tree.get_node(&id3).is_none());
/// assert_eq!(
/// tree.try_node(&id4),
/// Err(NodeIdxError::ReorganizedCollection)
/// );
/// ```
pub trait MemoryPolicy: 'static {
/// Memory reclaim policy for the specific tree variant `V`.
type MemoryReclaimPolicy<V>: orx_selfref_col::MemoryPolicy<V>
where
V: TreeVariant;
}
/// The `Lazy` policy never reclaims closed nodes.
///
/// * It never reclaims memory.
/// * It never leads to implicit invalidation of node indices.
/// In other words, a node index can only be invalidated if we remove that node from the tree ([`RemovedNode`]).
///
/// Compared to `Auto`, lazy approach has the following pros & cons:
///
/// * (+) Node indices ([`NodeIdx<V>`]) created for a lazy tree will never be implicitly invalidated.
/// Recall that, analogous to random access to an array element with its index,
/// node indices allow for constant time access to the corresponding node.
/// A node index can be invalidated if either of the following happens
/// (i) the node is removed from the tree,
/// (ii) other nodes are removed from the tree triggering a memory reclaim operation.
/// With lazy policy, the second case can never happen.
/// * (-) Uses more memory due to the gaps of the closed nodes especially when there exist many deletions
/// from the tree.
///
/// Notice that the con can never be observed for grow-only situations; or might be insignificant when the
/// number of removals is not very large. In such situations, it is the recommended memory reclaim policy.
///
/// [`NodeIdx<V>`]: orx_selfref_col::NodeIdx
/// [`RemovedNode`]: crate::NodeIdxError::RemovedNode
pub struct Lazy;
impl MemoryPolicy for Lazy {
type MemoryReclaimPolicy<V>
= MemoryReclaimNever
where
V: TreeVariant;
}
/// The `Auto` policy reclaims closed nodes whenever the utilization falls below 75%.
///
/// * The default policy; and hence, the generic parameter can be omitted.
/// * It automatically reclaims memory whenever the utilization falls below 75%.
/// * Automatic triggers of memory reclaims might lead to implicit invalidation of node indices due to [`ReorganizedCollection`].
/// * It is important to note that, even when using Auto policy, tree growth will never trigger memory reclaim.
/// Only node removing mutations such as [`prune`] can trigger node reorganization.
///
/// Compared to `Lazy`, auto approach has the following pros & cons:
///
/// * (+) Node indices ([`NodeIdx<V>`]) created for an auto-reclaim tree will can be implicitly invalidated.
/// Recall that, analogous to random access to an array element with its index,
/// node indices allow for constant time access to the corresponding node.
/// A node index can be invalidated if either of the following happens
/// (i) the node is removed from the tree,
/// (ii) other nodes are removed from the tree triggering a memory reclaim operation.
/// With auto policy, both the explicit (i) and implicit (ii) invalidation can occur.
/// * (-) Uses memory efficiently making sure that utilization can never go below a constant threshold.
///
/// [`NodeIdx<V>`]: orx_selfref_col::NodeIdx
///
/// Since Auto is the default memory policy, we do not need to include it in the tree type signature.
///
/// In order to observe the impact of the memory reclaim policy on validity of the node indices,
/// please see the Examples section of [`MemoryPolicy`].
///
/// [`ReorganizedCollection`]: crate::NodeIdxError::ReorganizedCollection
/// [`prune`]: crate::NodeMut::prune
pub struct Auto;
impl MemoryPolicy for Auto {
type MemoryReclaimPolicy<V>
= MemoryReclaimOnThreshold<2, V, V::Reclaimer>
where
V: TreeVariant;
}
/// The `AutoWithThreshold` policy reclaims closed nodes whenever the utilization falls below a certain threshold
/// which is determined by the constant parameter `D`.
///
/// * This is a generalization of the [`Auto`] policy; in particular, Auto is equivalent to `AutoWithThreshold<2>`.
/// * Its constant parameter `D` defines the utilization threshold to trigger the memory reclaim operation.
/// * Specifically, memory of closed nodes will be reclaimed whenever the ratio of closed nodes to all nodes exceeds one over `2^D`.
/// The greater the `D`, the greater the utilization threshold.
/// * when `D = 0`: memory will be reclaimed when utilization is below 0.00% (equivalent to never).
/// * when `D = 1`: memory will be reclaimed when utilization is below 50.00%.
/// * when `D = 2`: memory will be reclaimed when utilization is below 75.00%.
/// * when `D = 3`: memory will be reclaimed when utilization is below 87.50%.
/// * when `D = 4`: memory will be reclaimed when utilization is below 93.75%.
///
/// Compared to `Lazy`, auto approach has the following pros & cons:
///
/// * (+) Node indices ([`NodeIdx<V>`]) created for an auto-reclaim tree will can be implicitly invalidated.
/// Recall that, analogous to random access to an array element with its index,
/// node indices allow for constant time access to the corresponding node.
/// A node index can be invalidated if either of the following happens
/// (i) the node is removed from the tree,
/// (ii) other nodes are removed from the tree triggering a memory reclaim operation.
/// With auto policy, both the explicit (i) and implicit (ii) invalidation can occur.
/// * (-) Uses memory efficiently making sure that utilization can never go below a constant threshold.
///
/// [`NodeIdx<V>`]: orx_selfref_col::NodeIdx
///
/// Since Auto is the default memory policy, we do not need to include it in the tree type signature.
///
/// In order to observe the impact of the memory reclaim policy on validity of the node indices,
/// please see the Examples section of [`MemoryPolicy`].
pub struct AutoWithThreshold<const D: usize>;
impl<const D: usize> MemoryPolicy for AutoWithThreshold<D> {
type MemoryReclaimPolicy<V>
= MemoryReclaimOnThreshold<D, V, V::Reclaimer>
where
V: TreeVariant;
}
// tree methods
impl<V, M, P> Tree<V, M, P>
where
V: TreeVariant,
M: MemoryPolicy,
P: PinnedStorage,
{
/// Returns current node utilization of the collection.
pub fn memory_utilization(&self) -> Utilization {
self.0.utilization()
}
}
// tree memory policy transformations: into_lazy_reclaim
impl<V, P> Tree<V, Auto, P>
where
V: TreeVariant,
P: PinnedStorage,
{
/// Transforms the tree's memory reclaim policy from [`Auto`] to [`Lazy`]:
///
/// * `Tree<V>` => `Tree<V, Lazy>` // Auto can be omitted on since it is the default
/// * `DynTree<u62>` => `DynTree<u32, Lazy>`
/// * `BinaryTree<u62>` => `BinaryTree<u32, Lazy>`
///
/// This is free operation and does not require any allocation or copies.
pub fn into_lazy_reclaim(self) -> Tree<V, Lazy, P> {
Tree(self.0.into())
}
}
impl<const D: usize, V, P> Tree<V, AutoWithThreshold<D>, P>
where
V: TreeVariant,
P: PinnedStorage,
{
/// Transforms the tree's memory reclaim policy from [`AutoWithThreshold`] to [`Lazy`]:
///
/// * `Tree<V, AutoWithThreshold<3>>` => `Tree<V, Lazy>`
/// * `DynTree<u62, AutoWithThreshold<4>>` => `DynTree<u32, Lazy>`
/// * `BinaryTree<u62, AutoWithThreshold<1>>` => `BinaryTree<u32, Lazy>`
///
/// This is free operation and does not require any allocation or copies.
pub fn into_lazy_reclaim(self) -> Tree<V, Lazy, P> {
Tree(self.0.into())
}
}
// tree memory policy transformations: into_auto_reclaim
impl<V, P> Tree<V, Lazy, P>
where
V: TreeVariant,
P: PinnedStorage,
{
/// Transforms the tree's memory reclaim policy from [`Lazy`] to [`Auto`]:
///
/// * `Tree<V, Lazy>` => `Tree<V>` // Auto can be omitted on since it is the default
/// * `DynTree<u62, Lazy>` => `DynTree<u32>`
/// * `BinaryTree<u62, Lazy>` => `BinaryTree<u32>`
///
/// This is free operation and does not require any allocation or copies.
pub fn into_auto_reclaim(self) -> Tree<V, Auto, P> {
let mut tree = Tree(self.0.into());
let will_reclaim =
<Auto as MemoryPolicy>::MemoryReclaimPolicy::<V>::col_needs_memory_reclaim(&tree.0);
if will_reclaim {
let nodes_moved = <V::Reclaimer as MemoryReclaimer<V>>::reclaim_nodes(&mut tree.0);
tree.0.update_state(nodes_moved);
}
tree
}
/// Transforms the tree's memory reclaim policy from [`Lazy`] to [`AutoWithThreshold`]:
///
/// * `Tree<V, Lazy>` => `Tree<V, AutoWithThreshold<3>>`
/// * `DynTree<u62, Lazy>` => `DynTree<u32, AutoWithThreshold<1>>`
/// * `BinaryTree<u62, Lazy>` => `BinaryTree<u32, AutoWithThreshold<4>>`
///
/// This is free operation and does not require any allocation or copies.
pub fn into_auto_reclaim_with_threshold<const D: usize>(
self,
) -> Tree<V, AutoWithThreshold<D>, P> {
let mut tree = Tree(self.0.into());
let will_reclaim =
<AutoWithThreshold<D> as MemoryPolicy>::MemoryReclaimPolicy::<V>::col_needs_memory_reclaim(&tree.0);
if will_reclaim {
<V::Reclaimer as MemoryReclaimer<V>>::reclaim_nodes(&mut tree.0);
}
tree
}
}