orx_tree/node_mut.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
use crate::{
    aliases::{Col, N},
    iter::ChildrenMutIter,
    memory::{Auto, MemoryPolicy},
    node_ref::NodeRefCore,
    pinned_storage::{PinnedStorage, SplitRecursive},
    subtrees::{MovedSubTree, SubTreeCore},
    subtrees_within::SubTreeWithin,
    traversal::{
        enumerations::Val,
        over_mut::{OverItemInto, OverItemMut},
        post_order::iter_ptr::PostOrderIterPtr,
        OverData, OverMut,
    },
    tree_node_idx::INVALID_IDX_ERROR,
    tree_variant::RefsChildren,
    NodeIdx, NodeRef, SubTree, Traverser, Tree, TreeVariant,
};
use core::{fmt::Debug, marker::PhantomData};
use orx_selfref_col::{NodePtr, Refs};
/// A marker trait determining the mutation flexibility of a mutable node.
pub trait NodeMutOrientation: 'static {}
/// Allows mutation of only the node itself and its descendants.
///
/// This is a safety requirement for methods such as [`children_mut`]:
///
/// * `children_mut` returns mutable children; however, with `NodeMutDown` orientation.
/// * This prevents us from having more than once mutable reference to the same node.
///
/// [`children_mut`]: crate::NodeMut::children_mut
pub struct NodeMutDown {}
impl NodeMutOrientation for NodeMutDown {}
/// Allows mutation of the node itself, its descendants and ancestors;
/// i.e., does limit.
pub struct NodeMutUpAndDown {}
impl NodeMutOrientation for NodeMutUpAndDown {}
/// Side of a sibling node relative to a particular node within the children collection.
#[derive(Clone, Copy, Debug)]
pub enum Side {
    /// To the left of this node.
    Left,
    /// To the right of this node.
    Right,
}
/// A node of the tree, which in turn is a tree.
pub struct NodeMut<'a, V, M = Auto, P = SplitRecursive, O = NodeMutUpAndDown>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
    O: NodeMutOrientation,
{
    col: &'a mut Col<V, M, P>,
    node_ptr: NodePtr<V>,
    phantom: PhantomData<O>,
}
impl<'a, V, M, P, MO> NodeRefCore<'a, V, M, P> for NodeMut<'a, V, M, P, MO>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
    MO: NodeMutOrientation,
{
    #[inline(always)]
    fn col(&self) -> &Col<V, M, P> {
        self.col
    }
    #[inline(always)]
    fn node_ptr(&self) -> &NodePtr<V> {
        &self.node_ptr
    }
}
impl<'a, V, M, P, MO> NodeMut<'a, V, M, P, MO>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
    MO: NodeMutOrientation,
{
    /// Returns a mutable reference to data of this node.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// let mut tree = DynTree::new(0);
    ///
    /// let mut root = tree.root_mut();
    ///
    /// *root.data_mut() = 10;
    /// assert_eq!(root.data(), &10);
    ///
    /// let [idx_a] = root.push_children([1]);
    /// let mut node = tree.node_mut(&idx_a);
    ///
    /// *node.data_mut() += 10;
    /// assert_eq!(node.data(), &11);
    /// ```
    #[inline(always)]
    #[allow(clippy::missing_panics_doc)]
    pub fn data_mut(&mut self) -> &mut V::Item {
        self.node_mut()
            .data_mut()
            .expect("node holding a tree reference must be active")
    }
    /// Swaps the data of this and the other node with the given `other_idx`.
    ///
    /// # Panics
    ///
    /// Panics if the `other_idx` is invalid.
    ///
    /// # See also
    ///
    /// See [`try_swap_nodes`] to swap two independent subtrees rooted at given node indices.
    ///
    /// [`try_swap_nodes`]: crate::Tree::try_swap_nodes
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱
    /// // 4   5 6
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let id1 = root.idx();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, id5] = n2.push_children([4, 5]);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// n3.push_child(6);
    ///
    /// // swap data of nodes to obtain
    ///
    /// //      2
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     5
    /// //  ╱ ╲   ╱
    /// // 4   3 6
    ///
    /// tree.node_mut(&id4).swap_data_with(&id4); // does nothing
    /// tree.node_mut(&id2).swap_data_with(&id1);
    /// tree.node_mut(&id5).swap_data_with(&id3);
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [2, 1, 5, 4, 3, 6]);
    /// ```
    pub fn swap_data_with(&mut self, other_idx: &NodeIdx<V>) {
        assert!(other_idx.0.is_valid_for(self.col), "{}", INVALID_IDX_ERROR);
        let a = self.node_ptr.clone();
        let b = other_idx.0.node_ptr();
        Self::swap_data_of_nodes(a, b);
    }
    /// Swaps the data of this node with its parent's data, and returns true.
    ///
    /// Does nothing and returns false if this node is the root, and hence, has no parent.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    /// let mut tree = DynTree::new(1);
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
    /// let id8 = tree.node_mut(&id4).push_child(8);
    /// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // let's move 8 up to root one by one, swapping with its parents
    /// //      8
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     3
    /// //  ╱ ╲   ╱ ╲
    /// // 2   5 6   7
    /// // |     |  ╱ ╲
    /// // 4     9 10  11
    /// tree.node_mut(&id8).swap_data_with_parent();
    /// tree.node_mut(&id4).swap_data_with_parent();
    /// tree.node_mut(&id2).swap_data_with_parent();
    ///
    /// let swapped = tree.root_mut().swap_data_with_parent();
    /// assert!(!swapped);
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [8, 1, 3, 2, 5, 6, 7, 4, 9, 10, 11]);
    /// ```
    pub fn swap_data_with_parent(&mut self) -> bool {
        let a = self.node_ptr.clone();
        let b = unsafe { &*a.ptr() }.prev().get().cloned();
        match b {
            Some(b) => {
                Self::swap_data_of_nodes(a, b);
                true
            }
            None => false,
        }
    }
    // growth - vertically
    /// Pushes a child node with the given `value`;
    /// returns the [`NodeIdx`] of the created node.
    ///
    /// If this node already has children, the new child is added to the end as the
    /// new right-most node among the children.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      0
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     2
    /// //  ╱ ╲   ╱ ╲
    /// // 3   4 5   6
    /// // |     |  ╱ ╲
    /// // 7     8 9   10
    ///
    /// let mut tree = DynTree::<_>::new(0);
    ///
    /// let mut root = tree.root_mut();
    /// let id1 = root.push_child(1);
    /// let id2 = root.push_child(2);
    ///
    /// let mut n1 = tree.node_mut(&id1);
    /// let id3 = n1.push_child(3);
    /// n1.push_child(4);
    ///
    /// tree.node_mut(&id3).push_child(7);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let id5 = n2.push_child(5);
    /// let id6 = n2.push_child(6);
    ///
    /// tree.node_mut(&id5).push_child(8);
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id6).push_child(10);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [0, 1, 3, 7, 4, 2, 5, 8, 6, 9, 10]);
    /// ```
    pub fn push_child(&mut self, value: V::Item) -> NodeIdx<V> {
        let child_ptr = self.push_child_get_ptr(value);
        self.node_idx_for(&child_ptr)
    }
    /// Pushes the given constant number of `values` as children of this node;
    /// returns the [`NodeIdx`] array of the created nodes.
    ///
    /// If this node already has children, the new children are added to the end as the
    /// new right-most nodes of the children.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      0
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     2
    /// //  ╱ ╲   ╱ ╲
    /// // 3   4 5   6
    /// // |     |  ╱ ╲
    /// // 7     8 9   10
    ///
    /// let mut tree = DaryTree::<4, _>::new(0);
    ///
    /// let mut root = tree.root_mut();
    /// let [id1, id2] = root.push_children([1, 2]);
    ///
    /// let mut n1 = tree.node_mut(&id1);
    /// let [id3, _] = n1.push_children([3, 4]);
    ///
    /// tree.node_mut(&id3).push_child(7);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id5, id6] = n2.push_children([5, 6]);
    ///
    /// tree.node_mut(&id5).push_child(8);
    /// tree.node_mut(&id6).push_children([9, 10]);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [0, 1, 3, 7, 4, 2, 5, 8, 6, 9, 10]);
    /// ```
    pub fn push_children<const N: usize>(&mut self, values: [V::Item; N]) -> [NodeIdx<V>; N] {
        values.map(|child| {
            let child_ptr = self.push_child_get_ptr(child);
            self.node_idx_for(&child_ptr)
        })
    }
    /// Pushes the given variable number of `values` as children of this node;
    /// returns the [`NodeIdx`] iterator of the created nodes.
    ///
    /// If this node already has children, the new children are added to the end as the
    /// new right-most nodes of the children.
    ///
    /// Importantly note that this method returns a **lazy** iterator.
    /// If the returned iterator is not consumed, the children will **not** be pushed.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      0
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     2
    /// //  ╱ ╲   ╱ ╲
    /// // 3   4 5   6
    /// // |     |  ╱ ╲
    /// // 7     8 9   10
    ///
    /// let mut idx = vec![];
    ///
    /// let mut tree = DynTree::<_>::new(0);
    ///
    /// let mut root = tree.root_mut();
    /// idx.push(root.idx());
    /// idx.extend(root.extend_children(1..=2));
    ///
    /// let mut n1 = tree.node_mut(&idx[1]);
    /// idx.extend(n1.extend_children([3, 4]));
    ///
    /// let mut n2 = tree.node_mut(&idx[2]);
    /// idx.extend(n2.extend_children(5..=6));
    ///
    /// idx.push(tree.node_mut(&idx[3]).push_child(7));
    ///
    /// idx.push(tree.node_mut(&idx[5]).push_child(8));
    /// idx.extend(tree.node_mut(&idx[6]).extend_children([9, 10]));
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [0, 1, 3, 7, 4, 2, 5, 8, 6, 9, 10]);
    /// ```
    pub fn extend_children<'b, I>(
        &'b mut self,
        values: I,
    ) -> impl Iterator<Item = NodeIdx<V>> + 'b + use<'b, 'a, I, V, M, P, MO>
    where
        I: IntoIterator<Item = V::Item>,
        I::IntoIter: 'b,
    {
        values.into_iter().map(|value| {
            let child_ptr = self.push_child_get_ptr(value);
            NodeIdx(orx_selfref_col::NodeIdx::new(
                self.col.memory_state(),
                &child_ptr,
            ))
        })
    }
    /// Appends the entire `subtree` of another tree as a child of this node;
    /// and returns the [`NodeIdx`] of the created child node.
    ///
    /// In other words, the root of the subtree will be immediate child of this node,
    /// and the other nodes of the subtree will also be added with the same orientation
    /// relative to the subtree root.
    ///
    /// # Subtree Variants
    ///
    /// * **I.** Cloned / copied subtree
    ///   * A subtree cloned or copied from another tree.
    ///   * The source tree remains unchanged.
    ///   * Can be created by [`as_cloned_subtree`] and [`as_copied_subtree`] methods.
    ///   * ***O(n)***
    /// * **II.** Subtree moved out of another tree
    ///   * The subtree will be moved from the source tree to this tree.
    ///   * Can be created by [`into_subtree`] method.
    ///   * ***O(n)***
    /// * **III.** Another entire tree
    ///   * The other tree will be consumed and moved into this tree.
    ///   * ***O(1)***
    ///
    /// [`as_cloned_subtree`]: crate::NodeRef::as_cloned_subtree
    /// [`as_copied_subtree`]: crate::NodeRef::as_copied_subtree
    /// [`into_subtree`]: crate::NodeMut::into_subtree
    ///
    /// # Examples
    ///
    /// ## I. Append Subtree cloned-copied from another Tree
    ///
    /// Remains the source tree unchanged.
    ///
    /// Runs in ***O(n)*** time where n is the number of source nodes.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //     a          b
    /// // -----------------------
    /// //     0          5
    /// //    ╱ ╲        ╱ ╲
    /// //   1   2      6   7
    /// //  ╱ ╲         |  ╱ ╲
    /// // 3   4        8 9   10
    ///
    /// let mut a = DynTree::<_>::new(0);
    /// let [id1, _] = a.root_mut().push_children([1, 2]);
    /// let [id3, _] = a.node_mut(&id1).push_children([3, 4]);
    ///
    /// let mut b = DaryTree::<4, _>::new(5);
    /// let [id6, id7] = b.root_mut().push_children([6, 7]);
    /// b.node_mut(&id6).push_child(8);
    /// b.node_mut(&id7).push_children([9, 10]);
    ///
    /// // clone b.subtree(n6) under a.n3
    /// // clone b.subtree(n7) under a.n0
    /// //        a
    /// // -----------------------
    /// //        0
    /// //       ╱|╲
    /// //      ╱ | ╲
    /// //     ╱  |  ╲
    /// //    ╱   |   ╲
    /// //   1    2    7
    /// //  ╱ ╲       ╱ ╲
    /// // 3   4     9   10
    /// // |
    /// // 6
    /// // |
    /// // 8
    ///
    /// let n6 = b.node(&id6).as_cloned_subtree();
    /// a.node_mut(&id3).push_child_tree(n6);
    ///
    /// let n7 = b.node(&id7).as_copied_subtree();
    /// a.root_mut().push_child_tree(n7);
    ///
    /// // validate the trees
    ///
    /// let bfs_a: Vec<_> = a.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_a, [0, 1, 2, 7, 3, 4, 9, 10, 6, 8]);
    ///
    /// let bfs_b: Vec<_> = b.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_b, [5, 6, 7, 8, 9, 10]); // unchanged
    /// ```
    ///
    /// ## II. Append Subtree moved out of another Tree
    ///
    /// The source subtree rooted at the given node will be removed from the source
    /// tree.
    ///
    /// Runs in ***O(n)*** time where n is the number of source nodes.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //     a          b
    /// // -----------------------
    /// //     0          5
    /// //    ╱ ╲        ╱ ╲
    /// //   1   2      6   7
    /// //  ╱ ╲         |  ╱ ╲
    /// // 3   4        8 9   10
    ///
    /// // into_lazy_reclaim: to keep the indices valid
    /// let mut a = DynTree::<_>::new(0).into_lazy_reclaim();
    /// let [id1, id2] = a.root_mut().push_children([1, 2]);
    /// a.node_mut(&id1).push_children([3, 4]);
    ///
    /// // into_lazy_reclaim: to keep the indices valid
    /// let mut b = DaryTree::<4, _>::new(5).into_lazy_reclaim();
    /// let id5 = b.root().idx();
    /// let [id6, id7] = b.root_mut().push_children([6, 7]);
    /// b.node_mut(&id6).push_child(8);
    /// b.node_mut(&id7).push_children([9, 10]);
    ///
    /// // move b.subtree(n7) under a.n2
    /// // move a.subtree(n1) under b.n5
    /// //     a          b
    /// // -----------------------
    /// //     0          5
    /// //      ╲        ╱ ╲
    /// //       2      6   1
    /// //       |      |  ╱ ╲
    /// //       7      8 3   4
    /// //      ╱ ╲
    /// //     9   10
    ///
    /// let n7 = b.node_mut(&id7).into_subtree();
    /// a.node_mut(&id2).push_child_tree(n7);
    ///
    /// let n1 = a.node_mut(&id1).into_subtree();
    /// b.node_mut(&id5).push_child_tree(n1);
    ///
    /// // validate the trees
    ///
    /// let bfs_a: Vec<_> = a.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_a, [0, 2, 7, 9, 10]);
    ///
    /// let bfs_b: Vec<_> = b.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_b, [5, 6, 1, 8, 3, 4]);
    /// ```
    ///
    /// ## III. Append Another Tree
    ///
    /// The source tree will be moved into the target tree.
    ///
    /// Runs in ***O(1)*** time.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //  tree    b      c
    /// // ----------------------
    /// //     0    4      2
    /// //    ╱     |     ╱ ╲
    /// //   1      7    5   6
    /// //  ╱            |  ╱ ╲
    /// // 3             8 9   10
    /// // ----------------------
    /// //      0
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     2
    /// //  ╱ ╲   ╱ ╲
    /// // 3   4 5   6
    /// //     | |  ╱ ╲
    /// //     7 8 9   10
    ///
    /// let mut tree = DynTree::<_>::new(0);
    /// let id0 = tree.root().idx();
    /// let id1 = tree.node_mut(&id0).push_child(1);
    /// tree.node_mut(&id1).push_child(3);
    ///
    /// let mut b = BinaryTree::<_>::new(4);
    /// b.root_mut().push_child(7);
    ///
    /// let mut c = DaryTree::<4, _>::new(2);
    /// let [id5, id6] = c.root_mut().push_children([5, 6]);
    /// c.node_mut(&id5).push_child(8);
    /// c.node_mut(&id6).push_children([9, 10]);
    ///
    /// // merge b & c into tree
    ///
    /// let id4 = tree.node_mut(&id1).push_child_tree(b);
    /// let id2 = tree.node_mut(&id0).push_child_tree(c);
    ///
    /// assert_eq!(tree.node(&id2).data(), &2);
    /// assert_eq!(tree.node(&id4).data(), &4);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
    /// ```
    pub fn push_child_tree<Vs>(&mut self, subtree: impl SubTree<Vs>) -> NodeIdx<V>
    where
        Vs: TreeVariant<Item = V::Item>,
    {
        subtree.append_to_node_as_child(self, self.num_children())
    }
    /// Appends the entire `subtree` of this tree as a child of this node;
    /// and returns the [`NodeIdx`] of the created child node.
    ///
    /// In other words, the root of the subtree will be immediate child of this node,
    /// and the other nodes of the subtree will also be added with the same orientation
    /// relative to the subtree root.
    ///
    /// # Subtree Variants
    ///
    /// * **I.** Subtree moved out of this tree
    ///   * The subtree will be moved from its original to child of this node.
    ///   * Can be created by [`into_subtree_within`] method.
    ///   * **Panics** if the root of the subtree is an ancestor of this node.
    ///   * ***O(1)***
    /// * **II.** Cloned / copied subtree from this tree
    ///   * A subtree cloned or copied from another tree.
    ///   * The source tree remains unchanged.
    ///   * Can be created by [`as_cloned_subtree_within`] and [`as_copied_subtree_within`] methods.
    ///   * ***O(n)***
    ///
    /// # Panics
    ///
    /// Panics if the subtree is moved out of this tree created by [`into_subtree_within`] (**I.**) and
    /// the root of the subtree is an ancestor of this node.
    /// Notice that such a move would break structural properties of the tree.
    /// When we are not certain, we can test the relation using the the [`is_ancestor_of`] method.
    ///
    /// [`as_cloned_subtree_within`]: crate::NodeIdx::as_cloned_subtree_within
    /// [`as_copied_subtree_within`]: crate::NodeIdx::as_copied_subtree_within
    /// [`into_subtree_within`]: crate::NodeIdx::into_subtree_within
    /// [`is_ancestor_of`]: crate::NodeRef::is_ancestor_of
    ///
    /// # Examples
    ///
    /// ## I. Append Subtree moved from another position of this tree
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1                1              1
    /// //     ╱ ╲              ╱ ╲             |
    /// //    ╱   ╲            ╱   ╲            |
    /// //   2     3          2     3           2
    /// //  ╱ ╲   ╱ ╲   =>   ╱|╲   ╱ ╲    =>   ╱|╲
    /// // 4   5 6   7      4 5 8 6   7       4 5 8
    /// // |                                    |
    /// // 8                                    3
    /// //                                     ╱ ╲
    /// //                                    6   7
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, id5] = tree.node_mut(&id2).push_children([4, 5]);
    /// let id8 = tree.node_mut(&id4).push_child(8);
    /// tree.node_mut(&id3).push_children([6, 7]);
    ///
    /// // move subtree rooted at n8 (single node) as a child of n2
    /// let st8 = id8.into_subtree_within();
    /// tree.node_mut(&id2).push_child_tree_within(st8);
    ///
    /// // move subtree rooted at n3 (n3, n6 & n7) as a child of n5
    /// let st3 = id3.into_subtree_within();
    /// tree.node_mut(&id5).push_child_tree_within(st3);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 4, 5, 8, 3, 6, 7]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 4, 5, 3, 6, 7, 8]);
    /// ```
    ///
    /// ## II. Append Subtree cloned-copied from another position of this tree
    ///
    /// Remains the source tree unchanged.
    ///
    /// Runs in ***O(n)*** time where n is the number of source nodes.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1                1
    /// //     ╱ ╲              ╱ ╲
    /// //    ╱   ╲            ╱   ╲
    /// //   2     3          2     3
    /// //  ╱ ╲   ╱ ╲   =>   ╱ ╲   ╱|╲
    /// // 4   5 6   7      4   5 6 7 3
    /// //     |            |   |    ╱ ╲
    /// //     8            5   8   6   7
    /// //                  |
    /// //                  8
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, id5] = tree.node_mut(&id2).push_children([4, 5]);
    /// tree.node_mut(&id5).push_child(8);
    /// tree.node_mut(&id3).push_children([6, 7]);
    ///
    /// // clone subtree rooted at n5 as a child of n4
    /// let st5 = id5.as_cloned_subtree_within();
    /// tree.node_mut(&id4).push_child_tree_within(st5);
    ///
    /// // copy subtree rooted at n3 (n3, n6 & n7) as a child of n3 (itself)
    /// let st3 = id3.as_cloned_subtree_within();
    /// tree.node_mut(&id3).push_child_tree_within(st3);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 4, 5, 6, 7, 3, 5, 8, 6, 7, 8]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 4, 5, 8, 5, 8, 3, 6, 7, 3, 6, 7]);
    /// ```
    pub fn push_child_tree_within(&mut self, subtree: impl SubTreeWithin<V>) -> NodeIdx<V> {
        subtree.append_to_node_within_as_child(self, self.num_children())
    }
    // growth - horizontally
    /// Pushes a sibling node with the given `value`:
    ///
    /// * as the immediate left-sibling of this node when `side` is [`Side::Left`],
    /// * as the immediate right-sibling of this node when `side` is [`Side::Right`],
    ///
    /// returns the [`NodeIdx`] of the created node.
    ///
    /// # Panics
    ///
    /// Panics if this node is the root; root node cannot have a sibling.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲     ╲
    /// // 4   5     6
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6] = n3.push_children([6]);
    ///
    /// // grow horizontally to obtain
    /// //         1
    /// //        ╱ ╲
    /// //       ╱   ╲
    /// //      2     3
    /// //     ╱|╲    └────────
    /// //    ╱ | ╲          ╱ | ╲
    /// //   ╱ ╱ ╲ ╲        ╱  |  ╲
    /// //  ╱ ╱   ╲ ╲      ╱╲  |  ╱╲
    /// // 7 4    8  5    9 10 6 11 12
    ///
    /// let mut n4 = tree.node_mut(&id4);
    /// n4.push_sibling(Side::Left, 7);
    /// n4.push_sibling(Side::Right, 8);
    ///
    /// let mut n6 = tree.node_mut(&id6);
    /// n6.push_sibling(Side::Left, 9);
    /// n6.push_sibling(Side::Left, 10);
    /// let id12 = n6.push_sibling(Side::Right, 12);
    /// let id11 = n6.push_sibling(Side::Right, 11);
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 7, 4, 8, 5, 9, 10, 6, 11, 12]);
    ///
    /// assert_eq!(tree.node(&id12).data(), &12);
    /// assert_eq!(tree.node(&id11).data(), &11);
    /// ```
    pub fn push_sibling(&mut self, side: Side, value: V::Item) -> NodeIdx<V> {
        let parent_ptr = self
            .parent_ptr()
            .expect("Cannot push sibling to the root node");
        let position = match side {
            Side::Left => self.sibling_idx(),
            Side::Right => self.sibling_idx() + 1,
        };
        let ptr = Self::insert_sibling_get_ptr(self.col, value, &parent_ptr, position);
        self.node_idx_for(&ptr)
    }
    /// Pushes the given constant number of `values` as:
    ///
    /// * as the immediate left-siblings of this node when `side` is [`Side::Left`],
    /// * as the immediate right-siblings of this node when `side` is [`Side::Right`],
    ///
    /// returns the [`NodeIdx`] array of the created nodes.
    ///
    /// # Panics
    ///
    /// Panics if this node is the root; root node cannot have a sibling.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲     ╲
    /// // 4   5     6
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6] = n3.push_children([6]);
    ///
    /// // grow horizontally to obtain
    /// //         1
    /// //        ╱ ╲
    /// //       ╱   ╲
    /// //      2     3
    /// //     ╱|╲    └────────
    /// //    ╱ | ╲          ╱ | ╲
    /// //   ╱ ╱ ╲ ╲        ╱  |  ╲
    /// //  ╱ ╱   ╲ ╲      ╱╲  |  ╱╲
    /// // 7 4    8  5    9 10 6 11 12
    ///
    /// let mut n4 = tree.node_mut(&id4);
    /// n4.push_sibling(Side::Left, 7);
    /// n4.push_sibling(Side::Right, 8);
    ///
    /// let mut n6 = tree.node_mut(&id6);
    /// let [id9, id10] = n6.push_siblings(Side::Left, [9, 10]);
    /// let [id11, id12] = n6.push_siblings(Side::Right, [11, 12]);
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 7, 4, 8, 5, 9, 10, 6, 11, 12]);
    ///
    /// assert_eq!(tree.node(&id9).data(), &9);
    /// assert_eq!(tree.node(&id10).data(), &10);
    /// assert_eq!(tree.node(&id11).data(), &11);
    /// assert_eq!(tree.node(&id12).data(), &12);
    /// ```
    pub fn push_siblings<const N: usize>(
        &mut self,
        side: Side,
        values: [V::Item; N],
    ) -> [NodeIdx<V>; N] {
        let parent_ptr = self
            .parent_ptr()
            .expect("Cannot push sibling to the root node");
        let mut position = match side {
            Side::Left => self.sibling_idx(),
            Side::Right => self.sibling_idx() + 1,
        };
        values.map(|sibling| {
            let sibling_ptr =
                Self::insert_sibling_get_ptr(self.col, sibling, &parent_ptr, position);
            position += 1;
            NodeIdx(orx_selfref_col::NodeIdx::new(
                self.col.memory_state(),
                &sibling_ptr,
            ))
        })
    }
    /// Pushes the given variable number of `values` as:
    ///
    /// * as the immediate left-siblings of this node when `side` is [`Side::Left`],
    /// * as the immediate right-siblings of this node when `side` is [`Side::Right`],
    ///
    /// returns the [`NodeIdx`] iterator of the created nodes.
    ///
    /// Importantly note that this method returns a **lazy** iterator.
    /// If the returned iterator is not consumed, the siblings will **not** be pushed.
    ///
    /// # Panics
    ///
    /// Panics if this node is the root; root node cannot have a sibling.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲     ╲
    /// // 4   5     6
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6] = n3.push_children([6]);
    ///
    /// // grow horizontally to obtain
    /// //         1
    /// //        ╱ ╲
    /// //       ╱   ╲
    /// //      2     3
    /// //     ╱|╲    └────────
    /// //    ╱ | ╲          ╱ | ╲
    /// //   ╱ ╱ ╲ ╲        ╱  |  ╲
    /// //  ╱ ╱   ╲ ╲      ╱╲  |  ╱╲
    /// // 7 4    8  5    9 10 6 11 12
    ///
    /// let mut n4 = tree.node_mut(&id4);
    /// n4.push_sibling(Side::Left, 7);
    /// n4.push_sibling(Side::Right, 8);
    ///
    /// let mut n6 = tree.node_mut(&id6);
    /// n6.extend_siblings(Side::Left, 9..=10).count();
    /// let idx: Vec<_> = n6.extend_siblings(Side::Right, 11..=12).collect();
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 7, 4, 8, 5, 9, 10, 6, 11, 12]);
    ///
    /// assert_eq!(tree.node(&idx[0]).data(), &11);
    /// assert_eq!(tree.node(&idx[1]).data(), &12);
    /// ```
    pub fn extend_siblings<'b, I>(
        &'b mut self,
        side: Side,
        values: I,
    ) -> impl Iterator<Item = NodeIdx<V>> + 'b + use<'b, 'a, I, V, M, P, MO>
    where
        I: IntoIterator<Item = V::Item>,
        I::IntoIter: 'b,
    {
        let parent_ptr = self
            .parent_ptr()
            .expect("Cannot push sibling to the root node");
        let mut position = match side {
            Side::Left => self.sibling_idx(),
            Side::Right => self.sibling_idx() + 1,
        };
        values.into_iter().map(move |sibling| {
            let sibling_ptr =
                Self::insert_sibling_get_ptr(self.col, sibling, &parent_ptr, position);
            position += 1;
            NodeIdx(orx_selfref_col::NodeIdx::new(
                self.col.memory_state(),
                &sibling_ptr,
            ))
        })
    }
    /// Appends the entire `subtree`:
    ///
    /// * as the immediate left-sibling of this node when `side` is [`Side::Left`],
    /// * as the immediate right-sibling of this node when `side` is [`Side::Right`],
    ///
    /// returns the [`NodeIdx`] of the sibling child node.
    ///
    /// In other words, the root of the subtree will be immediate sibling of this node,
    /// and the other nodes of the subtree will also be added with the same orientation
    /// relative to the subtree root.
    ///
    /// # Panics
    ///
    /// Panics if this node is the root; root node cannot have a sibling.
    ///
    /// # Subtree Variants
    ///
    /// * **I.** Cloned / copied subtree
    ///   * A subtree cloned or copied from another tree.
    ///   * The source tree remains unchanged.
    ///   * Can be created by [`as_cloned_subtree`] and [`as_copied_subtree`] methods.
    ///   * ***O(n)***
    /// * **II.** Subtree moved out of another tree
    ///   * The subtree will be moved from the source tree to this tree.
    ///   * Can be created by [`into_subtree`] method.
    ///   * ***O(n)***
    /// * **III.** Another entire tree
    ///   * The other tree will be consumed and moved into this tree.
    ///   * ***O(1)***
    ///
    /// [`as_cloned_subtree`]: crate::NodeRef::as_cloned_subtree
    /// [`as_copied_subtree`]: crate::NodeRef::as_copied_subtree
    /// [`into_subtree`]: crate::NodeMut::into_subtree
    ///
    /// # Examples
    ///
    /// ## I. Append Subtree cloned-copied from another Tree
    ///
    /// Remains the source tree unchanged.
    ///
    /// Runs in ***O(n)*** time where n is the number of source nodes.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //     a          b
    /// // -----------------------
    /// //     0          5
    /// //    ╱ ╲        ╱ ╲
    /// //   1   2      6   7
    /// //  ╱ ╲         |  ╱ ╲
    /// // 3   4        8 9   10
    ///
    /// let mut a = DynTree::<_>::new(0);
    /// let [id1, id2] = a.root_mut().push_children([1, 2]);
    /// let [_, id4] = a.node_mut(&id1).push_children([3, 4]);
    ///
    /// let mut b = DaryTree::<4, _>::new(5);
    /// let [id6, id7] = b.root_mut().push_children([6, 7]);
    /// b.node_mut(&id6).push_child(8);
    /// b.node_mut(&id7).push_children([9, 10]);
    ///
    /// // clone b.subtree(n6) under a.n3
    /// // clone b.subtree(n7) under a.n0
    /// //        a
    /// // -----------------------
    /// //        0
    /// //       ╱|╲
    /// //      ╱ | ╲
    /// //     ╱  |  ╲
    /// //    ╱   |   ╲
    /// //   1    2    7
    /// //  ╱|╲       ╱ ╲
    /// // 3 6 4     9   10
    /// //   |
    /// //   8
    ///
    /// let n6 = b.node(&id6).as_cloned_subtree();
    /// a.node_mut(&id4).push_sibling_tree(Side::Left, n6);
    ///
    /// let n7 = b.node(&id7).as_copied_subtree();
    /// a.node_mut(&id2).push_sibling_tree(Side::Right, n7);
    ///
    /// // validate the trees
    ///
    /// let bfs_a: Vec<_> = a.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_a, [0, 1, 2, 7, 3, 6, 4, 9, 10, 8]);
    ///
    /// let bfs_b: Vec<_> = b.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_b, [5, 6, 7, 8, 9, 10]); // unchanged
    /// ``````
    ///
    /// ## II. Append Subtree taken out of another Tree
    ///
    /// The source subtree rooted at the given node will be removed from the source
    /// tree.
    ///
    /// Runs in ***O(n)*** time where n is the number of source nodes.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //     a          b
    /// // -----------------------
    /// //     0          5
    /// //    ╱ ╲        ╱ ╲
    /// //   1   2      6   7
    /// //  ╱ ╲         |  ╱ ╲
    /// // 3   4        8 9   10
    ///
    /// // into_lazy_reclaim -> to keep indices valid
    /// let mut a = DynTree::<_>::new(0).into_lazy_reclaim();
    /// let [id1, id2] = a.root_mut().push_children([1, 2]);
    /// a.node_mut(&id1).push_children([3, 4]);
    ///
    /// // into_lazy_reclaim -> to keep indices valid
    /// let mut b = DaryTree::<4, _>::new(5).into_lazy_reclaim();
    /// let [id6, id7] = b.root_mut().push_children([6, 7]);
    /// b.node_mut(&id6).push_child(8);
    /// b.node_mut(&id7).push_children([9, 10]);
    ///
    /// // move b.subtree(n7) under a.n2
    /// // move a.subtree(n1) under b.n5
    /// //     a          b
    /// // -----------------------
    /// //     0          5
    /// //    ╱ ╲        ╱ ╲
    /// //   7   2      6   1
    /// //  ╱ ╲         |  ╱ ╲
    /// // 9   10       8 3   4
    /// //
    /// //
    ///
    /// let n7 = b.node_mut(&id7).into_subtree();
    /// a.node_mut(&id2).push_sibling_tree(Side::Left, n7);
    ///
    /// let n1 = a.node_mut(&id1).into_subtree();
    /// b.node_mut(&id6).push_sibling_tree(Side::Right, n1);
    ///
    /// // validate the trees
    ///
    /// let bfs_a: Vec<_> = a.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_a, [0, 7, 2, 9, 10]);
    ///
    /// let bfs_b: Vec<_> = b.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs_b, [5, 6, 1, 8, 3, 4]);
    /// ```
    ///
    /// ## III. Append Another Tree
    ///
    /// The source tree will be moved into the target tree.
    ///
    /// Runs in ***O(1)*** time.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //  tree    b      c
    /// // ----------------------
    /// //     0    4      2
    /// //    ╱     |     ╱ ╲
    /// //   1      7    5   6
    /// //  ╱            |  ╱ ╲
    /// // 3             8 9   10
    /// // ----------------------
    /// //      0
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   1     2
    /// //  ╱ ╲   ╱ ╲
    /// // 4   3 5   6
    /// // |     |  ╱ ╲
    /// // 7     8 9   10
    ///
    /// let mut tree = DynTree::<_>::new(0);
    /// let id0 = tree.root().idx();
    /// let id1 = tree.node_mut(&id0).push_child(1);
    /// let id3 = tree.node_mut(&id1).push_child(3);
    ///
    /// let mut b = BinaryTree::<_>::new(4);
    /// b.root_mut().push_child(7);
    ///
    /// let mut c = DaryTree::<4, _>::new(2);
    /// let [id5, id6] = c.root_mut().push_children([5, 6]);
    /// c.node_mut(&id5).push_child(8);
    /// c.node_mut(&id6).push_children([9, 10]);
    ///
    /// // merge b & c into tree
    ///
    /// let id4 = tree.node_mut(&id3).push_sibling_tree(Side::Left, b);
    /// let id2 = tree.node_mut(&id1).push_sibling_tree(Side::Right, c);
    ///
    /// assert_eq!(tree.node(&id2).data(), &2);
    /// assert_eq!(tree.node(&id4).data(), &4);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [0, 1, 2, 4, 3, 5, 6, 7, 8, 9, 10]);
    /// ```
    pub fn push_sibling_tree<Vs>(&mut self, side: Side, subtree: impl SubTree<Vs>) -> NodeIdx<V>
    where
        Vs: TreeVariant<Item = V::Item>,
    {
        let parent_ptr = self
            .parent_ptr()
            .expect("Cannot push sibling to the root node");
        let position = match side {
            Side::Left => self.sibling_idx(),
            Side::Right => self.sibling_idx() + 1,
        };
        let mut parent = NodeMut::<V, M, P, MO>::new(self.col, parent_ptr);
        subtree.append_to_node_as_child(&mut parent, position)
    }
    /// Appends the entire `subtree`:
    ///
    /// * as the immediate left-sibling of this node when `side` is [`Side::Left`],
    /// * as the immediate right-sibling of this node when `side` is [`Side::Right`],
    ///
    /// returns the [`NodeIdx`] of the sibling child node.
    ///
    /// In other words, the root of the subtree will be immediate sibling of this node,
    /// and the other nodes of the subtree will also be added with the same orientation
    /// relative to the subtree root.
    ///
    /// # Subtree Variants
    ///
    /// * **I.** Subtree moved out of this tree
    ///   * The subtree will be moved from its original to child of this node.
    ///   * Can be created by [`into_subtree_within`] method.
    ///   * **Panics** if the root of the subtree is an ancestor of this node.
    ///   * ***O(1)***
    /// * **II.** Cloned / copied subtree from this tree
    ///   * A subtree cloned or copied from another tree.
    ///   * The source tree remains unchanged.
    ///   * Can be created by [`as_cloned_subtree_within`] and [`as_copied_subtree_within`] methods.
    ///   * ***O(n)***
    ///
    /// # Panics
    ///
    /// * Panics if this node is the root; root node cannot have a sibling.
    /// * Panics if the subtree is moved out of this tree created by [`into_subtree_within`] (**I.**) and
    ///   the root of the subtree is an ancestor of this node.
    ///   Notice that such a move would break structural properties of the tree.
    ///   When we are not certain, we can test the relation using the the [`is_ancestor_of`] method.
    ///
    /// [`as_cloned_subtree_within`]: crate::NodeIdx::as_cloned_subtree_within
    /// [`as_copied_subtree_within`]: crate::NodeIdx::as_copied_subtree_within
    /// [`into_subtree_within`]: crate::NodeIdx::into_subtree_within
    /// [`is_ancestor_of`]: crate::NodeRef::is_ancestor_of
    ///
    /// # Examples
    ///
    /// ## I. Append Subtree moved from another position of this tree
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1                1              1
    /// //     ╱ ╲              ╱ ╲             |
    /// //    ╱   ╲            ╱   ╲            |
    /// //   2     3          2     3           2
    /// //  ╱ ╲   ╱ ╲   =>   ╱|╲   ╱ ╲    =>   ╱|╲
    /// // 4   5 6   7      4 8 5 6   7       ╱ | ╲
    /// // |                                 ╱ ╱ ╲ ╲
    /// // 8                                4 3   8 5
    /// //                                   ╱ ╲
    /// //                                  6   7
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, id5] = tree.node_mut(&id2).push_children([4, 5]);
    /// let id8 = tree.node_mut(&id4).push_child(8);
    /// tree.node_mut(&id3).push_children([6, 7]);
    ///
    /// // move subtree rooted at n8 (single node) as left sibling of n5
    /// let st8 = id8.into_subtree_within();
    /// tree.node_mut(&id5)
    ///     .push_sibling_tree_within(Side::Left, st8);
    ///
    /// // move subtree rooted at n3 (n3, n6 & n7) as right sibling of n4
    /// let st3 = id3.into_subtree_within();
    /// tree.node_mut(&id4)
    ///     .push_sibling_tree_within(Side::Right, st3);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 4, 3, 8, 5, 6, 7]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 4, 3, 6, 7, 8, 5]);
    /// ```
    ///
    /// ## II. Append Subtree cloned-copied from another position of this tree
    ///
    /// Remains the source tree unchanged.
    ///
    /// Runs in ***O(n)*** time where n is the number of source nodes.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1                1
    /// //     ╱ ╲              ╱ ╲
    /// //    ╱   ╲            ╱   ╲
    /// //   2     3          2     3
    /// //  ╱ ╲   ╱ ╲   =>   ╱|╲   ╱|╲
    /// // 4   5 6   7      4 6 5 6 7 3
    /// //     |                |    ╱ ╲
    /// //     8                8   6   7
    /// //
    /// //
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [_, id5] = tree.node_mut(&id2).push_children([4, 5]);
    /// tree.node_mut(&id5).push_child(8);
    /// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
    ///
    /// // clone subtree rooted at n6 as left sibling of n5
    /// let st6 = id6.as_cloned_subtree_within();
    /// tree.node_mut(&id5)
    ///     .push_sibling_tree_within(Side::Left, st6);
    ///
    /// // copy subtree rooted at n3 (n3, n6 & n7) as right sibling of n7
    /// let st3 = id3.as_cloned_subtree_within();
    /// tree.node_mut(&id7)
    ///     .push_sibling_tree_within(Side::Right, st3);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 4, 6, 5, 6, 7, 3, 8, 6, 7]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 4, 6, 5, 8, 3, 6, 7, 3, 6, 7]);
    /// ```
    pub fn push_sibling_tree_within(
        &mut self,
        side: Side,
        subtree: impl SubTreeWithin<V>,
    ) -> NodeIdx<V> {
        let parent_ptr = self
            .parent_ptr()
            .expect("Cannot push sibling to the root node");
        let position = match side {
            Side::Left => self.sibling_idx(),
            Side::Right => self.sibling_idx() + 1,
        };
        let mut parent = NodeMut::<V, M, P, MO>::new(self.col, parent_ptr);
        subtree.append_to_node_within_as_child(&mut parent, position)
    }
    // move
    /// ***O(1)*** Inserts a node with the given `value` as the parent of this node;
    /// and returns the [`NodeIdx`] of the new parent node.
    ///
    /// As a result of this move:
    ///
    /// * this node and all its descendants will be down-shifted by one level in depth
    /// * this node will be the only child of the new parent node
    /// * this node's earlier parent will be the parent of the new parent node
    /// * if this node was the root, the new parent will now be the root
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //                       0
    /// //                       |
    /// //      1                1
    /// //     ╱ ╲              ╱ ╲
    /// //    ╱   ╲            ╱   ╲
    /// //   2     3     =>   6     7
    /// //        ╱ ╲         |     |
    /// //       4   5        2     3
    /// //                         ╱ ╲
    /// //                        4   5
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// n3.push_children([4, 5]);
    ///
    /// // push parent (insert a node vertically)
    ///
    /// let id0 = tree.root_mut().push_parent(0);
    /// let id6 = tree.node_mut(&id2).push_parent(6);
    /// let id7 = tree.node_mut(&id3).push_parent(7);
    ///
    /// // test inserted parent indices
    ///
    /// assert!(tree.node(&id0).is_root());
    /// assert_eq!(tree.node(&id6).data(), &6);
    /// assert_eq!(tree.node(&id7).data(), &7);
    ///
    /// // validate the tree
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [0, 1, 6, 7, 2, 3, 4, 5]);
    ///
    /// let dfs: Vec<_> = tree.root().walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [0, 1, 6, 2, 7, 3, 4, 5]);
    /// ```
    pub fn push_parent(&mut self, value: V::Item) -> NodeIdx<V> {
        let parent_ptr = self.col.push(value);
        let child_ptr = self.node_ptr.clone();
        let child = unsafe { &mut *child_ptr.ptr_mut() };
        let ancestor_ptr = child.prev().get().cloned();
        // down arrows
        match &ancestor_ptr {
            Some(ancestor_ptr) => {
                let ancestor = unsafe { &mut *ancestor_ptr.ptr_mut() };
                ancestor
                    .next_mut()
                    .replace_with(&child_ptr, parent_ptr.clone());
            }
            None => {
                // this node was the root => parent will be the new root
                self.col.ends_mut().set_some(parent_ptr.clone());
            }
        }
        let parent = unsafe { &mut *parent_ptr.ptr_mut() };
        parent.next_mut().push(child_ptr.clone());
        // up arrows
        let child = unsafe { &mut *child_ptr.ptr_mut() };
        child.prev_mut().set_some(parent_ptr.clone());
        parent.prev_mut().set(ancestor_ptr);
        self.node_idx_for(&parent_ptr)
    }
    // shrink
    /// Removes this node and all of its descendants from the tree; and returns the
    /// data of this node.
    ///
    /// > **(!)** As a method that removes nodes from the tree, this method might result in invalidating indices that are
    /// > cached earlier in the [`Auto`] mode, but not in the [`Lazy`] mode. Please see the documentation of [MemoryPolicy]
    /// > for details of node index validity. Specifically, the examples in the "Lazy Memory Claim: Preventing Invalid Indices"
    /// > section presents a convenient way that allows us to make sure that the indices are valid.
    ///
    /// [`Auto`]: crate::Auto
    /// [`Lazy`]: crate::Lazy
    /// [`MemoryPolicy`]: crate::MemoryPolicy
    ///
    /// # See also
    ///
    /// Note that this method returns the data of this node, while the data of the descendants
    /// are dropped.
    ///
    /// If the data of the entire subtree is required, you may use [`into_walk`] method with
    /// the desired traversal to define the order of the returned iterator.
    ///
    /// [`into_walk`]: crate::NodeMut::into_walk
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// let id8 = tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // prune n4 (removes 4 and 8)
    ///
    /// let data = tree.node_mut(&id4).prune();
    /// assert_eq!(data, 4);
    ///
    /// let values: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(values, [1, 2, 3, 5, 6, 7, 9, 10, 11]);
    ///
    /// assert_eq!(tree.get_node(&id4), None);
    /// assert_eq!(tree.try_node(&id8), Err(NodeIdxError::RemovedNode));
    ///
    /// // prune n3 (3, 6, 7, 9, 10, 11)
    ///
    /// let data = tree.node_mut(&id3).prune();
    /// assert_eq!(data, 3);
    ///
    /// let values: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(values, [1, 2, 5]);
    ///
    /// // prune the root: clear the entire (remaining) tree
    ///
    /// let data = tree.root_mut().prune();
    /// assert_eq!(data, 1);
    /// assert!(tree.is_empty());
    /// assert_eq!(tree.get_root(), None);
    /// ```
    #[allow(clippy::missing_panics_doc)]
    pub fn prune(self) -> V::Item {
        // TODO: we have the option to choose any traversal here; they are all safe
        // with SelfRefCol. We can pick the fastest one after benchmarks.
        // # SAFETY: We use this shared reference to iterate over the pointers of the
        // descendent nodes. Using a mut reference to the collection, we will close
        // each of the descendent nodes that we visit. Closing a node corresponds to
        // taking its data out and emptying all of its previous and next links.
        // Close operation is lazy and does not invalidate the pointers that we the
        // shared reference to create.
        let iter = PostOrderIterPtr::<_, Val>::from((Default::default(), self.node_ptr.clone()));
        for ptr in iter {
            if ptr != self.node_ptr {
                self.col.close(&ptr);
            }
        }
        let node = unsafe { &mut *self.node_ptr.ptr_mut() };
        if let Some(parent) = node.prev_mut().get() {
            let parent = unsafe { &mut *parent.ptr_mut() };
            let sibling_idx = parent.next_mut().remove(self.node_ptr.ptr() as usize);
            debug_assert!(sibling_idx.is_some());
        }
        let root_ptr = self.col.ends().get().expect("tree is not empty");
        if root_ptr == &self.node_ptr {
            self.col.ends_mut().clear();
        }
        // # SAFETY: On the other hand, close_and_reclaim might trigger a reclaim
        // operation which moves around the nodes, invalidating other pointers;
        // however, only after 'self.node_ptr' is also closed.
        self.col.close_and_reclaim(&self.node_ptr)
    }
    /// Removes this node and returns its data;
    /// and connects the children of this node to its parent.
    ///
    /// Therefore, unlike [`prune`], the resulting tree will contain only one less node.
    ///
    /// Assume that this node's parent had `n` children while this node is the i-th child.
    /// Further, assume that this node has `m` children.
    /// Then, the i-th element of the parent's children will be replaced with the m children.
    /// After the move, the parent will contain `n - 1 + m` children.
    ///
    /// [`prune`]: crate::NodeMut::prune
    ///
    /// > **(!)** As a method that removes nodes from the tree, this method might result in invalidating indices that are
    /// > cached earlier in the [`Auto`] mode, but not in the [`Lazy`] mode. Please see the documentation of [MemoryPolicy]
    /// > for details of node index validity. Specifically, the examples in the "Lazy Memory Claim: Preventing Invalid Indices"
    /// > section presents a convenient way that allows us to make sure that the indices are valid.
    ///
    /// [`Auto`]: crate::Auto
    /// [`Lazy`]: crate::Lazy
    /// [`MemoryPolicy`]: crate::MemoryPolicy
    ///
    /// # Panics
    ///
    /// Due to the fact that the tree can contain only one root, this move panics:
    ///
    /// * if this node is the root,
    /// * and it has more than one child.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1                    1                  1
    /// //     ╱ ╲                  ╱ ╲                ╱|╲
    /// //    ╱   ╲                ╱   ╲              ╱ | ╲
    /// //   2     3     (-n7)    2     3     (-n2)  4  5  3
    /// //  ╱ ╲   ╱ ╲     =>     ╱ ╲   ╱| ╲    =>    |    ╱| ╲
    /// // 4   5 6   7          4   5 6 10 11        8   6 10 11
    /// // |     |  ╱ ╲         |     |                  |
    /// // 8     9 10  11       8     9                  9
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // take out n7
    ///
    /// let d7 = tree.node_mut(&id7).take_out();
    /// assert_eq!(d7, 7);
    /// assert_eq!(tree.try_node(&id7), Err(NodeIdxError::RemovedNode));
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 4, 5, 6, 10, 11, 8, 9]);
    ///
    /// // take out n2
    ///
    /// let d2 = tree.node_mut(&id2).take_out();
    /// assert_eq!(d2, 2);
    /// assert_eq!(tree.get_node(&id2), None);
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 4, 5, 3, 8, 6, 10, 11, 9]);
    /// ```
    pub fn take_out(self) -> V::Item {
        assert!(!self.is_root() || self.num_children() == 1, "If taken out node is the root, it must have only one child which will be the new root.");
        let parent_ptr = self.parent_ptr();
        let sibling_idx = self.sibling_idx();
        for child_ptr in self.node().next().children_ptr() {
            let child = unsafe { &mut *child_ptr.ptr_mut() };
            child.prev_mut().set(parent_ptr.clone());
        }
        match parent_ptr {
            None => {
                let first_child = self.node().next().children_ptr().next().cloned();
                self.col.ends_mut().set(first_child);
            }
            Some(parent_ptr) => {
                let parent = unsafe { &mut *parent_ptr.ptr_mut() };
                parent.next_mut().remove_at(sibling_idx);
                for child_ptr in self.node().next().children_ptr().rev().cloned() {
                    parent.next_mut().insert(sibling_idx, child_ptr);
                }
            }
        }
        self.col.close_and_reclaim(&self.node_ptr)
    }
    /// Removes all children of this node together with the subtrees rooted at the children.
    /// This node remains in the tree while it becomes a leaf node if it was not already.
    ///
    /// Note that, `node.remove_children()` call is just a shorthand for:
    ///
    /// ```rust ignore
    /// for c in node.children_mut() {
    ///     _ = c.prune();
    /// }
    /// ```
    ///
    /// # Examples
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    /// let mut tree = DynTree::new(1);
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
    /// tree.node_mut(&id4).push_child(8);
    /// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // let's remove children of node 3
    /// tree.node_mut(&id3).remove_children();
    ///
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 4, 5, 8]);
    /// ```
    pub fn remove_children(&mut self) {
        for c in self.children_mut() {
            _ = c.prune();
        }
    }
    // traversal
    /// Returns the mutable node of the `child-index`-th child of this node;
    /// returns None if the child index is out of bounds.
    ///
    /// See also [`into_child_mut`] for consuming traversal.
    ///
    /// [`into_child_mut`]: crate::NodeMut::into_child_mut
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //       1
    /// //      ╱ ╲
    /// //     ╱   ╲
    /// //    ╱     ╲
    /// //   2       3
    /// //  ╱ ╲    ╱ | ╲
    /// // 3   4  4  5  6
    /// // |   |  |  |  |
    /// // 6   7  7  8  9
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// root.push_children([2, 3]);
    ///
    /// for c in 0..root.num_children() {
    ///     let mut node = root.get_child_mut(c).unwrap();
    ///
    ///     let val = *node.data();
    ///     let children = (0..val).map(|x| x + 1 + val);
    ///
    ///     let _ = node.extend_children(children).count();
    ///
    ///     for c in 0..node.num_children() {
    ///         let mut node = node.get_child_mut(c).unwrap();
    ///         node.push_child(*node.data() + 3);
    ///     }
    /// }
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9]);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 3, 6, 4, 7, 3, 4, 7, 5, 8, 6, 9]);
    /// ```
    pub fn get_child_mut(&mut self, child_index: usize) -> Option<NodeMut<V, M, P>> {
        self.node()
            .next()
            .get_ptr(child_index)
            .cloned()
            .map(move |p| NodeMut::new(self.col, p))
    }
    /// Returns the mutable node of the `child-index`-th child of this node.
    ///
    /// See also [`into_child_mut`] for consuming traversal.
    ///
    /// [`into_child_mut`]: crate::NodeMut::into_child_mut
    ///
    /// # Panics
    ///
    /// Panics if the child index is out of bounds; i.e., `child_index >= self.num_children()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //       1
    /// //      ╱ ╲
    /// //     ╱   ╲
    /// //    ╱     ╲
    /// //   2       3
    /// //  ╱ ╲    ╱ | ╲
    /// // 3   4  4  5  6
    /// // |   |  |  |  |
    /// // 6   7  7  8  9
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// root.push_children([2, 3]);
    ///
    /// for c in 0..root.num_children() {
    ///     let mut node = root.child_mut(c);
    ///
    ///     let val = *node.data();
    ///     let children = (0..val).map(|x| x + 1 + val);
    ///
    ///     let _ = node.extend_children(children).count();
    ///
    ///     for c in 0..node.num_children() {
    ///         let mut node = node.child_mut(c);
    ///         node.push_child(*node.data() + 3);
    ///     }
    /// }
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9]);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 3, 6, 4, 7, 3, 4, 7, 5, 8, 6, 9]);
    /// ```
    pub fn child_mut(&mut self, child_index: usize) -> NodeMut<V, M, P> {
        self.get_child_mut(child_index)
            .expect("Given child_index is out of bounds; i.e., child_index >= self.num_children()")
    }
    /// Consumes this mutable node and returns the mutable node of the `child-index`-th child;
    /// returns None if the child index is out of bounds.
    ///
    /// See also [`get_child_mut`] for non-consuming access.
    ///
    /// [`get_child_mut`]: crate::NodeMut::get_child_mut
    ///
    /// # Examples
    ///
    /// The example below demonstrates one way to build a tree using `into_parent_mut` and `into_child_mut` methods.
    /// In this approach, we start from the mutable root node.
    /// Then, we convert one mutable node to another, always having only one mutable node.
    ///
    /// See also index returning growth methods for an alternative tree building approach, such as
    /// [`push_child`] and [`push_children`].
    ///
    /// [`push_child`]: crate::NodeMut::push_child
    /// [`push_children`]: crate::NodeMut::push_children
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //        r
    /// //       ╱ ╲
    /// //      ╱   ╲
    /// //     ╱     ╲
    /// //    a       b
    /// //  ╱ | ╲    ╱ ╲
    /// // c  d  e  f   g
    /// //            ╱ | ╲
    /// //           h  i  j
    ///
    /// let mut tree = DynTree::<char>::new('r');
    ///
    /// let mut root = tree.root_mut();
    /// root.push_children(['a', 'b']);
    ///
    /// let mut a = root.into_child_mut(0).unwrap();
    /// a.push_children(['c', 'd', 'e']);
    ///
    /// let mut b = a.into_parent_mut().unwrap().into_child_mut(1).unwrap();
    /// b.push_children(['f', 'g']);
    ///
    /// let mut g = b.into_child_mut(1).unwrap();
    /// g.push_children(['h', 'i', 'j']);
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, ['r', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, ['r', 'a', 'c', 'd', 'e', 'b', 'f', 'g', 'h', 'i', 'j']);
    /// ```
    pub fn into_child_mut(self, child_index: usize) -> Option<NodeMut<'a, V, M, P>> {
        self.node()
            .next()
            .get_ptr(child_index)
            .map(|p| NodeMut::new(self.col, p.clone()))
    }
    /// Creates an iterator over mutable nodes of children of this node.
    ///
    /// # Safety
    ///
    /// Mutable tree nodes; i.e. `NodeMut`, has two orientation for mutations:
    ///
    /// * [`NodeMutUpAndDown`]: This is the default orientation which allows to mutate both ancestors
    ///   and descendants of the node.
    /// * [`NodeMutDown`]: This orientation allows only to mutate self and descendants of the node.
    ///   For instance, a mutable node with this orientation does not implement [`parent_mut`] or
    ///   [`into_parent_mut`] methods.
    ///
    /// The `children_mut` iterator yields mutable nodes with the limited `NodeMutDown` orientation.
    /// Therefore, mutating children of a node is safe, since the node itself or its ancestors cannot be mutated
    /// during the iteration.
    ///
    /// [`parent_mut`]: Self::parent_mut
    /// [`into_parent_mut`]: Self::into_parent_mut
    ///
    /// # Examples
    ///
    /// In the following example, we first build the tree; however:
    ///
    /// * we do not add nodes 8 & 9; and
    /// * we add nodes 11 & 12 with initial values of 711 & 712.
    ///
    /// Later using `children_mut` of node 2, we grow the tree by adding nodes 8 & 9.
    /// This demonstrates that we can safely mutate the structure of the tree.
    ///
    /// Then, using `children_mut` of node 7, we update values of its children.
    /// This demonstrates the mutation of node data.
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //       1
    /// //      ╱ ╲
    /// //     ╱   ╲
    /// //    ╱     ╲
    /// //   2       3
    /// //  ╱ ╲     ╱  ╲
    /// // 4   5   6    7
    /// // |   |   |   ╱ ╲
    /// // *8  *9 10 *11 *12
    ///
    /// let mut tree = DynTree::<_>::new(1);
    ///
    /// let mut root = tree.root_mut();
    ///
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// n2.push_children([4, 5]);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(10);
    /// tree.node_mut(&id7).push_children([711, 712]);
    ///
    /// // push nodes 8 and 9 using children_mut of node 2
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// for mut child in n2.children_mut() {
    ///     let child_val = *child.data(); // 4 & 5
    ///     child.push_child(child_val + 4); // 8 & 9
    /// }
    ///
    /// // update values using children_mut of node 7
    ///
    /// let mut n7 = tree.node_mut(&id7);
    /// for mut child in n7.children_mut() {
    ///     *child.data_mut() -= 700;
    /// }
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, [1, 2, 4, 8, 5, 9, 3, 6, 10, 7, 11, 12]);
    /// ```
    pub fn children_mut(
        &mut self,
    ) -> impl ExactSizeIterator<Item = NodeMut<'_, V, M, P, NodeMutDown>>
           + DoubleEndedIterator
           + use<'_, 'a, V, M, P, MO> {
        ChildrenMutIter::new(self.col, self.node_ptr.ptr())
    }
    /// Creates an iterator that yields mutable references to data of all nodes belonging to the subtree rooted at this node.
    ///
    /// The order of the elements is determined by the generic [`Traverser`] parameter `T`.
    /// Available implementations are:
    /// * [`Bfs`] for breadth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Breadth-first_search))
    /// * [`Dfs`] for (pre-order) depth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search))
    /// * [`PostOrder`] for post-order ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Post-order,_LRN))
    ///
    /// See also [`walk`] and [`into_walk`] variants.
    ///
    /// Note that tree traversing methods typically allocate a temporary data structure that is dropped once the
    /// iterator is dropped.
    /// In use cases where we repeatedly iterate using any of the **walk** methods over different nodes or different
    /// trees, we can avoid the allocation by creating the traverser only once and using [`walk_with`], [`walk_mut_with`]
    /// and [`into_walk_with`] methods instead.
    /// These methods additionally allow for iterating over nodes rather than data; and yielding node depths and sibling
    /// indices in addition to node data.
    ///
    /// [`Bfs`]: crate::Bfs
    /// [`Dfs`]: crate::Dfs
    /// [`PostOrder`]: crate::PostOrder
    /// [`walk`]: crate::NodeRef::walk
    /// [`into_walk`]: crate::NodeMut::into_walk
    /// [`walk_with`]: crate::NodeRef::walk_with
    /// [`walk_mut_with`]: crate::NodeMut::walk_mut_with
    /// [`into_walk_with`]: crate::NodeMut::into_walk_with
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
    /// tree.node_mut(&id4).push_child(8);
    /// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // walk over mutable references of nodes of any subtree
    /// // rooted at a selected node with different traversals
    ///
    /// let mut root = tree.root_mut();
    /// {
    ///     let mut bfs = root.walk_mut::<Bfs>();
    ///     assert_eq!(bfs.next(), Some(&mut 1));
    ///     assert_eq!(bfs.next(), Some(&mut 2)); // ...
    /// }
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// {
    ///     let mut dfs = n3.walk_mut::<Dfs>();
    ///     assert_eq!(dfs.next(), Some(&mut 3));
    ///     assert_eq!(dfs.next(), Some(&mut 6)); // ...
    /// }
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// {
    ///     let mut post_order = n2.walk_mut::<PostOrder>();
    ///     assert_eq!(post_order.next(), Some(&mut 8));
    ///     assert_eq!(post_order.next(), Some(&mut 4)); // ...
    /// }
    /// ```
    pub fn walk_mut<T>(&'a mut self) -> impl Iterator<Item = &'a mut V::Item>
    where
        T: Traverser<OverData>,
    {
        T::iter_mut_with_owned_storage::<V, M, P, MO>(self)
    }
    /// Creates an iterator that traverses all nodes belonging to the subtree rooted at this node.
    ///
    /// The order of the elements is determined by the type of the `traverser` which implements [`Traverser`].
    /// Available implementations are:
    /// * [`Bfs`] for breadth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Breadth-first_search))
    /// * [`Dfs`] for (pre-order) depth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search))
    /// * [`PostOrder`] for post-order ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Post-order,_LRN))
    ///
    /// As opposed to [`walk_mut`], this method does require internal allocation.
    /// Furthermore, it allows to attach node depths or sibling indices to the yield values.
    /// Please see the examples below.
    ///
    /// [`walk_mut`]: crate::NodeMut::walk_mut
    /// [`Bfs`]: crate::Bfs
    /// [`Dfs`]: crate::Dfs
    /// [`PostOrder`]: crate::PostOrder
    ///
    /// # Examples
    ///
    /// ## Examples - Repeated Iterations without Allocation
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // create the traverser 'dfs' only once, use it many times
    /// // to walk over references, mutable references or removed values
    /// // without additional allocation
    ///
    /// let mut dfs = Dfs::default();
    ///
    /// let root = tree.root();
    /// let values: Vec<_> = root.walk_with(&mut dfs).copied().collect();
    /// assert_eq!(values, [1, 2, 4, 8, 5, 3, 6, 9, 7, 10, 11]);
    ///
    /// let mut n7 = tree.node_mut(&id7);
    /// for x in n7.walk_mut_with(&mut dfs) {
    ///     *x += 100;
    /// }
    /// let values: Vec<_> = tree.root().walk_with(&mut dfs).copied().collect();
    /// assert_eq!(values, [1, 2, 4, 8, 5, 3, 6, 9, 107, 110, 111]);
    ///
    /// let n3 = tree.node_mut(&id3);
    /// let removed: Vec<_> = n3.into_walk_with(&mut dfs).collect();
    /// assert_eq!(removed, [3, 6, 9, 107, 110, 111]);
    ///
    /// let remaining: Vec<_> = tree.root().walk_with(&mut dfs).copied().collect();
    /// assert_eq!(remaining, [1, 2, 4, 8, 5]);
    /// ```
    ///
    /// ## Examples - Yielding Different Items
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // create the traverser 'bfs' iterator
    /// // to walk over nodes rather than data
    ///
    /// let mut bfs = Bfs::default().over_nodes();
    /// // OR: Bfs::<OverNode>::new();
    ///
    /// let n7 = tree.node(&id7);
    /// let mut iter = n7.walk_with(&mut bfs);
    /// let node = iter.next().unwrap();
    /// assert_eq!(node.num_children(), 2);
    /// assert_eq!(node.get_child(1).map(|x| *x.data()), Some(11));
    ///
    /// // or to additionally yield depth and/or sibling-idx
    ///
    /// let mut dfs = Dfs::default().with_depth().with_sibling_idx();
    /// // OR: Dfs::<OverDepthSiblingIdxData>::new()
    ///
    /// let n3 = tree.node(&id3);
    /// let result: Vec<_> = n3
    ///     .walk_with(&mut dfs)
    ///     .map(|(depth, sibling_idx, data)| (depth, sibling_idx, *data))
    ///     .collect();
    /// assert_eq!(
    ///     result,
    ///     [
    ///         (0, 0, 3),
    ///         (1, 0, 6),
    ///         (2, 0, 9),
    ///         (1, 1, 7),
    ///         (2, 0, 10),
    ///         (2, 1, 11)
    ///     ]
    /// );
    /// ```
    pub fn walk_mut_with<T, O>(
        &'a mut self,
        traverser: &'a mut T,
    ) -> impl Iterator<Item = OverItemMut<'a, V, O, M, P>>
    where
        O: OverMut,
        T: Traverser<O>,
    {
        traverser.iter_mut(self)
    }
    /// Creates an iterator that yields owned (removed) data of all nodes belonging to the subtree rooted at this node.
    ///
    /// Note that once the returned iterator is dropped, regardless of whether it is completely used up or not,
    /// the subtree rooted at this node will be **removed** from the tree it belongs to.
    /// If this node is the root of the tree, the tree will be left empty.
    ///
    /// The order of the elements is determined by the generic [`Traverser`] parameter `T`.
    /// Available implementations are:
    /// * [`Bfs`] for breadth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Breadth-first_search))
    /// * [`Dfs`] for (pre-order) depth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search))
    /// * [`PostOrder`] for post-order ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Post-order,_LRN))
    ///
    /// See also [`walk`] and [`walk_mut`] for iterators over shared and mutable references, respectively.
    ///
    /// Note that tree traversing methods typically allocate a temporary data structure that is dropped once the
    /// iterator is dropped.
    /// In use cases where we repeatedly iterate using any of the **walk** methods over different nodes or different
    /// trees, we can avoid the allocation by creating the traverser only once and using [`walk_with`], [`walk_mut_with`]
    /// and [`into_walk_with`] methods instead.
    /// These methods additionally allow for iterating over nodes rather than data; and yielding node depths and sibling
    /// indices in addition to node data.
    ///
    /// > **(!)** As a method that removes nodes from the tree, this method might result in invalidating indices that are
    /// > cached earlier in the [`Auto`] mode, but not in the [`Lazy`] mode. Please see the documentation of [MemoryPolicy]
    /// > for details of node index validity. Specifically, the examples in the "Lazy Memory Claim: Preventing Invalid Indices"
    /// > section presents a convenient way that allows us to make sure that the indices are valid.
    ///
    /// [`Auto`]: crate::Auto
    /// [`Lazy`]: crate::Lazy
    /// [`MemoryPolicy`]: crate::MemoryPolicy
    ///
    /// [`Bfs`]: crate::Bfs
    /// [`Dfs`]: crate::Dfs
    /// [`PostOrder`]: crate::PostOrder
    /// [`walk`]: crate::NodeRef::walk
    /// [`walk_mut`]: crate::NodeMut::walk_mut
    /// [`walk_with`]: crate::NodeRef::walk_with
    /// [`walk_mut_with`]: crate::NodeMut::walk_mut_with
    /// [`into_walk_with`]: crate::NodeMut::into_walk_with
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // remove any subtree rooted at a selected node
    /// // from the tree, and collect the node values
    /// // in the order of different traversals
    ///
    /// let n4 = tree.node_mut(&id4);
    /// let removed: Vec<_> = n4.into_walk::<PostOrder>().collect();
    /// assert_eq!(removed, [8, 4]);
    ///
    /// let remaining: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(remaining, [1, 2, 3, 5, 6, 7, 9, 10, 11]);
    ///
    /// let n3 = tree.node_mut(&id3);
    /// let removed: Vec<_> = n3.into_walk::<Dfs>().collect();
    /// assert_eq!(removed, [3, 6, 9, 7, 10, 11]);
    ///
    /// let remaining: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(remaining, [1, 2, 5]);
    ///
    /// let root = tree.root_mut();
    /// let removed: Vec<_> = root.into_walk::<Bfs>().collect(); // empties the tree
    /// assert_eq!(removed, [1, 2, 5]);
    ///
    /// assert!(tree.is_empty());
    /// assert_eq!(tree.get_root(), None);
    /// ```
    pub fn into_walk<T>(self) -> impl Iterator<Item = V::Item> + use<'a, T, V, M, P, MO>
    where
        T: Traverser<OverData>,
    {
        T::into_iter_with_owned_storage::<V, M, P, MO>(self)
    }
    /// Creates an iterator that yields owned (removed) data of all nodes belonging to the subtree rooted at this node.
    ///
    /// Note that once the returned iterator is dropped, regardless of whether it is completely used up or not,
    /// the subtree rooted at this node will be **removed** from the tree it belongs to.
    /// If this node is the root of the tree, the tree will be left empty.
    ///
    /// The order of the elements is determined by the type of the `traverser` which implements [`Traverser`].
    /// Available implementations are:
    /// * [`Bfs`] for breadth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Breadth-first_search))
    /// * [`Dfs`] for (pre-order) depth-first ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search))
    /// * [`PostOrder`] for post-order ([wikipedia](https://en.wikipedia.org/wiki/Tree_traversal#Post-order,_LRN))
    ///
    /// As opposed to [`into_walk`], this method does require internal allocation.
    /// Furthermore, it allows to attach node depths or sibling indices to the yield values.
    /// Please see the examples below.
    ///
    /// [`into_walk`]: crate::NodeMut::into_walk
    /// [`Bfs`]: crate::Bfs
    /// [`Dfs`]: crate::Dfs
    /// [`PostOrder`]: crate::PostOrder
    ///
    /// > **(!)** As a method that removes nodes from the tree, this method might result in invalidating indices that are
    /// > cached earlier in the [`Auto`] mode, but not in the [`Lazy`] mode. Please see the documentation of [MemoryPolicy]
    /// > for details of node index validity. Specifically, the examples in the "Lazy Memory Claim: Preventing Invalid Indices"
    /// > section presents a convenient way that allows us to make sure that the indices are valid.
    ///
    /// [`Auto`]: crate::Auto
    /// [`Lazy`]: crate::Lazy
    /// [`MemoryPolicy`]: crate::MemoryPolicy
    ///
    /// # Examples
    ///
    /// ## Examples - Repeated Iterations without Allocation
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // create the traverser 'dfs' only once, use it many times
    /// // to walk over references, mutable references or removed values
    /// // without additional allocation
    ///
    /// let mut dfs = Dfs::default();
    ///
    /// let root = tree.root();
    /// let values: Vec<_> = root.walk_with(&mut dfs).copied().collect();
    /// assert_eq!(values, [1, 2, 4, 8, 5, 3, 6, 9, 7, 10, 11]);
    ///
    /// let mut n7 = tree.node_mut(&id7);
    /// for x in n7.walk_mut_with(&mut dfs) {
    ///     *x += 100;
    /// }
    /// let values: Vec<_> = tree.root().walk_with(&mut dfs).copied().collect();
    /// assert_eq!(values, [1, 2, 4, 8, 5, 3, 6, 9, 107, 110, 111]);
    ///
    /// let n3 = tree.node_mut(&id3);
    /// let removed: Vec<_> = n3.into_walk_with(&mut dfs).collect();
    /// assert_eq!(removed, [3, 6, 9, 107, 110, 111]);
    ///
    /// let remaining: Vec<_> = tree.root().walk_with(&mut dfs).copied().collect();
    /// assert_eq!(remaining, [1, 2, 4, 8, 5]);
    /// ```
    ///
    /// ## Examples - Yielding Different Items
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    ///
    /// let mut tree = DynTree::new(1);
    ///
    /// let mut root = tree.root_mut();
    /// let [id2, id3] = root.push_children([2, 3]);
    ///
    /// let mut n2 = tree.node_mut(&id2);
    /// let [id4, _] = n2.push_children([4, 5]);
    ///
    /// tree.node_mut(&id4).push_child(8);
    ///
    /// let mut n3 = tree.node_mut(&id3);
    /// let [id6, id7] = n3.push_children([6, 7]);
    ///
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // create the traverser 'bfs' iterator
    /// // to walk over nodes rather than data
    ///
    /// let mut bfs = Bfs::default().over_nodes();
    /// // OR: Bfs::<OverNode>::new();
    ///
    /// let n7 = tree.node(&id7);
    /// let mut iter = n7.walk_with(&mut bfs);
    /// let node = iter.next().unwrap();
    /// assert_eq!(node.num_children(), 2);
    /// assert_eq!(node.get_child(1).map(|x| *x.data()), Some(11));
    ///
    /// // or to additionally yield depth and/or sibling-idx
    ///
    /// let mut dfs = Dfs::default().with_depth().with_sibling_idx();
    /// // OR: Dfs::<OverDepthSiblingIdxData>::new()
    ///
    /// let n3 = tree.node(&id3);
    /// let result: Vec<_> = n3
    ///     .walk_with(&mut dfs)
    ///     .map(|(depth, sibling_idx, data)| (depth, sibling_idx, *data))
    ///     .collect();
    /// assert_eq!(
    ///     result,
    ///     [
    ///         (0, 0, 3),
    ///         (1, 0, 6),
    ///         (2, 0, 9),
    ///         (1, 1, 7),
    ///         (2, 0, 10),
    ///         (2, 1, 11)
    ///     ]
    /// );
    /// ```
    pub fn into_walk_with<T, O>(
        self,
        traverser: &'a mut T,
    ) -> impl Iterator<Item = OverItemInto<'a, V, O>>
    where
        O: OverMut,
        T: Traverser<O>,
    {
        traverser.into_iter(self)
    }
    // subtree
    /// Creates a subtree view including this node as the root and all of its descendants with their orientation relative
    /// to this node.
    ///
    /// Consuming the created subtree in methods such as [`push_child_tree`] or [`push_sibling_tree`] will remove the
    /// subtree from this tree and move it to the target tree.
    /// Please see **Append Subtree taken out of another Tree** section of the examples of these methods.
    ///
    /// Otherwise, it has no impact on the tree.
    ///
    /// [`push_child_tree`]: crate::NodeMut::push_child_tree
    /// [`push_sibling_tree`]: crate::NodeMut::push_sibling_tree
    pub fn into_subtree(self) -> MovedSubTree<'a, V, M, P, MO> {
        MovedSubTree::new(self)
    }
    /// Removes the subtree rooted at this node from its tree; moves it into a new tree where this node is the root.
    ///
    /// See also [`clone_as_tree`] in order to keep the original tree unchanged.
    ///
    /// [`clone_as_tree`]: crate::NodeRef::clone_as_tree
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //      1
    /// //     ╱ ╲
    /// //    ╱   ╲
    /// //   2     3
    /// //  ╱ ╲   ╱ ╲
    /// // 4   5 6   7
    /// // |     |  ╱ ╲
    /// // 8     9 10  11
    /// let mut tree = DynTree::new(1).into_lazy_reclaim(); // ensure index validity
    /// let [id2, id3] = tree.root_mut().push_children([2, 3]);
    /// let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
    /// tree.node_mut(&id4).push_child(8);
    /// let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
    /// tree.node_mut(&id6).push_child(9);
    /// tree.node_mut(&id7).push_children([10, 11]);
    ///
    /// // let's move subtree rooted at n2 into new tree: tree2
    /// //   2
    /// //  ╱ ╲
    /// // 4   5
    /// // |
    /// // 8
    /// let tree2: DynTree<_> = tree.node_mut(&id2).into_new_tree();
    /// let bfs: Vec<_> = tree2.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [2, 4, 5, 8]);
    ///
    /// // let's move subtree rooted at n7 into new tree: tree7
    /// // this time, the target tree is a BinaryTree
    /// //   7
    /// //  ╱ ╲
    /// // 10  11
    /// let tree7: BinaryTree<_> = tree.node_mut(&id7).into_new_tree();
    /// let bfs: Vec<_> = tree7.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [7, 10, 11]);
    ///
    /// // these subtrees are removed from the original tree
    /// // 1
    /// //  ╲
    /// //   ╲
    /// //    3
    /// //   ╱
    /// //  6
    /// //  |
    /// //  9
    /// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, [1, 3, 6, 9]);
    /// ```
    pub fn into_new_tree<V2>(self) -> Tree<V2, Auto, P>
    where
        V2: TreeVariant<Item = V::Item>,
        P::PinnedVec<V2>: Default,
    {
        self.into_subtree().into_new_tree()
    }
    // helpers
    pub(crate) fn new(col: &'a mut Col<V, M, P>, node_ptr: NodePtr<V>) -> Self {
        Self {
            col,
            node_ptr,
            phantom: PhantomData,
        }
    }
    fn node_mut(&mut self) -> &mut N<V> {
        unsafe { &mut *self.node_ptr().ptr_mut() }
    }
    pub(crate) fn push_child_get_ptr(&mut self, value: V::Item) -> NodePtr<V> {
        let parent_ptr = self.node_ptr.clone();
        let child_ptr = self.col.push(value);
        let child = self.col.node_mut(&child_ptr);
        child.prev_mut().set_some(parent_ptr.clone());
        let parent = self.col.node_mut(&parent_ptr);
        parent.next_mut().push(child_ptr.clone());
        child_ptr
    }
    fn insert_sibling_get_ptr(
        col: &mut Col<V, M, P>,
        value: V::Item,
        parent_ptr: &NodePtr<V>,
        position: usize,
    ) -> NodePtr<V> {
        let sibling_ptr = col.push(value);
        let child = col.node_mut(&sibling_ptr);
        child.prev_mut().set_some(parent_ptr.clone());
        let parent = col.node_mut(parent_ptr);
        parent.next_mut().insert(position, sibling_ptr.clone());
        sibling_ptr
    }
    pub(crate) fn into_inner(self) -> (&'a mut Col<V, M, P>, NodePtr<V>) {
        (self.col, self.node_ptr)
    }
    pub(crate) fn parent_ptr(&self) -> Option<NodePtr<V>> {
        self.node().prev().get().cloned()
    }
    /// Returns the pointer to the root; None if empty.
    pub(crate) fn root_ptr(&self) -> Option<&NodePtr<V>> {
        self.col.ends().get()
    }
    fn node_idx_for(&self, ptr: &NodePtr<V>) -> NodeIdx<V> {
        NodeIdx(orx_selfref_col::NodeIdx::new(self.col.memory_state(), ptr))
    }
    /// Tries to append the `subtree` as the `child_position`-th child of this node.
    ///
    /// This operation might only fail if the there is an increasing jump in depths that is
    /// greater than one.
    /// The method returns the (depth, succeeding_depth) pair as the error when this error
    /// is observed.
    #[allow(clippy::unwrap_in_result)]
    pub(crate) fn try_append_subtree_as_child(
        &mut self,
        subtree: impl IntoIterator<Item = (usize, V::Item)>,
        child_position: usize,
    ) -> Result<NodeIdx<V>, (usize, usize)> {
        let mut iter = subtree.into_iter();
        let (mut current_depth, value) = iter.next().expect("tree is not empty");
        let idx = match child_position == self.num_children() {
            true => self.push_child(value),
            false => {
                let ptr =
                    Self::insert_sibling_get_ptr(self.col, value, &self.node_ptr, child_position);
                self.node_idx_for(&ptr)
            }
        };
        let position = child_position;
        let mut dst = self.get_child_mut(position).expect("child exists");
        for (depth, value) in iter {
            match depth > current_depth {
                true => {
                    if depth > current_depth + 1 {
                        return Err((current_depth, depth));
                    }
                }
                false => {
                    let num_parent_moves = current_depth - depth + 1;
                    for _ in 0..num_parent_moves {
                        dst = dst.into_parent_mut().expect("in bounds");
                    }
                }
            }
            let position = dst.num_children();
            dst.push_child(value);
            dst = dst.into_child_mut(position).expect("child exists");
            current_depth = depth;
        }
        Ok(idx)
    }
    /// Appends the `subtree` as the `child_position`-th child of this node.
    ///
    /// # Panics
    ///
    /// It is only safe to call this method where the `subtree` represents a valid depth-first sequence.
    /// Note that any sequence created by [`Dfs`] iterator using the [`OverDepthData`] is always valid, and hence, the conversion cannot fail.
    ///
    /// Please see [`DepthFirstSequence`] for validity conditions.
    ///
    /// [`DepthFirstSequence`]: crate::DepthFirstSequence
    /// [`Dfs`]: crate::Dfs
    /// [`OverDepthData`]: crate::traversal::OverDepthData
    pub(crate) fn append_subtree_as_child(
        &mut self,
        subtree: impl IntoIterator<Item = (usize, V::Item)>,
        child_position: usize,
    ) -> NodeIdx<V> {
        self.try_append_subtree_as_child(subtree, child_position)
            .expect("Since the depth first sequence is created by internal Dfs walk methods, sequence to subtree conversion cannot fail")
    }
    /// Swaps the data of the two valid nodes a and b, if they are different nodes.
    /// Does nothing if a == b.
    fn swap_data_of_nodes(a: NodePtr<V>, b: NodePtr<V>) {
        if a != b {
            let a = unsafe { &mut *a.ptr_mut() };
            let b = unsafe { &mut *b.ptr_mut() };
            core::mem::swap(
                a.data_mut().expect("valid idx"),
                b.data_mut().expect("valid idx"),
            );
        }
    }
    pub(crate) unsafe fn clone_node_mut(&mut self) -> Self {
        let node_ptr = self.node_ptr.clone();
        let col = self.col as *mut Col<V, M, P>;
        Self {
            col: unsafe { &mut *col },
            node_ptr,
            phantom: PhantomData,
        }
    }
}
impl<'a, V, M, P> NodeMut<'a, V, M, P, NodeMutUpAndDown>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
{
    /// Returns the mutable node of this node's parent,
    /// returns None if this is the root node.
    ///
    /// See also [`into_parent_mut`] for consuming traversal.
    ///
    /// [`into_parent_mut`]: crate::NodeMut::into_parent_mut
    ///
    /// # Examples
    ///
    /// The example below demonstrates one way to build a tree using `into_parent_mut` and `into_child_mut` methods.
    /// In this approach, we start from the mutable root node.
    /// Then, we convert one mutable node to another, always having only one mutable node.
    ///
    /// See also index returning growth methods for an alternative tree building approach, such as
    /// [`push_child`] and [`push_children`].
    ///
    /// [`push_child`]: crate::NodeMut::push_child
    /// [`push_children`]: crate::NodeMut::push_children
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //        x
    /// //       ╱ ╲
    /// //      ╱   ╲
    /// //     ╱     ╲
    /// //    a       b
    /// //  ╱ | ╲    ╱ ╲
    /// // c  d  e  f   g
    ///
    /// let mut tree = DynTree::<char>::new('r');
    ///
    /// let mut root = tree.root_mut();
    /// let [id_a, id_b] = root.push_children(['a', 'b']);
    ///
    /// let mut a = tree.node_mut(&id_a);
    /// a.push_children(['c', 'd', 'e']);
    ///
    /// let mut b = tree.node_mut(&id_b);
    /// let [_, id_g] = b.push_children(['f', 'g']);
    ///
    /// let mut g = tree.node_mut(&id_g);
    /// let mut b = g.parent_mut().unwrap();
    /// let mut root = b.parent_mut().unwrap();
    ///
    /// *root.data_mut() = 'x';
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, ['x', 'a', 'b', 'c', 'd', 'e', 'f', 'g']);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, ['x', 'a', 'c', 'd', 'e', 'b', 'f', 'g']);
    /// ```
    pub fn parent_mut(&mut self) -> Option<NodeMut<'_, V, M, P>> {
        self.node()
            .prev()
            .get()
            .cloned()
            .map(|p| NodeMut::new(self.col, p))
    }
    /// Consumes this mutable node and returns the mutable node of its parent,
    /// returns None if this is the root node.
    ///
    /// See also [`parent_mut`] for non-consuming access.
    ///
    /// [`parent_mut`]: crate::NodeMut::parent_mut
    ///
    /// # Examples
    ///
    /// The example below demonstrates one way to build a tree using `into_parent_mut` and `into_child_mut` methods.
    /// In this approach, we start from the mutable root node.
    /// Then, we convert one mutable node to another, always having only one mutable node.
    ///
    /// See also index returning growth methods for an alternative tree building approach, such as
    /// [`push_child`] and [`push_children`].
    ///
    /// [`push_child`]: crate::NodeMut::push_child
    /// [`push_children`]: crate::NodeMut::push_children
    ///
    /// ```
    /// use orx_tree::*;
    ///
    /// //        r
    /// //       ╱ ╲
    /// //      ╱   ╲
    /// //     ╱     ╲
    /// //    a       b
    /// //  ╱ | ╲    ╱ ╲
    /// // c  d  e  f   g
    /// //            ╱ | ╲
    /// //           h  i  j
    ///
    /// let mut tree = DynTree::<char>::new('r');
    ///
    /// let mut root = tree.root_mut();
    /// root.push_children(['a', 'b']);
    ///
    /// let mut a = root.into_child_mut(0).unwrap();
    /// a.push_children(['c', 'd', 'e']);
    ///
    /// let mut b = a.into_parent_mut().unwrap().into_child_mut(1).unwrap();
    /// b.push_children(['f', 'g']);
    ///
    /// let mut g = b.into_child_mut(1).unwrap();
    /// g.push_children(['h', 'i', 'j']);
    ///
    /// // validate the tree
    ///
    /// let root = tree.root();
    ///
    /// let bfs: Vec<_> = root.walk::<Bfs>().copied().collect();
    /// assert_eq!(bfs, ['r', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']);
    ///
    /// let dfs: Vec<_> = root.walk::<Dfs>().copied().collect();
    /// assert_eq!(dfs, ['r', 'a', 'c', 'd', 'e', 'b', 'f', 'g', 'h', 'i', 'j']);
    /// ```
    pub fn into_parent_mut(self) -> Option<NodeMut<'a, V, M, P>> {
        self.node()
            .prev()
            .get()
            .cloned()
            .map(|p| NodeMut::new(self.col, p))
    }
}
#[test]
fn abc() {
    use crate::*;
    use alloc::vec::Vec;
    //      1
    //     ╱ ╲
    //    ╱   ╲
    //   2     3
    //  ╱ ╲   ╱ ╲
    // 4   5 6   7
    // |     |  ╱ ╲
    // 8     9 10  11
    let mut tree = DynTree::new(1).into_lazy_reclaim(); // ensure index validity
    let [id2, id3] = tree.root_mut().push_children([2, 3]);
    let [id4, _] = tree.node_mut(&id2).push_children([4, 5]);
    tree.node_mut(&id4).push_child(8);
    let [id6, id7] = tree.node_mut(&id3).push_children([6, 7]);
    tree.node_mut(&id6).push_child(9);
    tree.node_mut(&id7).push_children([10, 11]);
    // let's move subtree rooted at n2 into new tree: tree2
    //   2
    //  ╱ ╲
    // 4   5
    // |
    // 8
    let tree2: DynTree<_> = tree.node_mut(&id2).into_new_tree();
    let bfs: Vec<_> = tree2.root().walk::<Bfs>().copied().collect();
    assert_eq!(bfs, [2, 4, 5, 8]);
    // let's move subtree rooted at n7 into new tree: tree7
    // this time, the target tree is a BinaryTree
    //   7
    //  ╱ ╲
    // 10  11
    let tree7: BinaryTree<_> = tree.node_mut(&id7).into_new_tree();
    let bfs: Vec<_> = tree7.root().walk::<Bfs>().copied().collect();
    assert_eq!(bfs, [7, 10, 11]);
    // these subtrees are removed from the original tree
    // 1
    //  ╲
    //   ╲
    //    3
    //   ╱
    //  6
    //  |
    //  9
    let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
    assert_eq!(bfs, [1, 3, 6, 9]);
}