orx_tree/common_traits/from_depth_first_iter.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
use crate::{pinned_storage::PinnedStorage, MemoryPolicy, Tree, TreeVariant};
/// A depth first sequence is a representation of a tree in a linear storage of (depth, value) tuples.
/// This is useful in collecting trees from iterators, (de)-serializing trees or converting its variant
/// from one to another.
///
/// `DepthFirstSequence` struct is nothing but a wrapper around a `(usize, T)` iterator in order
/// to state explicitly that this iterator is expected to follow the depth-first-order of (depth, value) pairs.
///
/// A `DepthFirstSequence` can be created from any type that implements `IntoIterator<Item = (usize, T)>`
/// using `From` (or `Into`) traits.
///
/// In order to create a valid tree from the iterator, the order of pairs must satisfy certain conditions.
/// Assume (depth(i), value(i)) is the i-th item of the iterator.
/// Then, the following conditions summarize the valid relation between successive elements of the iterator:
///
/// * depth(0) = 0
///   * since the first node of the depth-first traversal is the root
/// * depth(i+1) < depth(i) is valid
///   * we are moving from a leaf node with depth(i) to next child of one of its ancestors
/// * depth(i+1) = depth(i) is valid
///   * we are moving from a leaf node to its sibling which is immediately right to it
/// * depth(i+1) = depth(i) + 1 is valid
///   * we are moving from a non-leaf node to its first child
///
/// On the contrary, if either of the following two conditions hold, we cannot build a valid tree.
///
/// * depth(0) > 0
///   * leads to [`DepthFirstSequenceError::NonZeroRootDepth`]
/// * depth(i + 1) = depth(i) + q where q > 1
///   * leads to [`DepthFirstSequenceError::DepthIncreaseGreaterThanOne`]
///
/// If either of these conditions hold, `try_from` or `try_into` methods will return the corresponding
/// error instead of a valid tree.
///
/// # Examples
///
/// ## Happy Paths
///
/// The following examples demonstrate the happy paths leading to successful collection of a tree from valid
/// depth-first sequences.
///
/// ```
/// use orx_tree::*;
///
/// // empty tree
///
/// let dfs = DepthFirstSequence::from([]);
/// let result: Result<DynTree<u32>, DepthFirstSequenceError> = dfs.try_into();
/// assert_eq!(result, Ok(Tree::empty()));
///
/// // non-empty tree
///
/// //      0
/// //     ╱ ╲
/// //    ╱   ╲
/// //   1     2
/// //  ╱     ╱ ╲
/// // 3     4   5
/// // |         |
/// // 6         7
/// let depth_value_pairs = [
///     (0, 0),
///     (1, 1),
///     (2, 3),
///     (3, 6),
///     (1, 2),
///     (2, 4),
///     (2, 5),
///     (3, 7),
/// ];
/// let dfs = DepthFirstSequence::from(depth_value_pairs.clone());
/// let result: Result<DynTree<u32>, DepthFirstSequenceError> = dfs.try_into();
///
/// assert!(result.is_ok());
/// let tree = result.unwrap();
///
/// let bfs: Vec<_> = tree.root().walk::<Bfs>().copied().collect();
/// assert_eq!(bfs, [0, 1, 2, 3, 4, 5, 6, 7]);
///
/// // we can get back the dfs-sequence from constructed tree using walk_with
///
/// let mut t = Traversal.dfs().with_depth();
/// let dfs_back_from_tree: Vec<_> = tree
///     .root()
///     .walk_with(&mut t)
///     .map(|(depth, val)| (depth, *val))
///     .collect();
/// assert_eq!(dfs_back_from_tree, depth_value_pairs);
///
/// // we can construct back any fitting tree variant from the sequence
///
/// let result = DepthFirstSequence::from(dfs_back_from_tree).try_into();
/// assert!(result.is_ok());
///
/// let tree_back: BinaryTree<u32> = result.unwrap();
/// assert_eq!(tree, tree_back);
/// ```
///
/// ## Error Paths
///
/// The following examples illustrate the two potential error cases that can be observed due to
/// the iterator not yielding a valid depth-first sequence.
///
/// ```
/// use orx_tree::*;
///
/// // root with depth > 0
///
/// let dfs = DepthFirstSequence::from([(1, 1)]);
/// let result: Result<DynTree<u32>, DepthFirstSequenceError> = dfs.try_into();
/// assert_eq!(result, Err(DepthFirstSequenceError::NonZeroRootDepth));
///
/// // missing node (or forgotten depth) in the sequence
///
/// //       0
/// //      ╱ ╲
/// //     ╱   ╲
/// //    1     2
/// //   ╱     ╱ ╲
/// // ???    4   5
/// //  |         |
/// //  6         7
/// let depth_value_pairs = [
///     (0, 0),
///     (1, 1),
///     // (2, 3), -> forgotten node leads to depth jump from 1 to 3
///     (3, 6),
///     (1, 2),
///     (2, 4),
///     (2, 5),
///     (3, 7),
/// ];
/// let dfs = DepthFirstSequence::from(depth_value_pairs.clone());
/// let result: Result<DynTree<u32>, DepthFirstSequenceError> = dfs.try_into();
/// assert_eq!(
///     result,
///     Err(DepthFirstSequenceError::DepthIncreaseGreaterThanOne {
///         depth: 1,
///         succeeding_depth: 3
///     })
/// );
/// ```
#[derive(Clone)]
pub struct DepthFirstSequence<T, I>(I)
where
    I: IntoIterator<Item = (usize, T)>;
impl<T, I> From<I> for DepthFirstSequence<T, I>
where
    I: IntoIterator<Item = (usize, T)>,
{
    fn from(iter: I) -> Self {
        Self(iter)
    }
}
/// A depth first sequence, or [`DepthFirstSequence`] is simply a sequence of `(usize, T)` tuples
/// corresponding to (depth, value) pairs of nodes of a tree which are ordered by the depth-first
/// traversal order.
///
/// Therefore, not all `IntoIterator<Item = (usize, T)>` types satisfy the depth-first sequence
/// requirement.
/// The invalid sequences are represented by the `DepthFirstSequenceError` type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DepthFirstSequenceError {
    /// The first element of the depth-first sequence must be the root with depth 0.
    /// Therefore, any sequence with a first element having a non-zero depth leads to this error.
    ///
    /// Note that empty sequences are valid and represent an empty tree.
    NonZeroRootDepth,
    /// While traversing a tree in depth first order, we
    ///
    /// * either move one level down to access the child (depth = previous depth + 1)
    /// * or stay at the same level to access the sibling to the right (depth = previous depth)
    /// * or move up and then right to access the next child of an ancestor (depth < previous depth)
    ///
    /// This list represents valid depth transition.
    /// However, we never
    ///
    /// * move n > 1 level down (depth > previous depth + 1)
    ///
    /// This leaves a gap in the depth-first traversal, and hance, is the invalid case that this
    /// error variant represents.
    DepthIncreaseGreaterThanOne {
        /// Depth of the node where the error is observed.
        depth: usize,
        /// Depth succeeding the `depth` which is at least two more than the previous.
        succeeding_depth: usize,
    },
}
impl<I, V, M, P> TryFrom<DepthFirstSequence<V::Item, I>> for Tree<V, M, P>
where
    V: TreeVariant,
    M: MemoryPolicy,
    P: PinnedStorage,
    P::PinnedVec<V>: Default,
    I: IntoIterator<Item = (usize, V::Item)>,
{
    type Error = DepthFirstSequenceError;
    /// Tries to convert a depth-first sequence into a valid tree.
    /// Returns the corresponding [`DepthFirstSequenceError`] if the sequence is invalid.
    ///
    /// Note that:
    ///
    /// * A [`DepthFirstSequence`] is just a wrapper of any `IntoIterator<Item = (usize, T)>` implementor
    ///   that can be crated using the `From` trait => `DepthFirstSequence::from([(0, "a"), (1, "b")])`.
    /// * However, not all `IntoIterator<Item = (usize, T)>` instances represent a valid depth first
    ///   sequence. Therefore, the conversion is fallible.
    fn try_from(value: DepthFirstSequence<V::Item, I>) -> Result<Self, Self::Error> {
        let mut iter = value.0.into_iter();
        match iter.next() {
            None => Ok(Tree::default()),
            Some((d, root)) => match d {
                0 => {
                    let mut tree = Tree::new_with_root(root);
                    match tree.root_mut().try_append_subtree_as_child(iter, 0) {
                        Ok(_) => Ok(tree),
                        Err((depth, succeeding_depth)) => {
                            Err(DepthFirstSequenceError::DepthIncreaseGreaterThanOne {
                                depth,
                                succeeding_depth,
                            })
                        }
                    }
                }
                _ => Err(DepthFirstSequenceError::NonZeroRootDepth),
            },
        }
    }
}