1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
use crate::{
    common_traits::iterator::iter_con::IterCon,
    fragment::fragment_struct::{
        maximum_concurrent_capacity, num_fragments_for_capacity, set_fragments_len,
    },
    range_helpers::{range_end, range_start},
    Doubling, Fragment, Growth, GrowthWithConstantTimeAccess, SplitVec,
};
use orx_pinned_vec::{ConcurrentPinnedVec, PinnedVec};
use std::{
    ops::RangeBounds,
    sync::atomic::{AtomicUsize, Ordering},
};

/// Concurrent wrapper ([`orx_pinned_vec::ConcurrentPinnedVec`]) for the `SplitVec`.
pub struct ConcurrentSplitVec<T, G: GrowthWithConstantTimeAccess = Doubling> {
    capacity: AtomicUsize,
    maximum_capacity: usize,
    num_fragments: AtomicUsize,
    growth: G,
    fragments: Vec<Fragment<T>>,
    ptr_fragments: *mut Fragment<T>,
    fragment_pointers: Vec<*const T>,
    ptr_fragments_pointers: *const *const T,
}

impl<T, G: GrowthWithConstantTimeAccess> Drop for ConcurrentSplitVec<T, G> {
    fn drop(&mut self) {
        unsafe { self.fragments.set_len(self.num_fragments()) };
    }
}

impl<T, G: GrowthWithConstantTimeAccess> ConcurrentSplitVec<T, G> {
    fn num_fragments(&self) -> usize {
        self.num_fragments.load(Ordering::Relaxed)
    }

    fn fragments(&self) -> &[Fragment<T>] {
        let len = self.num_fragments();
        self.fragments_for(len)
    }

    fn fragments_for(&self, num_fragments: usize) -> &[Fragment<T>] {
        unsafe { std::slice::from_raw_parts(self.ptr_fragments, num_fragments) }
    }

    fn push_fragment(&self, fragment: Fragment<T>, fragment_index: usize) {
        let p = unsafe { self.fragment_pointers.as_ptr().add(fragment_index) };
        let p = p as *mut *const T;
        unsafe { p.write(fragment.as_ptr()) };
        unsafe { self.ptr_fragments.add(fragment_index).write(fragment) };
    }

    fn fragment_element_ptr_mut(&self, f: usize, i: usize) -> *mut T {
        let p = unsafe { self.ptr_fragments_pointers.add(f).read() };
        let p = unsafe { p.add(i) };
        p as *mut T
    }

    fn fragment_element_ptr(&self, f: usize, i: usize) -> *const T {
        let p = unsafe { self.ptr_fragments_pointers.add(f).read() };
        unsafe { p.add(i) }
    }
}

fn get_pointers<T>(
    fragments: &[Fragment<T>],
    fragments_capacity: usize,
) -> (Vec<*const T>, *const *const T) {
    let first = fragments[0].as_ptr();
    let mut fragment_pointers = vec![first; fragments_capacity];
    for (f, fragment) in fragments.iter().enumerate() {
        fragment_pointers[f] = fragment.as_ptr();
    }
    let ptr_fragments_pointers = fragment_pointers.as_ptr();

    (fragment_pointers, ptr_fragments_pointers)
}

impl<T, G: GrowthWithConstantTimeAccess> From<SplitVec<T, G>> for ConcurrentSplitVec<T, G> {
    fn from(value: SplitVec<T, G>) -> Self {
        let (mut fragments, growth) = (value.fragments, value.growth);

        let data = data(&mut fragments, &growth);

        Self {
            capacity: data.capacity.into(),
            maximum_capacity: data.maximum_capacity,
            num_fragments: data.num_fragments.into(),
            growth,
            fragments,
            ptr_fragments: data.ptr_fragments,
            fragment_pointers: data.fragment_pointers,
            ptr_fragments_pointers: data.ptr_fragments_pointers,
        }
    }
}

impl<T, G: GrowthWithConstantTimeAccess> ConcurrentPinnedVec<T> for ConcurrentSplitVec<T, G> {
    type P = SplitVec<T, G>;

    unsafe fn into_inner(mut self, len: usize) -> Self::P {
        self.fragments.set_len(self.num_fragments());

        let mut fragments = vec![];
        std::mem::swap(&mut fragments, &mut self.fragments);
        set_fragments_len(&mut fragments, len);

        self.num_fragments.store(0, Ordering::Relaxed);
        self.capacity.store(0, Ordering::Relaxed);

        let growth = self.growth.clone();

        // let (mut fragments, growth) = (self.fragments, self.growth.clone());
        SplitVec::from_raw_parts(len, fragments, growth)
    }

    fn capacity(&self) -> usize {
        self.capacity.load(Ordering::SeqCst)
    }

    fn max_capacity(&self) -> usize {
        self.maximum_capacity
    }

    fn grow_to(&self, new_capacity: usize) -> Result<usize, orx_pinned_vec::PinnedVecGrowthError> {
        let capacity = self.capacity();
        match new_capacity <= capacity {
            true => Ok(capacity),
            false => {
                let mut num_fragments = self.num_fragments();

                let mut current_capacity = capacity;

                while new_capacity > current_capacity {
                    let new_fragment_capacity = self
                        .growth
                        .new_fragment_capacity(self.fragments_for(num_fragments));
                    let new_fragment = Fragment::new(new_fragment_capacity);

                    self.push_fragment(new_fragment, num_fragments);

                    num_fragments += 1;
                    current_capacity += new_fragment_capacity;
                }

                self.num_fragments.store(num_fragments, Ordering::SeqCst);
                self.capacity.store(current_capacity, Ordering::SeqCst);

                Ok(current_capacity)
            }
        }
    }

    unsafe fn slices_mut<R: RangeBounds<usize>>(
        &self,
        range: R,
    ) -> <Self::P as PinnedVec<T>>::SliceMutIter<'_> {
        use std::slice::from_raw_parts_mut;

        let fragments = self.fragments();
        let fragment_and_inner_indices =
            |i| self.growth.get_fragment_and_inner_indices_unchecked(i);

        let a = range_start(&range);
        let b = range_end(&range, self.capacity());

        match b.saturating_sub(a) {
            0 => vec![],
            _ => {
                let (sf, si) = fragment_and_inner_indices(a);
                let (ef, ei) = fragment_and_inner_indices(b - 1);

                match sf == ef {
                    true => {
                        let p = self.fragment_element_ptr_mut(sf, si);
                        let slice = from_raw_parts_mut(p, ei - si + 1);
                        vec![slice]
                    }
                    false => {
                        let mut vec = Vec::with_capacity(ef - sf + 1);

                        let slice_len = fragments[sf].capacity() - si;
                        let ptr_s = self.fragment_element_ptr_mut(sf, si);
                        vec.push(from_raw_parts_mut(ptr_s, slice_len));

                        for (f, fragment) in fragments.iter().enumerate().take(ef).skip(sf + 1) {
                            let slice_len = fragment.capacity();
                            let ptr_s = self.fragment_element_ptr_mut(f, 0);
                            vec.push(from_raw_parts_mut(ptr_s, slice_len));
                        }

                        let slice_len = ei + 1;
                        let ptr_s = self.fragment_element_ptr_mut(ef, 0);
                        vec.push(from_raw_parts_mut(ptr_s, slice_len));

                        vec
                    }
                }
            }
        }
    }

    unsafe fn iter<'a>(&'a self, len: usize) -> impl Iterator<Item = &'a T> + 'a
    where
        T: 'a,
    {
        let fragments = self.fragments();

        match len {
            0 => IterCon::new(&fragments[0..1], 0),
            _ => {
                // let mut num_fragments = 0;
                let mut count = 0;

                for (num_fragments, fragment) in fragments.iter().enumerate() {
                    // for fragment in fragments.iter() {
                    // num_fragments += 1;
                    let capacity = fragment.capacity();
                    let new_count = count + capacity;

                    match new_count >= len {
                        true => {
                            let last_fragment_len = capacity - (new_count - len);
                            return IterCon::new(
                                &fragments[0..(num_fragments + 1)],
                                last_fragment_len,
                            );
                        }
                        false => count = new_count,
                    }
                }

                let last_fragment_len = fragments[fragments.len() - 1].capacity();
                IterCon::new(fragments, last_fragment_len)
            }
        }
    }

    unsafe fn iter_mut<'a>(&'a mut self, len: usize) -> impl Iterator<Item = &'a mut T> + 'a
    where
        T: 'a,
    {
        self.fragments.set_len(self.num_fragments());
        set_fragments_len(&mut self.fragments, len);
        let iter = crate::IterMut::new(&mut self.fragments);
        iter.take(len)
    }

    unsafe fn set_pinned_vec_len(&mut self, len: usize) {
        self.fragments.set_len(self.num_fragments());
        set_fragments_len(&mut self.fragments, len);
    }

    unsafe fn get(&self, index: usize) -> Option<&T> {
        match index < self.capacity() {
            true => {
                let (f, i) = self.growth.get_fragment_and_inner_indices_unchecked(index);
                Some(&*self.fragment_element_ptr(f, i))
            }
            false => None,
        }
    }

    unsafe fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        match index < self.capacity() {
            true => {
                let (f, i) = self.growth.get_fragment_and_inner_indices_unchecked(index);
                Some(&mut *self.fragment_element_ptr_mut(f, i))
            }
            false => None,
        }
    }

    unsafe fn get_ptr_mut(&self, index: usize) -> *mut T {
        assert!(index < self.capacity());
        let (f, i) = self.growth.get_fragment_and_inner_indices_unchecked(index);
        self.fragment_element_ptr(f, i) as *mut T
    }

    unsafe fn reserve_maximum_concurrent_capacity(
        &mut self,
        current_len: usize,
        new_maximum_capacity: usize,
    ) -> usize {
        self.fragments.set_len(self.num_fragments());
        set_fragments_len(&mut self.fragments, current_len);

        if self.maximum_capacity < new_maximum_capacity {
            let (num_required_fragments, target_capacity) =
                num_fragments_for_capacity(&self.fragments, &self.growth, new_maximum_capacity);

            assert!(target_capacity >= new_maximum_capacity);

            let num_additional_fragments =
                num_required_fragments.saturating_sub(self.fragments.len());
            self.fragments.reserve(num_additional_fragments);

            self.maximum_capacity = target_capacity;
            self.ptr_fragments = self.fragments.as_mut_ptr();

            let (fragment_pointers, ptr_fragments_pointers) =
                get_pointers(&self.fragments, self.fragments.capacity());
            self.fragment_pointers = fragment_pointers;
            self.ptr_fragments_pointers = ptr_fragments_pointers;

            self.fragments.set_len(self.fragments.capacity());
        }

        self.maximum_capacity
    }

    unsafe fn clear(&mut self, prior_len: usize) {
        self.fragments.set_len(self.num_fragments());
        self.set_pinned_vec_len(prior_len);

        if !self.fragments.is_empty() {
            self.fragments.truncate(1);
            self.fragments[0].clear();
        }

        let data = data(&mut self.fragments, &self.growth);

        self.capacity = data.capacity.into();
        self.maximum_capacity = data.maximum_capacity;
        self.num_fragments = data.num_fragments.into();
        self.ptr_fragments = data.ptr_fragments;
        self.fragment_pointers = data.fragment_pointers;
        self.ptr_fragments_pointers = data.ptr_fragments_pointers;
    }
}

fn data<G: Growth, T>(fragments: &mut Vec<Fragment<T>>, growth: &G) -> Data<T> {
    let num_fragments = fragments.len();

    let capacity = fragments.iter().map(|x| x.capacity()).sum::<usize>();

    let maximum_capacity = maximum_concurrent_capacity(fragments, fragments.capacity(), growth);

    let ptr_fragments = fragments.as_mut_ptr();

    let (fragment_pointers, ptr_fragments_pointers) = get_pointers(fragments, fragments.capacity());

    unsafe { fragments.set_len(fragments.capacity()) };

    Data {
        capacity,
        maximum_capacity,
        num_fragments,
        ptr_fragments,
        fragment_pointers,
        ptr_fragments_pointers,
    }
}

struct Data<T> {
    capacity: usize,
    maximum_capacity: usize,
    num_fragments: usize,
    ptr_fragments: *mut Fragment<T>,
    fragment_pointers: Vec<*const T>,
    ptr_fragments_pointers: *const *const T,
}