Struct orx_split_vec::SplitVec
source · pub struct SplitVec<T, G = Doubling>where
G: Growth,{
pub growth: G,
/* private fields */
}
Expand description
A split vector; i.e., a vector of fragments, with the following features:
- Flexible in growth strategies; custom strategies can be defined.
- Growth does not cause any memory copies.
- Capacity of an already created fragment is never changed.
- The above feature allows the data to stay pinned in place. Memory location of an item added to the split vector will never change unless it is removed from the vector or the vector is dropped.
Fields§
§growth: G
Growth strategy of the split vector.
Note that allocated data of split vector is pinned and allocated in fragments. Therefore, growth does not require copying data.
The growth stratety determines the capacity of each fragment that will be added to the split vector when needed.
Furthermore, it has an impact on index-access to the elements. See below for the complexities:
LinearGrowth
(SplitVec::with_linear_growth
) -> O(1)DoublingGrowth
(SplitVec::with_doubling_growth
) -> O(1), however slower than linearExponentialGrowth
(SplitVec::with_exponential_growth
) -> O(f) where f is the number of fragmentsCustomGrowth
(SplitVec::with_custom_growth
) -> O(f) where f is the number of fragments
Implementations§
source§impl<T> SplitVec<T, Doubling>
impl<T> SplitVec<T, Doubling>
sourcepub fn with_doubling_growth() -> Self
pub fn with_doubling_growth() -> Self
Stategy which allows to create a fragment with double the capacity of the prior fragment every time the split vector needs to expand.
Assuming it is the common case compared to empty vector scenarios,
it immediately allocates the first fragment to keep the SplitVec
struct smaller.
Panics
Panics if first_fragment_capacity
is zero.
Examples
use orx_split_vec::prelude::*;
// SplitVec<usize, DoublingGrowth>
let mut vec = SplitVec::with_doubling_growth();
assert_eq!(1, vec.fragments().len());
assert_eq!(Some(4), vec.fragments().first().map(|f| f.capacity()));
assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
// fill the first 5 fragments
let expected_fragment_capacities = vec![4, 8, 16, 32];
let num_items: usize = expected_fragment_capacities.iter().sum();
for i in 0..num_items {
vec.push(i);
}
assert_eq!(
expected_fragment_capacities,
vec.fragments()
.iter()
.map(|f| f.capacity())
.collect::<Vec<_>>()
);
assert_eq!(
expected_fragment_capacities,
vec.fragments().iter().map(|f| f.len()).collect::<Vec<_>>()
);
// create the 6-th fragment doubling the capacity
vec.push(42);
assert_eq!(
vec.fragments().len(),
expected_fragment_capacities.len() + 1
);
assert_eq!(vec.fragments().last().map(|f| f.capacity()), Some(32 * 2));
assert_eq!(vec.fragments().last().map(|f| f.len()), Some(1));
source§impl<T> SplitVec<T, Linear>
impl<T> SplitVec<T, Linear>
sourcepub fn with_linear_growth(constant_fragment_capacity_exponent: usize) -> Self
pub fn with_linear_growth(constant_fragment_capacity_exponent: usize) -> Self
Creates a split vector with linear growth where each fragment will have a capacity of 2 ^ constant_fragment_capacity_exponent
.
Assuming it is the common case compared to empty vector scenarios,
it immediately allocates the first fragment to keep the SplitVec
struct smaller.
Panics
Panics if constant_fragment_capacity_exponent
is zero.
Examples
use orx_split_vec::prelude::*;
// SplitVec<usize, LinearGrowth>
let mut vec = SplitVec::with_linear_growth(4);
assert_eq!(1, vec.fragments().len());
assert_eq!(Some(16), vec.fragments().first().map(|f| f.capacity()));
assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
// push 160 elements
for i in 0..10 * 16 {
vec.push(i);
}
assert_eq!(10, vec.fragments().len());
for fragment in vec.fragments() {
assert_eq!(16, fragment.len());
assert_eq!(16, fragment.capacity());
}
// push the 161-st element
vec.push(42);
assert_eq!(11, vec.fragments().len());
assert_eq!(Some(16), vec.fragments().last().map(|f| f.capacity()));
assert_eq!(Some(1), vec.fragments().last().map(|f| f.len()));
source§impl<T, G> SplitVec<T, G>where
G: Growth,
T: NotSelfRefVecItem,
impl<T, G> SplitVec<T, G>where
G: Growth,
T: NotSelfRefVecItem,
sourcepub fn to_vec(self) -> Vec<T>
pub fn to_vec(self) -> Vec<T>
Converts the SplitVec
into a standard Vec
with a contagious memory layout.
Examples
use orx_split_vec::prelude::*;
let mut split_vec = SplitVec::with_linear_growth(2);
split_vec.extend_from_slice(&['a', 'b', 'c']);
assert_eq!(1, split_vec.fragments().len());
let vec = split_vec.to_vec();
assert_eq!(vec, &['a', 'b', 'c']);
let mut split_vec = SplitVec::with_linear_growth(2);
for i in 0..10 {
split_vec.push(i);
}
assert_eq!(&[0, 1, 2, 3], split_vec.fragments()[0].as_slice());
assert_eq!(&[4, 5, 6, 7], split_vec.fragments()[1].as_slice());
assert_eq!(&[8, 9], split_vec.fragments()[2].as_slice());
let vec = split_vec.to_vec();
assert_eq!(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], vec.as_slice());
source§impl<T, G> SplitVec<T, G>
impl<T, G> SplitVec<T, G>
sourcepub fn collect_fixed_vec(&self) -> FixedVec<T>
pub fn collect_fixed_vec(&self) -> FixedVec<T>
Collects the split vector into a fixed vector with a fixed capacity being exactly equal to the length of this split vector.
Safety
Since T: NotSelfRefVecItem
, it is safe to clone the data of the elements.
Examples
use orx_split_vec::prelude::*;
// SplitVec with dynamic capacity and configurable growth strategy.
let mut split = SplitVec::with_linear_growth(5);
for i in 0..35 {
split.push(i);
}
assert_eq!(35, split.len());
assert_eq!(2, split.fragments().len());
assert_eq!(32, split.fragments()[0].len());
assert_eq!(3, split.fragments()[1].len());
// FixedVec with std::vec::Vec complexity & performance.
let fixed = split.collect_fixed_vec();
assert_eq!(35, fixed.len());
assert_eq!(fixed, split);
source§impl<T, G> SplitVec<T, G>
impl<T, G> SplitVec<T, G>
sourcepub unsafe fn unsafe_collect_fixed_vec(&self) -> FixedVec<T>
pub unsafe fn unsafe_collect_fixed_vec(&self) -> FixedVec<T>
Collects the split vector into a fixed vector with a fixed capacity being exactly equal to the length of this split vector.
Safety
Since T
is not a NotSelfRefVecItem
, it is assumed as a SelfRefVecItem
to be conservative. A naive clone of a vector of SelfRefVecItem
elements
is unsafe due to the following scenario:
- say the vector contains two elements
['a', 'b']
where'a'
holds a reference to'b'
. - when we clone this vector, element
'a'
of the second vector will be pointing to element'b'
of the first vector, which is already incorrect. - furthermore, if the first vector is dropped, the abovementioned reference will be an dangling reference leading to UB.
Therefore, cloning elements of a vector where elements are not NotSelfRefVecItem
is unsafe
.
source§impl<T> SplitVec<T>
impl<T> SplitVec<T>
sourcepub fn new() -> Self
pub fn new() -> Self
Creates an empty split vector with default growth strategy.
Default growth strategy is Doubling
with initial capacity of 4.
Examples
use orx_split_vec::*;
let vec: SplitVec<f32> = SplitVec::new();
assert_eq!(1, vec.fragments().len());
assert_eq!(4, vec.fragments()[0].capacity());
source§impl<T, G> SplitVec<T, G>where
G: Growth,
impl<T, G> SplitVec<T, G>where
G: Growth,
sourcepub fn with_growth(growth: G) -> Self
pub fn with_growth(growth: G) -> Self
Creates an empty split vector with the given growth
strategy.
This constructor is especially useful to define custom growth strategies.
Examples
use orx_split_vec::prelude::*;
#[derive(Clone)]
pub struct DoubleEverySecondFragment(usize); // any custom growth strategy
impl Growth for DoubleEverySecondFragment {
fn new_fragment_capacity<T>(&self, fragments: &[Fragment<T>]) -> usize {
fragments
.last()
.map(|f| {
let do_double = fragments.len() % 2 == 0;
if do_double {
f.capacity() * 2
} else {
f.capacity()
}
})
.unwrap_or(self.0)
}
}
let mut vec = SplitVec::with_growth(DoubleEverySecondFragment(8));
for i in 0..17 {
vec.push(i);
}
assert_eq!(3, vec.fragments().len());
assert_eq!(8, vec.fragments()[0].capacity());
assert_eq!(8, vec.fragments()[0].len());
assert_eq!(8, vec.fragments()[1].capacity());
assert_eq!(8, vec.fragments()[1].len());
assert_eq!(16, vec.fragments()[2].capacity());
assert_eq!(1, vec.fragments()[2].len());
source§impl<T, G: Growth> SplitVec<T, G>
impl<T, G: Growth> SplitVec<T, G>
sourcepub fn try_get_slice(&self, range: Range<usize>) -> SplitVecSlice<'_, T>
pub fn try_get_slice(&self, range: Range<usize>) -> SplitVecSlice<'_, T>
Returns the result of trying to return the required range
as a contagious slice of data.
It might return Ok of the slice if the range belongs to one fragment.
Otherwise, one of the two failure cases will be returned:
- OutOfBounds if the range does not fit in the range of the entire split vector, or
- Fragmented if the range belongs to at least two fragments, additionally returns the fragment indices of the range.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
vec.extend_from_slice(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
assert_eq!(4, vec.fragments()[0].capacity());
assert_eq!(4, vec.fragments()[1].capacity());
assert_eq!(4, vec.fragments()[2].capacity());
assert_eq!(4, vec.fragments()[0].len()); // [0, 1, 2, 3]
assert_eq!(4, vec.fragments()[1].len()); // [4, 5, 6, 7]
assert_eq!(2, vec.fragments()[2].len()); // [8, 9]
// Ok
assert_eq!(SplitVecSlice::Ok(&[0, 1, 2, 3]), vec.try_get_slice(0..4));
assert_eq!(SplitVecSlice::Ok(&[5, 6]), vec.try_get_slice(5..7));
assert_eq!(SplitVecSlice::Ok(&[8, 9]), vec.try_get_slice(8..10));
// Fragmented
assert_eq!(SplitVecSlice::Fragmented(0, 1), vec.try_get_slice(3..6));
assert_eq!(SplitVecSlice::Fragmented(0, 2), vec.try_get_slice(3..9));
assert_eq!(SplitVecSlice::Fragmented(1, 2), vec.try_get_slice(7..9));
// OutOfBounds
assert_eq!(SplitVecSlice::OutOfBounds, vec.try_get_slice(5..12));
assert_eq!(SplitVecSlice::OutOfBounds, vec.try_get_slice(10..11));
sourcepub fn slice(&self, range: Range<usize>) -> Vec<&[T]>
pub fn slice(&self, range: Range<usize>) -> Vec<&[T]>
Returns the view on the required range
as a vector of slices:
- returns an empty vector if the range is out of bounds;
- returns a vector with one slice if the range completely belongs to one fragment (in this case
try_get_slice
would return Ok), - returns an ordered vector of slices when chained forms the required range.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
vec.extend_from_slice(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
assert_eq!(4, vec.fragments()[0].capacity());
assert_eq!(4, vec.fragments()[1].capacity());
assert_eq!(4, vec.fragments()[2].capacity());
assert_eq!(4, vec.fragments()[0].len()); // [0, 1, 2, 3]
assert_eq!(4, vec.fragments()[1].len()); // [4, 5, 6, 7]
assert_eq!(2, vec.fragments()[2].len()); // [8, 9]
// single fragment
assert_eq!(vec![&[0, 1, 2, 3]], vec.slice(0..4));
assert_eq!(vec![&[5, 6]], vec.slice(5..7));
assert_eq!(vec![&[8, 9]], vec.slice(8..10));
// Fragmented
assert_eq!(vec![&vec![3], &vec![4, 5]], vec.slice(3..6));
assert_eq!(vec![&vec![3], &vec![4, 5, 6, 7], &vec![8]], vec.slice(3..9));
assert_eq!(vec![&vec![7], &vec![8]], vec.slice(7..9));
// OutOfBounds
assert!(vec.slice(5..12).is_empty());
assert!(vec.slice(10..11).is_empty());
source§impl<T, G> SplitVec<T, G>where
G: Growth,
impl<T, G> SplitVec<T, G>where
G: Growth,
sourcepub unsafe fn fragments_mut(&mut self) -> &mut Vec<Fragment<T>>
pub unsafe fn fragments_mut(&mut self) -> &mut Vec<Fragment<T>>
Returns a mutable reference to the vector of fragments.
Safety
Fragments of the split vector maintain the following structure:
- the fragments vector is never empty, it has at least one fragment;
- all fragments have a positive capacity;
- capacity of fragment f is equal to
self.growth.get_capacity(f)
.
- capacity of fragment f is equal to
- if there exist F fragments in the vector:
- none of the fragments with indices
0..F-2
has capacity; i.e., len==capacity, - the last fragment at position
F-1
might or might not have capacity.
- none of the fragments with indices
Breaking this structure invalidates the SplitVec
struct,
and its methods lead to UB.
sourcepub fn fragments(&self) -> &[Fragment<T>]
pub fn fragments(&self) -> &[Fragment<T>]
Returns the fragments of the split vector.
The fragments of the split vector satisfy the following structure:
- the fragments vector is never empty, it has at least one fragment;
- all fragments have a positive capacity;
- capacity of fragment f is equal to
self.growth.get_capacity(f)
.
- capacity of fragment f is equal to
- if there exist F fragments in the vector:
- none of the fragments with indices
0..F-2
has capacity; i.e., len==capacity, - the last fragment at position
F-1
might or might not have capacity.
- none of the fragments with indices
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
for i in 0..6 {
vec.push(i);
}
assert_eq!(2, vec.fragments().len());
assert_eq!(&[0, 1, 2, 3], vec.fragments()[0].as_slice());
assert_eq!(&[4, 5], vec.fragments()[1].as_slice());
sourcepub fn get_fragment_and_inner_indices(
&self,
index: usize
) -> Option<(usize, usize)>
pub fn get_fragment_and_inner_indices( &self, index: usize ) -> Option<(usize, usize)>
Returns the fragment index and the index within fragment of the item with the given index
;
None if the index is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
for i in 0..6 {
vec.push(i);
}
assert_eq!(&[0, 1, 2, 3], vec.fragments()[0].as_slice());
assert_eq!(&[4, 5], vec.fragments()[1].as_slice());
// first fragment
assert_eq!(Some((0, 0)), vec.get_fragment_and_inner_indices(0));
assert_eq!(Some((0, 1)), vec.get_fragment_and_inner_indices(1));
assert_eq!(Some((0, 2)), vec.get_fragment_and_inner_indices(2));
assert_eq!(Some((0, 3)), vec.get_fragment_and_inner_indices(3));
// second fragment
assert_eq!(Some((1, 0)), vec.get_fragment_and_inner_indices(4));
assert_eq!(Some((1, 1)), vec.get_fragment_and_inner_indices(5));
// out of bounds
assert_eq!(None, vec.get_fragment_and_inner_indices(6));
Trait Implementations§
source§impl<'a, T: Clone + 'a, G> Extend<&'a T> for SplitVec<T, G>where
G: Growth,
impl<'a, T: Clone + 'a, G> Extend<&'a T> for SplitVec<T, G>where
G: Growth,
source§fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
Clones and appends all elements in the iterator to the vec.
Iterates over the iter
, clones each element, and then appends
it to this vector.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(4);
vec.push(1);
vec.push(2);
vec.push(3);
assert_eq!(vec, [1, 2, 3]);
vec.extend(&[4, 5, 6, 7]);
assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
let mut sec_vec = SplitVec::with_linear_growth(4);
sec_vec.extend(vec.iter());
assert_eq!(sec_vec, [1, 2, 3, 4, 5, 6, 7]);
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)source§impl<T, G> Extend<T> for SplitVec<T, G>where
G: Growth,
impl<T, G> Extend<T> for SplitVec<T, G>where
G: Growth,
source§fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
Extends a collection with the contents of an iterator.
Iterates over the iter
, moves and appends each element
to this vector.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(4);
vec.push(1);
vec.push(2);
vec.push(3);
assert_eq!(vec, [1, 2, 3]);
vec.extend(vec![4, 5, 6, 7].into_iter());
assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)source§impl<T, G> From<SplitVec<T, G>> for Vec<T>where
G: Growth,
T: NotSelfRefVecItem,
impl<T, G> From<SplitVec<T, G>> for Vec<T>where
G: Growth,
T: NotSelfRefVecItem,
source§fn from(value: SplitVec<T, G>) -> Self
fn from(value: SplitVec<T, G>) -> Self
Converts the SplitVec
into a standard Vec
with a contagious memory layout.
Examples
use orx_split_vec::prelude::*;
let mut split_vec = SplitVec::with_linear_growth(2);
split_vec.extend_from_slice(&['a', 'b', 'c']);
assert_eq!(1, split_vec.fragments().len());
let vec: Vec<_> = split_vec.into();
assert_eq!(vec, &['a', 'b', 'c']);
let mut split_vec = SplitVec::with_linear_growth(2);
for i in 0..10 {
split_vec.push(i);
}
assert_eq!(&[0, 1, 2, 3], split_vec.fragments()[0].as_slice());
assert_eq!(&[4, 5, 6, 7], split_vec.fragments()[1].as_slice());
assert_eq!(&[8, 9], split_vec.fragments()[2].as_slice());
let vec: Vec<_> = split_vec.into();
assert_eq!(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], vec.as_slice());
source§impl<T: Clone> From<Vec<T>> for SplitVec<T, Doubling>
impl<T: Clone> From<Vec<T>> for SplitVec<T, Doubling>
source§fn from(value: Vec<T>) -> Self
fn from(value: Vec<T>) -> Self
Converts a Vec
into a SplitVec
.
Examples
use orx_split_vec::prelude::*;
let vec = vec!['a', 'b', 'c'];
let vec_capacity = vec.capacity();
let split_vec: SplitVec<_, Doubling> = vec.into();
assert_eq!(split_vec, &['a', 'b', 'c']);
assert_eq!(1, split_vec.fragments().len());
assert!(vec_capacity <= split_vec.capacity());
source§impl<T> From<Vec<T>> for SplitVec<T, Linear>
impl<T> From<Vec<T>> for SplitVec<T, Linear>
source§fn from(value: Vec<T>) -> Self
fn from(value: Vec<T>) -> Self
Converts a Vec
into a SplitVec
by
moving the vector into the split vector as the first fragment,
without copying the data.
Examples
use orx_split_vec::prelude::*;
let vec = vec!['a', 'b', 'c'];
let vec_capacity = vec.capacity();
let split_vec: SplitVec<_, Linear> = vec.into();
assert_eq!(split_vec, &['a', 'b', 'c']);
assert_eq!(1, split_vec.fragments().len());
assert!(vec_capacity <= split_vec.capacity());
source§impl<T, G> Index<(usize, usize)> for SplitVec<T, G>where
G: Growth,
impl<T, G> Index<(usize, usize)> for SplitVec<T, G>where
G: Growth,
source§fn index(&self, fragment_and_inner_index: (usize, usize)) -> &Self::Output
fn index(&self, fragment_and_inner_index: (usize, usize)) -> &Self::Output
One can treat the split vector as a jagged array and access an item with (fragment_index, inner_fragment_index) if these numbers are known.
Panics
Panics if:
fragment_and_inner_index.0
is not a valid fragment index; i.e., not within0..self.fragments().len()
, orfragment_and_inner_index.1
is not a valid index for the corresponding fragment; i.e., not within0..self.fragments()[fragment_and_inner_index.0].len()
.
Examples
Assume that we create a split vector with a constant growth of N elements. This means that each fraction will have a capacity and max-length of N.
Then, the fragment and inner index of the element with index i
can be computed as
(i / N, i % N)
.
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
for i in 0..10 {
vec.push(i);
}
// layout of the data will be as follows:
// fragment-0: [0, 1, 2, 3]
// fragment-1: [4, 5, 6, 7]
// fragment-2: [8, 9]
assert_eq!(1, vec[(0, 1)]);
assert_eq!(7, vec[(1, 3)]);
assert_eq!(8, vec[(2, 0)]);
// since we know the layout, we can define the index transformer for direct access
fn fragment_and_inner_idx(index: usize) -> (usize, usize) {
(index / 4, index % 4)
}
for index in 0..vec.len() {
let split_access = &vec[index];
let direct_access = &vec[fragment_and_inner_idx(index)];
assert_eq!(split_access, direct_access);
}
source§impl<T, G> Index<usize> for SplitVec<T, G>where
G: Growth,
impl<T, G> Index<usize> for SplitVec<T, G>where
G: Growth,
source§fn index(&self, index: usize) -> &Self::Output
fn index(&self, index: usize) -> &Self::Output
Returns a reference to the index
-th item of the vector.
Panics
Panics if index
is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(4);
vec.extend_from_slice(&[0, 1, 2, 3]);
assert_eq!(&1, &vec[1]);
assert_eq!(&3, &vec[3]);
// let x = &vec[4]; // panics!
source§impl<T, G> IndexMut<(usize, usize)> for SplitVec<T, G>where
G: Growth,
impl<T, G> IndexMut<(usize, usize)> for SplitVec<T, G>where
G: Growth,
source§fn index_mut(
&mut self,
fragment_and_inner_index: (usize, usize)
) -> &mut Self::Output
fn index_mut( &mut self, fragment_and_inner_index: (usize, usize) ) -> &mut Self::Output
One can treat the split vector as a jagged array and access an item with (fragment_index, inner_fragment_index) if these numbers are known.
Panics
Panics if:
fragment_and_inner_index.0
is not a valid fragment index; i.e., not within0..self.fragments().len()
, orfragment_and_inner_index.1
is not a valid index for the corresponding fragment; i.e., not within0..self.fragments()[fragment_and_inner_index.0].len()
.
Examples
Assume that we create a split vector with a constant growth of N elements. This means that each fraction will have a capacity and max-length of N.
Then, the fragment and inner index of the element with index i
can be computed as
(i / N, i % N)
.
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
for i in 0..10 {
vec.push(i);
}
// layout of the data will be as follows:
// fragment-0: [0, 1, 2, 3]
// fragment-1: [4, 5, 6, 7]
// fragment-2: [8, 9]
vec[(0, 1)] += 100; // 1 -> 101
vec[(1, 3)] += 100; // 7 -> 107
vec[(2, 0)] += 100; // 8 -> 108
assert_eq!(vec, &[0, 101, 2, 3, 4, 5, 6, 107, 108, 9]);
// since we know the layout, we can define the index transformer for direct access
fn fragment_and_inner_idx(index: usize) -> (usize, usize) {
(index / 4, index % 4)
}
for index in 0..vec.len() {
let direct_access = &mut vec[fragment_and_inner_idx(index)];
if *direct_access < 100 {
*direct_access += 100;
}
}
assert_eq!(vec, &[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]);
source§impl<T, G> IndexMut<usize> for SplitVec<T, G>where
G: Growth,
impl<T, G> IndexMut<usize> for SplitVec<T, G>where
G: Growth,
source§fn index_mut(&mut self, index: usize) -> &mut Self::Output
fn index_mut(&mut self, index: usize) -> &mut Self::Output
Returns a mutable reference to the index
-th item of the vector.
Panics
Panics if index
is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
vec.extend_from_slice(&[0, 1, 2, 3]);
let item2 = &mut vec[2];
*item2 = 42;
assert_eq!(vec, &[0, 1, 42, 3]);
// let x = &mut vec[4]; // panics!
source§impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for [T]where
G: Growth,
impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for [T]where
G: Growth,
source§impl<T: PartialEq, G, const N: usize> PartialEq<SplitVec<T, G>> for [T; N]where
G: Growth,
impl<T: PartialEq, G, const N: usize> PartialEq<SplitVec<T, G>> for [T; N]where
G: Growth,
source§impl<T: PartialEq, G: Growth> PartialEq<SplitVec<T, G>> for FixedVec<T>
impl<T: PartialEq, G: Growth> PartialEq<SplitVec<T, G>> for FixedVec<T>
source§impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for Vec<T>where
G: Growth,
impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for Vec<T>where
G: Growth,
source§impl<T: PartialEq, G> PartialEq for SplitVec<T, G>where
G: Growth,
impl<T: PartialEq, G> PartialEq for SplitVec<T, G>where
G: Growth,
source§impl<T, G> PinnedVec<T> for SplitVec<T, G>where
G: Growth,
impl<T, G> PinnedVec<T> for SplitVec<T, G>where
G: Growth,
source§fn index_of(&self, element: &T) -> Option<usize>
fn index_of(&self, element: &T) -> Option<usize>
Returns the index of the element
with the given reference.
This method has O(f) time complexity where f is the number of fragments.
Note that T: Eq
is not required; reference equality is used.
Safety
Since SplitVec
implements PinnedVec
, the underlying memory
of the vector stays pinned; i.e., is not carried to different memory
locations.
Therefore, it is possible and safe to compare an element’s reference
to find its position in the vector.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
for i in 0..4 {
vec.push(10 * i);
}
assert_eq!(Some(0), vec.index_of(&vec[0]));
assert_eq!(Some(1), vec.index_of(&vec[1]));
assert_eq!(Some(2), vec.index_of(&vec[2]));
assert_eq!(Some(3), vec.index_of(&vec[3]));
// the following does not compile since vec[4] is out of bounds
// assert_eq!(Some(3), vec.index_of(&vec[4]));
// num certainly does not belong to `vec`
let num = 42;
assert_eq!(None, vec.index_of(&num));
// even if its value belongs
let num = 20;
assert_eq!(None, vec.index_of(&num));
// as expected, querying elements of another vector will also fail
let eq_vec = vec![0, 10, 20, 30];
for i in 0..4 {
assert_eq!(None, vec.index_of(&eq_vec[i]));
}
source§fn capacity(&self) -> usize
fn capacity(&self) -> usize
Returns the total number of elements the split vector can hold without reallocating.
See FragmentGrowth
for details of capacity growth policies.
Examples
use orx_split_vec::prelude::*;
// default growth starting with 4, and doubling at each new fragment.
let mut vec = SplitVec::with_doubling_growth();
assert_eq!(4, vec.capacity());
for i in 0..4 {
vec.push(i);
}
assert_eq!(4, vec.capacity());
vec.push(4);
assert_eq!(4 + 8, vec.capacity());
source§fn clear(&mut self)
fn clear(&mut self)
Clears the vector, removing all values.
This method:
- drops all fragments except for the first one, and
- clears the first fragment.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(5);
for _ in 0..10 {
vec.push(4.2);
}
vec.clear();
assert!(vec.is_empty());
source§fn extend_from_slice(&mut self, other: &[T])where
T: Clone,
fn extend_from_slice(&mut self, other: &[T])where
T: Clone,
Clones and appends all elements in a slice to the vec.
Iterates over the slice other
, clones each element, and then appends
it to this vector. The other
slice is traversed in-order.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(4);
vec.push(1);
vec.push(2);
vec.push(3);
assert_eq!(vec, [1, 2, 3]);
vec.extend_from_slice(&[4, 5, 6, 7]);
assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
source§fn get(&self, index: usize) -> Option<&T>
fn get(&self, index: usize) -> Option<&T>
Returns a reference to the element with the given index
;
None if index is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(5);
vec.extend_from_slice(&[10, 40, 30]);
assert_eq!(Some(&40), vec.get(1));
assert_eq!(None, vec.get(3));
source§fn get_mut(&mut self, index: usize) -> Option<&mut T>
fn get_mut(&mut self, index: usize) -> Option<&mut T>
Returns a mutable reference to the element with the given index
;
None if index is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(5);
vec.extend_from_slice(&[0, 1, 2]);
if let Some(elem) = vec.get_mut(1) {
*elem = 42;
}
assert_eq!(vec, &[0, 42, 2]);
source§unsafe fn get_unchecked(&self, index: usize) -> &T
unsafe fn get_unchecked(&self, index: usize) -> &T
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get
.
Safety
Calling this method with an out-of-bounds index is [undefined behavior] even if the resulting reference is not used.
source§unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
Returns a mutable reference to an element or subslice, without doing bounds checking.
For a safe alternative see get_mut
.
Safety
Calling this method with an out-of-bounds index is [undefined behavior] even if the resulting reference is not used.
source§unsafe fn unsafe_insert(&mut self, index: usize, value: T)
unsafe fn unsafe_insert(&mut self, index: usize, value: T)
Inserts an element at position index
within the vector, shifting all
elements after it to the right.
Panics
Panics if index > len
.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(16);
vec.push(1);
vec.push(2);
vec.push(3);
vec.insert(1, 4);
assert_eq!(vec, [1, 4, 2, 3]);
vec.insert(4, 5);
assert_eq!(vec, [1, 4, 2, 3, 5]);
Safety
If the element type is not a NotSelfRefVecItem
;
in other words, if the elements hold references of each other,
insert
method might invalidate the references.
This method is then called unsafe_insert
.
Consider the following struct which is not a NotSelfRefVecItem
:
struct Node<'a, T> {
value: T,
related_to: Option<&'a Node<'a, T>>,
}
Further, assume we build a vector of two nodes [x, y]
,
where each node is related to the other x <--> y
.
If we insert another node w
at index 0, the vector takes the form [w, x, y]
causing the following problems:
x
is related to the node at position 1, which is itself:x -> x
.y
is realted to the node at position 0, which isw
:y -> w
.
Both relations are wrong after insertion.
For this reason, insertions when T
is a self-referencing-vector-item
are unsafe and the caller is responsible for correcting the references
if it needs to use this method.
source§fn is_empty(&self) -> bool
fn is_empty(&self) -> bool
Returns true
if the vector contains no elements.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
assert!(vec.is_empty());
vec.push(1);
assert!(!vec.is_empty());
source§fn len(&self) -> usize
fn len(&self) -> usize
Returns the number of elements in the vector, also referred to as its ‘length’.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(8);
assert_eq!(0, vec.len());
vec.push(1);
vec.push(2);
vec.push(3);
assert_eq!(3, vec.len());
source§unsafe fn unsafe_pop(&mut self) -> Option<T>
unsafe fn unsafe_pop(&mut self) -> Option<T>
Removes the last element from a vector and returns it, or None
if it
is empty.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(16);
vec.push(1);
vec.push(2);
vec.push(3);
assert_eq!(vec.pop(), Some(3));
assert_eq!(vec, [1, 2]);
Safety
If the element type is not a NotSelfRefVecItem
;
in other words, if the elements hold references of each other,
pop
method might invalidate the references.
This method is then called unsafe_pop
.
Consider the following struct which is not a NotSelfRefVecItem
:
struct Node<'a, T> {
value: T,
related_to: Option<&'a Node<'a, T>>,
}
Further, assume we build a vector of two nodes [x, y]
,
where each node is related to the other x <--> y
.
If we pop y
from the vector, leaving the vector as [x]
:
y
still correctly points to the node at position 0, which isx
.- However,
y
points to the node at position 1 which is does not belong to the vector now causing an undefined behavior.
For this reason, popping when T
is a self-referencing-vector-item
is unsafe and the caller is responsible for correcting the references
if it needs to use this method.
source§fn push(&mut self, value: T)
fn push(&mut self, value: T)
Appends an element to the back of a collection.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(16);
vec.push(1);
vec.push(2);
vec.push(3);
assert_eq!(vec, [1, 2, 3]);
source§unsafe fn unsafe_remove(&mut self, index: usize) -> T
unsafe fn unsafe_remove(&mut self, index: usize) -> T
Removes and returns the element at position index
within the vector,
shifting all elements after it to the left.
Note: Because this shifts over the remaining elements, it has a worst-case performance of O(n).
Panics
Panics if index
is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(16);
vec.push(1);
vec.push(2);
vec.push(3);
vec.push(4);
vec.push(5);
assert_eq!(vec.remove(1), 2);
assert_eq!(vec, [1, 3, 4, 5]);
assert_eq!(vec.remove(2), 4);
assert_eq!(vec, [1, 3, 5]);
Safety
If the element type is not a NotSelfRefVecItem
;
in other words, if the elements hold references of each other,
remove
method might invalidate the references.
This method is then called unsafe_remove
.
Consider the following struct which is not a NotSelfRefVecItem
:
struct Node<'a, T> {
value: T,
related_to: Option<&'a Node<'a, T>>,
}
Further, assume we build a vector of two nodes [x, y]
,
where each node is related to the other x <--> y
.
If we remove the element at position 0; i.e., x
from the vector,
leaving the vector as [y]
:
y
points to the node at position 0, which is itself:y -> y
.- Furthermore,
x
points to the node at position 1 which is does not belong to the vector now causing an undefined behavior.
For this reason, removals when T
is a self-referencing-vector-item
are unsafe and the caller is responsible for correcting the references
if it needs to use this method.
source§unsafe fn unsafe_swap(&mut self, a: usize, b: usize)
unsafe fn unsafe_swap(&mut self, a: usize, b: usize)
Swaps the two elements of the vector with at the given positions ‘a’ and ‘b’.
Panics
Panics if either of the indices a
or ‘b’ is out of bounds.
Examples
use orx_split_vec::prelude::*;
let mut vec = SplitVec::with_linear_growth(2);
vec.push(1); // fragment 0
vec.push(2); // fragment 0
vec.push(10); // fragment 1
vec.push(20); // fragment 1
vec.push(100); // fragment 2
assert_eq!(vec, [1, 2, 10, 20, 100]);
// this is a regular vec.swap
vec.swap(0, 1);
assert_eq!(vec, [2, 1, 10, 20, 100]);
// this is inter-fragments swap; i.e., mem:swap
vec.swap(1, 4);
assert_eq!(vec, [2, 100, 10, 20, 1]);
Safety
If the element type is not a NotSelfRefVecItem
;
in other words, if the elements hold references of each other,
swap
method might invalidate the references.
This method is then called unsafe_remove
.
Consider the following struct which is not a NotSelfRefVecItem
:
struct Node<'a, T> {
value: T,
related_to: Option<&'a Node<'a, T>>,
}
Further, assume we build a vector of two nodes [x, y, z]
,
where each node is related to the next one: x --> y --> z
.
If we swap elements at positions 1 and 2, the vector becomes [x, z, y]
.
But now,
x
still points to position 1 which is now occupied byz
;y
still points to position 2 which is now occupied by itself.
This does not cause an undefined behavior in the classical sense; however, the meaning of the vector and relations are broken.
For this reason, swaps when T
is a self-referencing-vector-item
are unsafe and the caller is responsible for correcting the references
if it needs to use this method.
source§unsafe fn unsafe_truncate(&mut self, len: usize)
unsafe fn unsafe_truncate(&mut self, len: usize)
Shortens the vector, keeping the first len
elements and dropping
the rest.
If len
is greater than the vector’s current length, this has no
effect.
Examples
use orx_split_vec::prelude::*;
fn get_vec() -> SplitVec<usize, Linear> {
let mut vec = SplitVec::with_linear_growth(4);
for i in 0..11 {
vec.push(i);
}
// [ [0,1,2,3], [4,5,6,7], [8,9,10] ]
vec
}
let mut vec = get_vec();
vec.truncate(100);
assert_eq!(vec, (0..11).collect::<Vec<_>>());
for i in 0..11 {
let mut vec = get_vec();
vec.truncate(i);
assert_eq!(vec, (0..i).collect::<Vec<_>>());
}
Safety
This operation is unsafe when T
is not NotSelfRefVecItem
.
To pick the conservative approach, every T which does not implement NotSelfRefVecItem
is assumed to be a vector item referencing other vector items.
truncate
is unsafe since it is possible that remaining elements are referencing
to elements which are dropped by the truncate method.
On the other hand, any vector implementing PinnedVec<T>
where T: NotSelfRefVecItem
implements PinnedVecSimple<T>
which implements the safe version of this method.
§type Iter<'a> = Iter<'a, T>
where
T: 'a,
Self: 'a
type Iter<'a> = Iter<'a, T> where T: 'a, Self: 'a
source§fn partial_eq<S>(&self, other: S) -> bool
fn partial_eq<S>(&self, other: S) -> bool
self
and other
values to be equal, and is used by ==
.