1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
use crate::{Doubling, Fragment, Growth, SplitVec};
impl<T> SplitVec<T> {
/// Creates an empty split vector with default growth strategy.
///
/// Default growth strategy is `Doubling` with initial capacity of 4.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// let vec: SplitVec<f32> = SplitVec::new();
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(4, vec.fragments()[0].capacity());
/// ```
pub fn new() -> Self {
let growth = Doubling;
let capacity = Growth::new_fragment_capacity::<T>(&growth, &[]);
let fragment = Fragment::new(capacity);
let fragments = vec![fragment];
Self { fragments, growth }
}
/// Creates an empty split vector with default growth strategy.
///
/// Default growth strategy is `Doubling` with the given `initial_capacity`.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// let vec: SplitVec<f32> = SplitVec::with_initial_capacity(8);
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(8, vec.fragments()[0].capacity());
/// ```
pub fn with_initial_capacity(initial_capacity: usize) -> Self {
Self::with_doubling_growth(initial_capacity)
}
}
impl<T, G> SplitVec<T, G>
where
G: Growth,
{
/// Creates an empty split vector with the given `growth` strategy.
///
/// This constructor is especially useful to define custom growth strategies.
///
/// # Examples
///
/// ```
/// use orx_split_vec::prelude::*;
///
/// #[derive(Clone)]
/// pub struct DoubleEverySecondFragment(usize); // any custom growth strategy
/// impl Growth for DoubleEverySecondFragment {
/// fn new_fragment_capacity<T>(&self, fragments: &[Fragment<T>]) -> usize {
/// fragments
/// .last()
/// .map(|f| {
/// let do_double = fragments.len() % 2 == 0;
/// if do_double {
/// f.capacity() * 2
/// } else {
/// f.capacity()
/// }
/// })
/// .unwrap_or(self.0)
/// }
/// }
/// let mut vec = SplitVec::with_growth(DoubleEverySecondFragment(8));
/// for i in 0..17 {
/// vec.push(i);
/// }
///
/// assert_eq!(3, vec.fragments().len());
///
/// assert_eq!(8, vec.fragments()[0].capacity());
/// assert_eq!(8, vec.fragments()[0].len());
///
/// assert_eq!(8, vec.fragments()[1].capacity());
/// assert_eq!(8, vec.fragments()[1].len());
///
/// assert_eq!(16, vec.fragments()[2].capacity());
/// assert_eq!(1, vec.fragments()[2].len());
/// ```
pub fn with_growth(growth: G) -> Self {
let capacity = Growth::new_fragment_capacity::<T>(&growth, &[]);
let fragment = Fragment::new(capacity);
let fragments = vec![fragment];
Self { fragments, growth }
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{Exponential, Linear};
#[test]
fn new() {
let vec: SplitVec<usize> = SplitVec::new();
let vec: SplitVec<usize, Doubling> = vec;
assert_eq!(1, vec.fragments().len());
assert_eq!(4, vec.fragments()[0].capacity());
}
#[test]
fn with_initial_capacity() {
let vec: SplitVec<usize> = SplitVec::with_initial_capacity(32);
let vec: SplitVec<usize, Doubling> = vec;
assert_eq!(1, vec.fragments().len());
assert_eq!(32, vec.fragments()[0].capacity());
}
#[test]
fn with_growth() {
let vec: SplitVec<char, Linear> = SplitVec::with_growth(Linear);
assert_eq!(1, vec.fragments().len());
assert_eq!(32, vec.fragments()[0].capacity());
let vec: SplitVec<char, Doubling> = SplitVec::with_growth(Doubling);
assert_eq!(1, vec.fragments().len());
assert_eq!(4, vec.fragments()[0].capacity());
let vec: SplitVec<char, Exponential> = SplitVec::with_growth(Exponential::new(1.25));
assert_eq!(1, vec.fragments().len());
assert_eq!(4, vec.fragments()[0].capacity());
}
}